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Robert M. McMeeking Appointed Editor of the Journal of Applied Mechanics
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Dr. Robert M. McMeeking, Professor of Mechanical Engine
ing at the University of California at Santa Barbara, has be
appointed Editor of theJournal of Applied Mechanicsfor a five-
year term starting on July 1, 2002. He succeeds Dr. Lewis
Wheeler who has served in this position since January 1993.

After nearly ten years at the helm of the Journal, Lew
Wheeler will step down on June 30, 2002. We thank him for
leadership and service to the international mechanics commu
in general and to the Applied Mechanics Division of the ASME
particular. Under his leadership the Journal has maintained
position as a premier journal in mechanics. Recent changes
acted including the increase of the page limit on manuscripts f
six to nine pages, the switch from quarterly to bimonthly public
tion, a faster processing time and a new printing process sh
help make the Journal an even more attractive place to publi

Robert McMeeking earned a Bachelor of Science degree
Mechanical Engineering from the University of Glasgow a
Master of Science and Doctor of Philosophy degrees in S
Mechanics from Brown University. From 1978 to 1985 he was
the faculty of the Department of Theoretical and Applied Mech
ics at the University of Illinois at Urbana-Champaign. Since 19
he has been a Professor of Mechanical Engineering and Env
mental Engineering at UC-Santa Barbara where he has also se
two terms as Department Chair. He is a Fellow of the ASME a
has served as Associate Editor of theJournal of Applied Mechan-
ics for six years.

McMeeking’s research interests span the field of solid mech
ics with particular emphasis on mechanics of materials and c
putational aspects. His publications include works in finite def
mation plasticity, inelastic fracture, toughening mechanisms
ceramics, bimaterial fracture, powder consolidation, failure
composites, ferroelectrics, etc. Robert McMeeking will bring
the editorship a strong connection with materials science whic
an important driver of many modern applied mechanics effort

This appointment represents the conclusion of a more t
twelve-month search conducted by the Executive Committee
Copyright © 2Journal of Applied Mechanics
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consultation with past editors of the Journal and past AMD cha
McMeeking was selected from a strong field of candidates.
selection and this five-year appointment were approved by
ASME Publications Committee at the 2001 IMECE meeting. O
behalf of the AMD Executive Committee we extend a warm w
come to Robert McMeeking to this most prominent appointm
and assure him the support of the Division in his efforts to br
the Journal to even higher levels of excellence.

Stelios Kyriakides
for the AMD Executive Committee
-

Notice on JAM Correspondence
Effective July 1, 2002, all correspondence concerned with previously submitted articles and all new manuscript sub

missions should be directed to:
Professor R. M. McMeeking, Editor

Journal of Applied Mechanics
Department of Mechanical and Environmental Engineering

University of California
Santa Barbara, CA 93106
002 by ASME MAY 2002, Vol. 69 Õ 213
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Dynamic Compression Testing
of Soft Materials
Low-strength and low-impedance materials pose significant challenges in the des
experiments to determine dynamic stress-strain responses. When these materia
tested with a conventional split Hopkinson pressure bar, the specimen will not de
homogeneously and the tests are not valid. To obtain valid data, the shape of the in
pulse and the specimen thickness must be designed such that the specimens are
namic equilibrium and deform homogeneously at constant strain rates. In additio
sensitive transmission bar is required to detect the weak transmitted pulses. Experim
results show that homogeneous deformations at nearly constant strain rates ca
achieved in materials with very low impedances, such as a silicone rubber and a
urethane foam, with the experimental modifications presented in this study.
@DOI: 10.1115/1.1464871#
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1 Introduction
Materials with low-strength and low-impedance, such as e

tomers and polymeric foams, have found a wide range of ap
cations for shock absorption. Rubbers have traditionally been u
for shock-absorbing components; e.g., engine mounts, sus
sions, and gaskets in the automotive industry. More recently, e
tomers have been used to improve the drop-tolerance of port
electronic products, such as notebook computers and cel
phones. Accidental drops have been the main failure mode
many of these portable products. Polymeric foams have also b
used to design crash-resistant components in air and ground
hicles. With tight restrictions on the size and weight faced
designers, it is essential to have accurate material models
predict the dynamic response and energy dissipation of these
materials under impact. When the dynamic response of an ela
meric or polymeric structure used as a shock absorber needs
predicted, the finite element analysis method is commonly use
the analysis tool for materials that experience nonlinear defor
tion and very large strains~Vallee and Shukla@1#!. All material
models need reliable experimental data to determine the mat
constants and to check the accuracy of the model over the ran
its application. It is therefore essential to understand the mech
cal response and failure behavior of soft materials under dyna
loading conditions.

When very large strains and high strain rates are expecte
deformation processes, current standard dynamic experime
techniques for testing elastomers and polymeric foam mate
are inadequate. Rotating eccentric test machines~Clamroch@2#!
are only capable of developing large specimen strains at relati
low frequencies. Vibrating machines~Harris @3#! can often de-
velop sinusoidal or other waveform input at very high frequenc
but cannot achieve the desired large sample strains. Ultras
wave techniques produce small strains and usually have sig
cant material damping as the waves travel through soft mater
The dynamic destructive Charpy test cannot provide an accu
and complete stress-strain history. The split Hopkinson pres
bar ~SHPB!, originally developed by Kolsky@4#, has been widely

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, April
2001; final revision, November 14, 2001. Editor: K. T. Ramesh. Discussion on
paper should be addressed to the Editor, Prof. Lewis T. Wheeler, Departme
Mechanical Engineering, University of Houston, Houston. TX 77204-4792, and
be accepted until four months after final publication of the paper itself in the AS
JOURNAL OF APPLIED MECHANICS.
214 Õ Vol. 69, MAY 2002 Copyright © 20
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used and modified to determine the dynamic properties of a v
ety of engineering materials, such as metals~Gray @5#!, concrete
~Ross et al.,@6#!, and ceramics~Chen and Ravichandran@7–9#!.
Walley et al. @10# summarized conventional SHPB tests for
range of hard polymers. Instead of the single data point obtai
with the Charpy test, SHPB experiments provide complete
namic stress-strain curves as a function of strain rates. Howev
the specimen is a soft material with a low mechanical impedan
such as silicone rubbers and polymeric foams, the conventio
split Hopkinson pressure bar technique needs to be modified
fore reliable dynamic data can be produced. Because of the dr
impedance mismatch at the soft sample/transmission bar inter
the transmitted signal can be too weak to be accurately meas
by the surface strain gages on a steel bar. Viscoelastic bars
been used to obtain a transmitted signal with sufficiently h
signal-to-noise ratio~Gamby and Chaoufi@11#, Wang et al.@12#,
Zhao et al.@13#, and Sawas et al.@14#!. However, dispersion and
attenuation corrections in data reduction and the dependenc
bar material on temperature, moisture level, and aging fac
have brought uncertainties into the data from viscoelastic bar
periments. Furthermore, it takes longer time for the specimen
achieve dynamic equilibrium when sandwiched between two lo
impedance bars~Frew et al.@15#!. To avoid these uncertainties
magnesium bars~Gray and Blumenthal@16#!, a hollow aluminum
transmission bar~Chen et al.@17#!, and a quartz-crystal-embedde
aluminum transmission bar~Chen et al.@18#! have been devel-
oped and validated.

The effects of specimen thickness for low-impedance sp
mens must also be thoroughly investigated because stress w
attenuate when traveling through the soft specimens. A th
specimen acts as a shock absorber instead of a representativ
ume for material properties. In his original work, Kolsky@4#
pointed out that a thick specimen would invalidate the assump
that the axial stresses on both sides of the specimen were n
equal. Kolsky then studied the thickness effects on the dyna
compressive stress-strain behavior of polythene as he varied
specimen thickness from 2.68 mm to 0.25 mm. The peak stren
of the thickest specimen was only one-fifth that of the thinn
one. Recently, Dioh et al.@19# pointed out that specimen thicknes
was an important parameter when the SHPB technique was
to test glassy polymers. Gray et al.@16,20# performed SHPB ex-
periments with several thicknesses of Adiprene L-100 rubber
showed that dynamic equilibrium was achieved during later sta
of the experiments for the thinner samples.

We used pulse shaping techniques to obtain homogeneous

,
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formations at a nearly constant strain rate for the soft specim
Some of the advantages and necessities for shaping the inc
pulse for split Hopkinson pressure bar experiments were discu
20 years ago. Frantz et al.@21# and Follansbee@22# wrote review
papers that discussed pulse shaping for SHPB experiments
metal samples. In these review papers, the authors empha
that a slowly rising incident pulse is preferred to a pulse that ri
steeply in order to minimize the effects of dispersion and all
the sample to achieve dynamic stress equilibrium. Frantz e
@21# and Follansbee@22# discuss experimental techniques f
pulse shaping and a numerical procedure@23# for correcting raw
data for wave dispersion in the bars. To shape the incident p
these authors@21,22# machined a large radius on the impact fa
of the striker bar or placed a tip material between the striker
incident bars. The tip material or pulse shaper was a disk slig
larger than the bars and 0.1 to 2.0 mm thick. The pulse sha
materials were paper, aluminum, brass, or stainless steel. F
et al. @21# present experimental results that show the advanta
of pulse shaping for a 3041 stainless steel sample at an app
mate strain rate of 4,500 s21. In addition, these authors@21# show
that a properly chosen tip material or pulse shaper can also
used to generate a nearly constant strain rate in the sample.
@5# and Gray and Blumenthal@16# present additional information
in recent survey papers that include these subjects. Howe
Duffy et al. @24# were probably the first authors to use pul
shapers to smooth pulses generated by explosive loading fo
torsional split Hopkinson bar. A more recent and complete disc
sion on pulse shaping is given by the authors~Frew et al.@25#!.

In this paper, limitations of the SHPB technique for testing s
materials are illustrated, and necessary modifications are
sented to obtain valid stress-strain data. In particular, the thick
of RTV 6301 silicone rubber specimens is systematically varied
determine the thickness effects. In addition, a pulse shaping t
nique is used to ensure a homogeneous deformation at a n
constant strain rate in the soft specimen. It was found that a pr
pulse shaper and a reduced thickness must both be carefully
termined to achieve a dynamic equilibrium state of stress in
specimen and obtain a nearly constant strain rate. To show
techniques are reliable for extremely low-impedance materials
also present dynamic stress-strain data for a low density~290
kg/m3!, rigid, and closed-cell polyurethane foam.

2 A Conventional Split Hopkinson Pressure Bar
„SHPB… Experiment With an RTV Silicone Rubber

The working principles of the SHPB technique are well doc
mented~Kolsky @4#, Lindholm @26#, and Gray@5#!. The length-to-
diameter ratios~aspect ratios! of the cylindrical specimens ar
typically 0.5–1.0 in order to minimize the inertial and end fri
tional effects. However, when the specimen is a low-strength
low-impedance material such as a silicone rubber or a polym
foam, the limitations of the SHPB technique must be recogni

1GE Silicone, 260 Hudson River Road, Waterford, NY, 12188.
Journal of Applied Mechanics
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before valid data can be obtained. For testing RTV 630 silico
rubber specimens, we used an aluminum SHPB apparatus~Chen
and Zhang@27#! to capture the weak strain signals transmitt
from the low-impedance specimens. As schematically shown
Fig. 1, the 7075-T6 aluminum elastic bars had 19-mm diamet
The incident, transmission, and striker bars were 1802, 762,
305 mm long, respectively. The strain gages shown in Fig. 1 w
located at 560 mm from the impact surface on the incident bar
203 mm from the sample/bar interface on the transmission
The RTV 630 rubber specimens had a diameter and length of
mm with an aspect ratio of 1.0. As previously discussed, ot
investigators, such as Gray et al.@16,20#, have shown that thinne
samples are required for valid tests on some rubber-like mater
However, we use a sample with an aspect ratio of 1.0 such
high-speed digital photographs clearly show the sample defor
tion, which illustrates the problems associated with SHPB tests
soft materials.

According to the conventional SHPB theory~Gray @5#!, the
nominal strain rate«̇(t) and nominal stresss(t) in the specimen
are given by

«̇~ t !52
2c0

L
« r~ t !, (1)

s~ t !5
A0

As
E« t~ t !, (2)

whereL andAs are the original sample length and cross-sectio
area;c0 , E, and A0 are the elastic bar-wave velocity, Young
modulus, and cross-sectional area of the bars;« r(t) and« t(t) are
measured reflected and transmitted strain signals on the bar
faces. Figure 2 shows oscilloscope records of the incident,
flected, and transmitted strain signals for an experiment where
striker bar impacted the incident bar at 31 m/s. Equation~1! and
the nearly constant amplitude of the reflected signal suggest
the dynamic deformation of the specimen was at a nearly cons
strain rate. Equation~2! and the very low amplitude of the trans
mitted signal suggest a very low average stress in the specim
However, Eqs.~1! and ~2! are valid only if the sample is in dy-
namic stress equilibrium and undergoes a homogeneous defo
tion ~Gray and Blumenthal@16#!. We next show that the dynami
deformation process of the sample during this SHPB experim
does not undergo homogeneous deformation. Thus, conclus
drawn from the strain signals and Eqs.~1! and ~2! are not valid.

As shown in Fig. 1, a high-speed digital Imacon 468 cam
was focused on the rubber test section of the SHPB setup. Fi
3 shows the high-speed camera record of the dynamic defor
tion process of the rubber sample during the SHPB experim
The first image was taken before the loading pulse reached
specimen. The next seven images were taken at 10, 40, 70,
130, 160, and 190ms after the arrival of the incident pulse at th
specimen. In each image, the grids are used as the backgroun
reference. The dark rod on the right is the incident bar, wh
moves toward the left during loading~due to the optical system
Fig. 1 A schematic illustration of a split Hopkinson pressure bar setup
MAY 2002, Vol. 69 Õ 215
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Fig. 2 Oscilloscope records of a SHPB experiment on a silicone rubber
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setup, the moving direction appears to be opposite of that il
trated in Fig. 1!. The aluminum bars are covered by dark tape
avoid strong glare on the images. The dark rod on the left is
transmission bar. The light-colored specimen is sandwiched
tween the dark bar-ends. The series of images in Fig. 3 show
after impact, significant deformation occurs near the impact-
of the specimen as evidenced by the large lateral deformation
the incident bar. Meanwhile, the other end of the specimen ha
visible deformation. The large, localized deformation then pro
gates toward the transmission bar and, when reaching the tr
mission bar/specimen interface, is reflected back into the sp
men. During the entire experiment, the transmission bar/speci
interface nearly remained at its original position, which indica
AY 2002
us-
to
the
be-
hat,
nd
ear
no
a-

ans-
eci-

en
es

that a very small axial force was transmitted into the transmiss
bar even though the specimen deformed significantly. The sm
transmitted signal shown in Fig. 2 is also consistent with t
observation. However, the specimen recovered after the im
loading shows significant damage~Fig. 4!, even though the stres
in the specimen calculated from~2! and the weak transmitted
signal shown in Fig. 2 is very small.

The results shown in Figs. 2–4 indicate two distinct charac
istics in dynamic compression experiments involving elastome
specimens with the conventional SHPB technique:~1! nonequilib-
rium stress state and~2! nonhomogeneous deformation and no
constant strain rate in the specimen. The propagation of the de
mation wave in the specimen revealed in Fig. 3 clearly indicate
Fig. 3 Sequential images of a rubber deformation during a SHPB test
Transactions of the ASME
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nonhomogeneous deformation state and thus a nonequilib
stress state over the entire duration of the experiment. Thus
stress and strain measured through incident and transmission
cannot be correlated to any unique stress-strain state in the s
men due to the nonuniform deformation. The nonequilibriu
stress state is also demonstrated by the fact that the specim
extensively damaged~Fig. 4!, even though only a small load i
transmitted through the specimen as shown by the small am
tude transmitted signal in Fig. 2 and by the nearly stationary
sition of the transmission bar in Fig. 3. Even though the reflec
signal in Fig. 2 suggests that a constant strain rate has b
reached in the specimen based on classical SHPB theory, the
ages in Fig. 3 show that the strain rate cannot be constant ove
entire specimen.

The conventional SHPB has been an effective tool for inve
gating the dynamic flow behavior of ductile metals. Howev
when the specimen is a low-impedance and low-strength mate
the results shown in Figs. 2–4 show that the reflected signal is
proportional to strain rate nor is the transmitted signal prop
tional to specimen stress. Thus, the reflected and transm
pulses that are commonly used to obtain dynamic stress and s
histories in the specimen with~1! and~2! are both not valid for the
experiment described in this section. Therefore, the limitations
SHPB in testing soft materials should be recognized and reme
before reliable results can be obtained. First, the images in F
indicate that the rubber specimen is too thick to have a homo

Fig. 4 An RTV 630 silicone rubber specimen recovered after a
SHPB test „the scale is in centimeters …
Journal of Applied Mechanics
ium
the
bars
eci-
m
en is

pli-
o-

ted
een
im-

r the

ti-
r,

rial,
not
or-
tted
train

of
ied

g. 3
ge-

neous deformation during dynamic compression, which is con
tent with the conclusions by previous investigations@4,16,19#. The
wave speeds in the rubbers are very low compared to thos
metals and ceramics. A reduced specimen thickness is there
necessary. Second, the rise time of the incident~loading! pulse is
too short. The rise time in a conventional SHPB is typically abo
10 ms, which is too short for the stress waves to travel back a
forth inside the soft specimen more than three times to reac
dynamic stress equilibrium~Gray @5#, Chen et al.@28#, and Rav-
ichandran and Subhash@29#!. The shape of the loading pulse pro
file must be carefully controlled to facilitate an equilibrium sta
of stress and a homogeneous deformation at a nearly con
strain rate.

3 Modified SHPB Experiments With RTV 630 Silicone
Rubber

In this section, we present modifications to the conventio
SHPB technique for the valid compression testing of soft mat
als. We show that RTV 630 silicone rubber samples are in
namic stress equilibrium and have nearly constant strain rates
most of the test durations.

3.1 Dynamic Stress Equilibrium. To check dynamic stress
equilibrium directly, 0.25-mm thick circular piezoelectri
transducers2 ~X-cut quartz crystal disks of the same diameter
the bars! were attached at both ends of the specimen to determ
the axial load histories on the front and back surfaces of the sp
men. The mechanical impedance of the self-generating qu
crystal transducer is very close to the mechanical impedanc
the aluminum bars, which ensures that the introduction of
quartz disks does not affect the one-dimensional wave prop
tion in the bars~Chen et al.@18#!. Quartz-crystal force transducer
have been used by previous investigators to measure dyn
force profiles~Karnes and Ripperger@30#, Wasley et al.@31#, and
Togami et al.@32#!. To prevent the large lateral expansion of th
soft specimen during axial compression from damaging the br
quartz crystal, a thin aluminum disk the same diameter as
quartz disk was placed between the quartz crystal and the sp
men. The aluminum disk also serves as an electrode to co
charges from the quartz crystal transducer. The modified exp
mental setup for recording stresses is schematically shown in
5. The quartz-crystal transducer signals and the strain gage sig
from incident and transmission bars were recorded using a T
tronix TDS 420A digital storage oscilloscope through ADA400
differential amplifiers and Kistler 5010B charge amplifiers.

Dynamic stress equilibrium can also be checked by compa
the transmitted signal~1-wave! and the difference between th
incident and reflected signals~2-wave! ~Follansbee and Frantz

2Valpey-Fisher Corp., 1994,The User’s Guide to Ultrasound Products, 75 South
St., Hopkinton, MA 01748.
Fig. 5 A schematic illustration of a modified SHPB setup for stress equilibrium
MAY 2002, Vol. 69 Õ 217
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Fig. 6 Front and back-end force histories during a SHPB test without pulse shaping for various specimen thicknesses: „a…
12.7 mm, „b… 6.57 mm, „c… 3.08 mm, and „d… 1.53 mm

Fig. 7 A typical oscilloscope record of a dynamic compressive experiment on RTV
630 with a pulse shaper on an aluminum SHPB
18 Õ Vol. 69, MAY 2002 Transactions of the ASME
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Fig. 8 Front and back-end force histories during a SHPB test with pulse shaping for various specimen thicknesses: „a… 12.7
mm, „b… 6.58 mm, „c… 3.06 mm, and „d… 1.53 mm
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@23#, Wu and Gorham@33#, and Gray et al.@16,20#!. The quartz-
crystal method is a more direct measurement of the end force
the specimen. The method is also more effective when the sp
men is soft. The incident and reflected signals are nearly the s
in this case, which makes 2-wave calculations very inaccurat

3.2 Sample Thickness Effect. To determine the effect o
specimen thickness on the dynamic stress-strain behavior o
silicone rubber during a SHPB experiment, we conducted exp
ments with 12.7-mm diameter samples that had thicknesse
12.7, 6.58, 3.06, and 1.53 mm. The striker initial velocity w
adjusted according to the specimen thickness in an effort to m
tain the same nominal strain rate. To minimize the effects of f
tion on specimen/bar interfaces, the aluminum bar end faces
lapped, and a thin layer of Vaseline nursery jelly was applied
the interfaces. Figure 6~a! shows the dynamic force histories o
the front and back surfaces of the specimen as recorded by the
embedded quartz-crystal force transducers. The results in Fig.~a!
show that the specimen with thickness 12.7 mm~aspect ratio of
1.0! was never in a state of dynamic stress equilibrium during
entire 150-ms loading period. The large spike near the beginn
of front-end force history was at least an order of magnitude lar
than the maximum amplitude in the back-end force history. T
probably caused failure of the specimen that started at the f
end. This large amplitude of front-end force never propagate
the back-end where the force was significantly smaller. A 1-w
and 2-wave analysis~Gray and Blumenthal@16#! also produced
similar results. When the specimen thickness was reduced to
mm, the force history profiles were very similar~Fig. 6~b!!, and
the desired dynamic stress equilibrium was never reached. Ag
ournal of Applied Mechanics
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the large spike in the front-end force may have initiated the fail
in the specimen. When the thickness was reduced to 3.06 mm
oscillations in the force histories were getting close to being
phase, but the amplitude of the front-end force was still sign
cantly higher~Fig. 6~c!!. When the specimen thickness was fu
ther reduced to 1.53 mm, no significant improvement in str
equilibrium was observed~Fig. 6~d!!. Since the desired stres
equilibrium was never reached as the aspect ratio of the specim
was reduced from 1.0 to 0.12, we concluded that a state of
namic stress equilibrium in the rubber specimens cannot be
tained by only reducing the specimen thickness. Next, we sh
that the incident pulse needs to be controlled to avoid the sud
impact that results in the large spike in the front-end force.

3.3 Pulse Shaping. As shown in Fig. 2, the shape of th
incident pulse in a conventional SHPB experiment is nearly tr
ezoidal with a rise time of about 10ms. The results shown in Fig
6 indicate that the nonequilibrium stress state or the nonhomo
neous deformation in the specimen shown in Fig. 3 cannot
overcome by a reduction in specimen thickness alone due to
sharp rise of the loading pulse. The shape of the loading p
must be controlled so that its rise time is longer than the str
equilibrating time in the specimen. In this way, significa
deformation/failure in the specimen occurs only after dynam
equilibrium has been reached. Pulse-shaping techniques hav
cently been further developed to control the loading pulse~Rav-
ichandran and Chen@34#, Nemat-Nasser et al.@35#, Togami et al.
@32#, and Frew et al.@15,25#!. In this study, the control of rise time
was achieved by attaching a combination of C11000 copper~@36#!
and plastic disks, called a pulse shaper, at the impact end o
MAY 2002, Vol. 69 Õ 219
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Fig. 9 Sequential images of a thin rubber specimen deforming during a SHPB test
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incident bar. The plastic deformation of the pulse shaper u
impact effectively increases the rise time of the incident pulse
the bar. The amplitude and duration of an incident pulse are c
trolled by varying the pulse shaper and the striker bar velocity
length. An ideal incident pulse must produce dynamic sam
equilibrium and a nearly constant reflected pulse for cons
strain rate. If the specimen is linearly elastic, ramp incident pu
of different slopes will generate constant strain rates in the sp
men ~Frew et al.@15,25#!. If the specimen is not linearly elastic
as in most cases with rubber and foam materials, the shape o
desired incident pulse depends on the shape of the transm
pulse. This situation requires iterations in experiments to appro
constant strain rates through precise control of the profiles of
incident pulses. Frew et al.@25# have developed an analytica
model to predict the incident pulse in terms of the dimensions
a single-disk pulse-shaper, the length and the material of
striker, and the striking velocity. This model provides an effect
guidance in the dynamic experimental iterations to approach v
test conditions. A typical oscilloscope record of a pulse-sha
SHPB experiment is shown in Fig. 7.

The four specimen thicknesses of 12.7, 6.58, 3.06, and 1.53
were used again for the pulse-shaped experiments with RTV
silicone rubber. Figure 8 shows the dynamic force histories on
front and back surfaces of the specimens as recorded by the
embedded quartz-crystal force transducers. The results in Fig.~a!
show that, even with a pulse shaper, the specimen with an as
ratio of 1.0 never reaches a state of dynamic stress equilibr
This is consistent with the intrinsic behavior of rubber; i.e., a th
piece of rubber will act as a shock absorber. There is again a l
spike in the front-end force history~Fig. 8~a!!, which may have
caused the failure of specimens, starting at the front end. T
large amplitude of front-end force never propagated to the b
end where the force was significantly smaller, which is consis
with the function of a shock absorber. When the specimen th
ness was reduced to 6.35 mm, the force history profiles were
similar to the thicker sample case, although the back-end fo
had a much higher amplitude during the later stages of the exp
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ment, whereas the amplitude of the spike from the front end
duces significantly~Fig. 8~b!!, as compared to the 12.7-mm thic
specimen. The specimen did not fail due to the reduced load
amplitude. When the thickness was reduced to 3.06 mm, bot
the force history profiles follow the same trend qualitatively~Fig.
8~c!!. However, significant oscillations existed in the front-e
force history. These oscillations could not propagate through
thickness of the rubber specimen due to the dispersive natur
the rubber material. Therefore, the stress state and deformatio
the specimen were still not uniform or homogeneous. When
specimen thickness was further reduced to 1.53 mm, the osc
tions in the front-end force history were much smaller in amp
tude and the front-end force history nearly agreed with the ba
end force history~Fig. 8~d!!. Therefore, at this thickness, th
specimen did not absorb any significant portion of the load
pulse. Rather, the entire specimen was in a nearly str
equilibrium state. The mechanical response averaging over
specimen volume represents the pointwise material behavio
the silicone rubber under impact. Thus, for this case we ob
valid stress-strain data.

The results shown in Figs. 6 and 8 indicate that, to achiev
dynamic homogeneous deformation in the soft specimen w
SHPB testing, pulse shaping must be employed. In addition, a
specimen must be used. However, reducing the specimen th
ness alone will not facilitate a dynamic stress equilibrium a
uniform deformation. On the other hand, pulse shaping alone
thick specimens will not result in an equilibrium state of stre
either. It should be noted that, when the thickness of the 12.7-
diameter specimen is reduced to 1.53 mm as required for a
stress equilibrium, the friction on the interfaces between the sp
men and the bars becomes a concern. To minimize the fric
effects in this study, the bar ends were lapped and a thin laye
Vaseline nursery jelly was applied between the specimen and
bar ends, as mentioned previously. Using such smooth bar
faces and proper lubrication in the dynamic experiments, the
specimen expands in the radial directions nearly freely as sh
in the high-speed digital images in Fig. 9, which were taken us
Transactions of the ASME
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Fig. 10 A typical dynamic strain history of an RTV 630 specimen

Fig. 11 Dynamic compressive stress-strain curve of an RTV 630 specimen
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back-light illumination condition to show the specimen edge m
clearly. Figure 9 also show that the specimen deformed uniform

When the axial forces are nearly the same on both end-face
a 1.53-mm thick specimen, the axial stress in the specime
expected to be nearly uniform over the 1.53 mm thickness. Th
fore, the deformation is also expected to be uniform in the sp
men as verified by the high-speed photographs shown in Fig
The basic assumptions of SHPB are thus verified in soft mate
testing by the careful employment of a pulse shaper and a
specimen. These verified assumptions are: the specimen u
goes homogeneous deformation; the bars remain elastic; an
specimen/bar interfaces remain flat. The last two assumptions
easily satisfied since the aluminum alloy bars are much stron
and more rigid than the elastomeric specimens.

When all the basic assumptions are satisfied, strain rate in
specimen is proportional to the reflected signal shown in Fig
and is given by~1!. A constant amplitude of the reflected puls
hanics
re
ly.

s of
is
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ci-
. 9.
rial
thin
der-
the
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ger
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. 7
e

corresponds to a constant strain rate in the soft specimen.
pulse shaper should be designed such that an equilibrium s
state is reached, as shown in Fig. 8~d!, and the specimen is de
forming at a near constant strain rate over a major portion of
experiment duration, especially during the late stages of the
periment when the loading levels are high, as shown in Fig. 7.
pulse shaper for this experiment consisted of a hardened C11
copper disk with a 5.56 mm diameter and 2.42 mm thickne
another hardened C11000 copper disk with a 1.64 mm diam
and 1.62 mm thickness, and a layer of silicone rubber with a 1
mm diameter and 1.51 mm thickness at the impact end.

After all the basic assumptions are validated, the experime
data can be reduced using conventional SHPB methods~Gray
@15#!. Figure 10 shows a typical dynamic strain history for t
1.53-mm thick RTV 630 specimen. The original oscillosco
records of the SHPB experiment on this specimen are show
Fig. 7. The fact that the strain increases almost linearly with
MAY 2002, Vol. 69 Õ 221
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creasing time during the majority of the experiment’s durat
indicates that a nearly dynamic constant strain rate has b
achieved. The slope is taken as the strain rate of the experim
On the other hand, if a pulse shaper is not used, dynamic s
equilibrium cannot be reached which results in an invalid exp
ment. Figure 11 shows the dynamic compressive stress-s
curve of the RTV 630 specimen at a strain rate of 3200/s. T
stress-strain curve is considered to represent the realistic dyn
compressive behavior of this material because dynamic st
equilibrium and homogeneous deformation at a nearly cons
strain rate have been achieved during the experiment, as show
Figs. 7, 8~d!, 9, and 10. It was also noted that the specimen did
fail due to the absence of an excessively large amplitude spik
the front-end force history.
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4 A Modified SHPB Experiment With a Low-Density
Polyurethane Foam

Besides elastomers, the SHPB technique with pulse sha
and a thin specimen can also be used to determine the dyn
compressive behavior of other soft materials. For example, Fig
shows the oscilloscope record of a SHPB test on a polyureth
foam specimen3 with a density of 290 kg/m3. The rigid closed-cell
specimen had a 12.7 mm diameter and 5.21 mm thickness.
thickness is more than ten times the average cell size in the fo
After iterations, the pulse shaper to achieve dynamic equilibri
and a nearly constant strain rate consisted of a hardened C1
copper disk with a 6.42 mm diameter and 2.42 mm thickness,

3General Plastics Manufacturing Co., Tacoma, WA 98409
Fig. 12 A typical oscilloscope record of a dynamic compressive experiment on a
polyurethane specimen with a pulse shaper on an aluminum SHPB

Fig. 13 Dynamic compressive stress-strain curve of a polyurethane speci-
men
Transactions of the ASME
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a silicone rubber cube with a 1.51-mm side length at the imp
end. Following the procedure in Fig. 8~d!, a check on the front-
end and back-end force histories indicates that dynamic st
equilibrium has been reached in the experiment. The nearly c
stant amplitude in the reflected signal in Fig. 12 indicates a c
stant strain rate in the specimen during the experiment. Figur
shows the dynamic compressive stress-strain curve of the foa
a strain rate of 1000/s, which is reduced from the oscillosc
records shown in Fig. 12. Unlike elastomeric materials, the v
ume of the foam material does not remain constant during c
pression. In fact, the Poisson’s ratio is nearly zero during
initial stages of the dynamic compression. Therefore, the str
strain curves in Fig. 13 are in engineering stress and strain.

5 Conclusions
Specimen thickness effects on the dynamic compressive be

ior of an elastomer, RTV 630 silicone rubber, during split Ho
kinson pressure bar~SHPB! testing have been experimentally in
vestigated. To examine the dynamic stress equilibrium in the
specimen, quartz-crystal force transducers were installed at
specimen/aluminum bar interfaces to directly record the a
force histories on the two ends of the specimen. Results show
the conventional SHPB experiment with a soft specimen result
invalid data due to nonhomogeneous deformation during dyna
compression. Reducing the thickness alone cannot achieve
namic stress equilibrium and homogeneous deformation in
soft specimen. The loading pulse profile must also be caref
shaped using a pulse-shaping technique to ensure a homoge
deformation at a constant strain rate in thin specimens du
dynamic experiments. The techniques presented for dynamic
tomeric material testing are also applicable to other soft mater
such as polymeric foams.
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Thermoelasticity Solutions
for Straight Beams
This paper presents a thermoelastic solution technique for beams with arbitrary q
static temperature distributions that create large transverse normal and shear stre
This technique calculates the stress resultants and centroid displacements along a
Then, the stress resultants and temperature distribution are used to calculate the
distributions on a cross section of the beam. Simple examples demonstrate the num
efficiency of the proposed technique and the inadequacy of the strength of mat
theory to solve these types of problems.@DOI: 10.1115/1.1427340#
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Introduction
The theory of thermoelasticity predicts the response of a s

continuum to thermal and mechanical loads and displacem
boundary conditions. Unfortunately, the resulting different
equations are difficult to solve directly. Hence for particular g
ometries like beams, the thermoelastic equations under var
assumptions have been reduced to tractable sets of equation
ferred to as the theory of strength of materials. For beams,
strength of materials solution is based on the assumption tha
beam is long and thin and the transverse normal stresses
strains are small.

Consider the class of thermally loaded beam problems that h
large transverse normal stresses and strains. For these, the st
of materials solution technique is insufficient to predict the
sponse. Boley@1# was able to prove that a beam with a simp
connected cross section would fall into this class of problems o
if the temperature distribution on the cross section was not pla
harmonic (¹2TÞ0), i.e., only if there are thermal sources on t
cross section. He implied that this is also true for beams w
multiply connected cross sections. As will be demonstrated,
contention is not the case for beams with multiply connected c
sections.

This paper intends to propose a method to solve the thermo
tic equations for straight beams which can be applied in a syst
atic manner to large complicated structures. Since the propo
method is based on the thermoelastic equations, it can be
accurately on thermally loaded beam structures with large tra
verse normal stresses. Hence it provides a new tool for engin

Previously, methods to solve the thermoelastic equations
straight beams have been developed. In 1960, Boley@1# presented
a thermoelastic formulation for a free-free prismatic beam.
used an Airy stress function to calculate the stress distribution
the cross section of a prismatic beam with a temperature distr
tion that is arbitrary except that it varies linearly along the len
of the beam. If the beam lies along thex-axis, the Airy stress
function provides a solution for the three normal stressessxx ,
syy , szz and the shear stresssyz . The Airy stress function is
defined by the biharmonic equation. The shear stressessxy and
sxz are determined by a second stress function.

Various individuals have tried to solve the biharmonic equat
in Boley’s formulation. In 1960, Barrekette@2# applied Boley’s
theory to a prismatic beam with an elliptical cross section a
solved the biharmonic equation using a series solution. In 19

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Apr. 2
1993; final revision, Aug. 9, 2001. Associate Editor: X. Markenscoff. Discussion
the paper should be addressed to the Editor, Professor Lewis T. Wheeler, Depa
of Mechanical Engineering, University of Houston, Houston, TX 77204-4792,
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Pilkey and Liu@3# used a finite element code to solve the biha
monic equation. By using a plate element they were able to ob
an analogical solution for the Airy stress function for a beam w
any simply connected cross section. Although this method w
successful, they did not attempt to find the second stress func
required for the remaining two shear stresses. All of these
tempts to use Boley’s theory for calculating the stress distribut
on a thermally loaded beam have produced accurate results
they have all been limited to beams with simply connected cr
sections.

To develop an improved thermoelastic solution technique
straight beams, this paper derives a solution for relatively sim
geometry and loading and then assumes that the relationship
tween stresses and stress resultants and between stress res
and centroid displacements hold for more general cases. The
moelastic solution is developed for a prismatic beam with an
bitrary cross-sectional shape, without in-span mechanical load
supports, and with a temperature distribution that varies linea
with respect to the span of the beam. Hence, ifx is the coordinate
along the length of the beam, then the temperature distribution
be written as

T~x,y,z!5T1~y,z!1xT2~y,z! (1)

whereT1 andT2 are arbitrary functions ofy andz.
To obtain the thermoelastic solution for the simple beam, co

ponents of the stresses and displacements are defined to s
differential equations that coincidentally are the same as the r
tionships that represent the state of plane strain. This does
mean that the beam is in a state of plane strain, but that com
nents of the stresses and displacements satisfy the equation
define plane strain. This approach permits commercial pla
strain programs to be used to solve the straight beam problem

The thermoelastic solution of the simple beam defines a s
tion technique which is uncoupled. First, the stress resultants
centroid displacements are calculated along a beam, as in stre
of materials. By identifying an alternative definition of the therm
load, traditional strength of materials can be used to get accu
stress resultants and centroid displacements. Once they
known, the stress resultants and temperature distribution are
to calculate the stress distributions on the cross section of
beam.

Basic Equations of Thermoelasticity

Strain-Displacement Relationship. For linear elasticity, the
strainse i j ( i , j 5x,y,z) are defined by

e i j 5
1
2~ui , j1uj ,i !; ~ i , j 5x,y,z! (2)

whereui represents the displacements in thex, y, andz direction.
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Material Law. For a homogeneous, isotropic solid, th
stresses and strains are related by

s i j 5d i j @lekk2~3l12m!aT#12me i j (3a)

or

e i j 5
1

E
@~11n!s i j 2d i j ~nskk2aET!# (3b)

where i , j ,k5x,y,z. The constantsn, m, l and E satisfy 2m(1
1n)5E andl(11n)(122n)5nE, a is the coefficient of ther-
mal expansion,d i j 51 if i 5 j , andd i j 50 if iÞ j .

Equations of Equilibrium „No Body Forces…. For a body to
be in equilibrium, the stresses must satisfy

s i j , j50; ~ i , j 5x,y,z! (4)

at every point in the body.

Plane-Strain Formulation
In plane-strain problems, the out-of-plane normal strain a

shear strains are assumed to be zero. This section presen
displacement formulation for a thermally loaded plane-str
problem where thex-axis is normal to the plane. Thus,exx5exy
5exz50. A region on which the problem could be defined
shown in Fig. 1. The temperature distribution isT5T(y,z) and
the unknown displacements in they andz directions are defined a
uy5uy(y,z) anduz5uz(y,z). Substituting the displacements an
temperature distribution into the strain-displacement relations
and material law in Eqs.~2! and ~3a! yields

s i j 5d i j @luk,k2~3l12m!aT#1m~ui , j1uj ,i !; ~ i , j ,k5y,z!

(5)
sxx5l~uy,y1uz,z!2~3l12m!aT; sxy5sxz50.

Substitution of the stresses of Eq.~5! into the equilibrium Eq.~4!
leads to the two differential equations

d i j @luk,k j2~3l12m!aT, j #1m~ui , j j 1uj ,i j !50; ~ i , j ,k5y,z!
(6)

which the displacement functions must satisfy in the region
the problem. The third equation of equilibrium is satisfi
automatically.

The stresses in Eq.~5! must satisfy the traction-free bounda
conditions. The boundary conditions are defined by the outw
pointing normal stresssnn and the shear stresssnm which are
displayed on an exterior and interior boundary in Fig. 1. They
defined by

snn5syy cos2 c1szzsin2 c12syz cosc sinc
(7)

snm5~cos2 c2sin2 c!syz1sinc cosc~szz2syy!,

where c is measured from the positivey-axis to the outward
pointing normal vector on the boundary. Since the boundar

Fig. 1 Multiply connected plane-strain region with traction
forces displayed on the inner and outer boundaries
Journal of Applied Mechanics
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traction free, snn5snm50 on the boundary. Substituting th
stresses in Eq.~5! into Eq. ~7! and settingsnn and snm to zero
defines the boundary conditions as

@luz,z1~l12m!uy,y2~3l12m!aT#cos2 c

1@luy,y1~l12m!uz,z2~3l12m!aT#sin2 c

12m~uy,z1uz,y!cosc sinc50
(8)

m~uy,z1uz,y!~cos2 c2sin2 c!12m sinc cosc~uz,z2uy,y!50.

It follows from the uniqueness theorem presented by Boley@1#
that if uy anduz are smooth and satisfy~6! across the area and~8!
on the boundary of the problem, the displacements constitu
unique solution to the plane-strain problem, ignoring rigid-bo
motion.

Straight Beam Formulation
This section derives a solution of the thermoelastic equati

for the prismatic beam in Fig. 2 without in-span loads or suppo
and with a temperature distribution defined in Eq.~1!. The end
conditions of the beam include mechanical loads and displa
ments. The stress resultants on the cross section of the b
which are displayed in Fig. 2, include a normal resultant,Nx , two
shear resultants,Vy and Vz , and two bending couples,M y and
Mz . If the origin of the y-z plane is at the centroid of cros
section,Nx , M y , andMz are defined as

Nx5E
A
sxxdA; M y5E

A
zsxxdA; Mz52E

A
ysxxdA (9)

whereA is the area of the cross section of the beam. By equi
rium, Vy andVz are expressed as

Vz5M y,x ; 2Vy5Mz,x . (10)

The solution of the thermoelastic equations is obtained by
semi-inverse method in which assumptions are made about
stresses at the outset. Then, the thermoelastic equations are s
based on the assumptions. Since the beam lacks in-span load
supports,Vy,x5Vz,x50. This inspires the first assumption that

sxz,x5sxy,x50. (11a)

SinceVy,x5Vz,x50, Eq. ~10! leads toM y,xx5Mz,xx50. This is
the basis for the second assumption that

sxx,xx5syy,xx5szz,xx5syz,xx50. (11b)

Integrate the four expressions in Eq.~11b! with respect tox,
giving

syy5syy11xsyy2 ; szz5szz11xszz2 ; syz5syz11xsyz2

(12)
sxx5sxx11xsxx21C1~x!1yC2~x!1zC3~x!

wheresxxk , syyk , szzk, andsyzk (k51,2) are functions ofy and
z, andCi(x) is defined as

Ci~x!5Ci11xCi2 ; ~ i 51,2,3! (13)

where Ci1 and Ci2 are constants. The form ofsxx in ~12! is
different from that of the other stresses. This was done to acc
modate the evaluation of stress resultants later.

At this point, the values ofsxxk , syyk , szzk, and syzk (k
51,2) in Eq.~12! are defined to satisfy differential equations th
are identical in form to those that represent a traction-free pla
strain problem on a region identical to the cross section of
beam with a temperature distributionTk (k51,2) from Eq.~1!.
The beam in Fig. 2 is not in a state of plane strain, but that d
not prevent components of the stresses from satisfying the s
differential equations that define plane strain. Letuyk(y,z) and
uzk(y,z) (k51,2) be the displacements in they and z directions
that produce the stress componentssxxk , syyk , szzk, andsyzk for
the temperature distributionTk . Hence the displacementsuyk and
MAY 2002, Vol. 69 Õ 225
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Fig. 2 Prismatic beam displaying the traction forces on the cross section
boundary and the positive stress resultants at the ends
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uzk (k51,2) satisfy the plane-strain differential Eq.~6! and
boundary conditions~8!. Using Eq.~5!, the stressessxxk , syyk ,
szzk, andsyzk can be expressed as

s i jk5d i j @lunk,n2~3l12m!aTk#1m~uik, j1ujk,i !;

~ i , j ,n5y,z: k51,2!
(14)

sxxk5l~uyk,y1uzk,z!2~3l12m!aTk ; ~k51,2!.

These representations of the stresses are functions ofy and z.
Hence, they can be used in Eq.~12! to define the stresses of th
beam without violating the assumptions in Eq.~11b!.

Once the values in Eq.~14! are substituted into Eq.~12!, the
material law in Eq.~3b! will define four of the strains of the beam
Use of these four strains and the strain-displacement relation
in Eq. ~2! produces the displacements

ux~x,y,z!5w~y,z!1
1

E
@D1,x~x!1yD2,x~x!1zD3,x~x!#

uy~x,y,z!5uy1~y,z!1xuy2~y,z!

2
1

E FD2~x!1nS yC11
~y22z2!

2
C21yzC3D G

(15)

uz~x,y,z!5uz1~y,z!1xuz2~y,z!

2
1

E FD3~x!1nS zC11yzC21
~z22y2!

2
C3D G

where the functionsDi(x) are
02
e

.
ship

Di~x!5Ci1

x2

2
1Ci2

x3

6
; ~ i 51,2,3! (16)

andCi1 andCi2 are the same constants as in Eq.~13!. When the
strains are integrated to get the displacements in Eq.~15!, arbi-
trary integration functions are produced. Most of these have to
defined to satisfy Eq.~11!, but one remains arbitrary and appea
in Eq. ~15! as a warping term,w(y,z).

Substituting Eq.~15! into the strain-displacement relationsh
and the material law in Eqs.~2! and~3a! leads to the two remain-
ing shear stresses

sxy5mFw,y1uy22
n

E S yC121
~y22z2!

2
C221yzC32D G

(17)

sxz5mFw,z1uz22
n

E S zC121yzC221
~z22y2!

2
C32D G

which satisfy the assumption in Eq.~11a!.
Substitution of the stresses of Eqs.~12!, ~14!, and~17! into the

equilibrium Eq.~4! provides three differential equations that th
displacements in Eq.~15! must satisfy. Sinceuyk and uzk (k
51,2) satisfy Eq.~6! for a temperature distributionTk (k51,2),
two of the equilibrium equations are satisfied automatically. T
third equilibrium equation leads to the differential equation

w,yy1w,zz1
sxx2

m
1uy2,y1uz2,z1S 1

m
2

2n

E D ~C121yC221zC32!

50. (18)

The stresses must satisfy the traction-free conditions on
boundary of the cross section of the beam. The conditions ar
the outward pointing normal stresssnn and the two shear stresse
snm andsxn shown in Fig. 2. Thesnn andsnm stresses are de
fined in Eq.~7! and thesxn stress is defined by
Transactions of the ASME
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sxn5sxz sinc1sxy cosc. (19)

Since the beam lacks in-span loads and supports,snn5snm
5sxn50 on the boundary of the cross section. Sinceuyk anduzk
(k51,2) satisfy Eq.~8! for Tk (k51,2), the requirement tha
snn5snm50 on the boundary of the cross section is satisfi
automatically. This leavessxn50 to be considered. Substitutin
Eq. ~17! into Eq.~19! and settingsxn to zero defines the boundar
condition
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ed

w,y cosc1w,z sinc

5F n

E S yC121
~y22z2!

2
C221yzC32D2uy2Gcosc

1F n

E S zC121yzC221
~z22y2!

2
C32D2uz2Gsinc. (20)

Now consider the stress resultants and centroid displacem
of the beam. Substitutesxx from Eq. ~12! into Eq. ~9! and solve
for Ci(x) to obtain the familiar relations
C1~x!5
1

A FNx2E
A
~sxx11xsxx2!dAG

C2~x!5

I yS 2Mz2E
A
y~sxx11xsxx2!dAD 2I yzS M y2E

A
z~sxx11xsxx2!dAD

I yI z2I yz
2 (21)

C3~x!5

I zS M y2E
A
z~sxx11xsxx2!dAD 2I yzS 2Mz2E

A
y~sxx11xsxx2!dAD

I zI y2I yz
2
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whereI y , I z , andI yz are the cross-sectional bending moments
inertia. Since the beam lacks in-span supports and loads,Nx does
not vary with respect tox and M y and Mz vary linearly with
respect tox. Hence the definitions ofCi(x) in Eq. ~21! are linear
functions ofx and do not violate Eq.~13!. The displacement end
conditions are applied to the centroid of the beam, which is at
origin of they-z plane. Differentiating Eq.~15! with respect tox
and evaluating aty5z50 leads to

ux,x~x,0,0!5
C1~x!

E
; uy,xx~x,0,0!52

C2~x!

E
;

(22)

uz,xx~x,0,0!52
C3~x!

E
.

Note that the differential equations produced by substituting
~21! into ~22! are identical to those defined by strength of ma
rials if sxxk is replaced by2aETk (k51,2).

If uyk anduzk (k51,2) satisfy the plane-strain problem for th
temperatureTk , w satisfies Eq.~18! and~20!, andCi satisfies Eq.
~21! and ~22!, then the displacements in Eq.~15! satisfy equilib-
rium, material law, strain displacement, the traction-free bound
conditions on the cross section, and the end conditions of
beam. It should be recognized that no effort is made to match
stressessxx , sxy , and sxz with the boundary conditions at th
ends of the beam. This is justified by Saint Venant’s principle
discussed by Boley@1#. Saint Venant’s principle maintains tha
these effects on the stresses that are away from the ends o
beam are small. The minimum distance from the ends of the b
where the stresses are accurate is equal to the maximum wid
the cross section of the beam.

Fortunately, the unknown components of the displacement
Eq. ~15! do not have to be found simultaneously. The equatio
that define the unknown components are uncoupled. First, ob
solutions for the two traction-free plane-strain problems for
temperature distributionTk that defineuyk , uzk , sxxk , syyk ,
szzk, andsyzk (k51,2). Second, calculate the integrals ofsxxk
(k51,2) in Eq.~21!. Third, solve the coupled ordinary differentia
equations produced by substituting Eq.~21! into ~22! to get the
stress resultants and centroid displacements along the leng
the beam. Fourth, use Eq.~12! and~21! to get the stress distribu
of
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tions for sxx , syy , szz, andsyz . Fifth, to calculatew, solve the
Poisson equation in~18! with the boundary condition in~20!.
Finally, use Eq.~17! to obtain the stress distributions forsxy and
sxz . This demonstrates how plane-strain theory can be used a
integral part of the thermoelastic solution of a straight beam.

Comparison With Strength of Materials
By Eq. ~3b! sxxi5n(syyi1szzi)2aETi ( i 51,2). As n(syyi

1szzi) approaches 0,sxxi approaches2aETi . By replacingsxxi
with 2aETi in Eqs.~12!, ~21!, and~22!, they become identical to
those for strength of materials. Hence the strength of mater
solution for the stress resultants, centroid displacements and
mal bending stress is a special case of the thermoelastic solu
for small values ofn(syyi1szzi). Note that if n is small then
strength of materials produces accurate results, but may not
duce all the necessary results becausesyyi and szzi , which are
ignored by strength of materials, may still be significant.

Application to Beam Structures
As stated in the Introduction, the purpose of this thermoela

derivation is to establish relationships on the cross section o
simple beam between stress resultants and centroid displacem
and between stress resultants and stress distributions, and
assume they hold for a more general case. Consider a beam s
ture or frame with thermal loading. By assuming that the eq
tions derived in the previous section hold at every cross sectio
every member of the structure, a solution can be obtained. W
follows is the resulting step-by-step technique to obtain the so
tion for the beam structure.
Step 1: Consider a member of the structure. Define a coordin
system such thatx lies along the length of the beam and the orig
of they-zplane is at the centroid of the cross section. The therm
load of the beam expressed in this coordinate system isT(x,y,z).
At x5xo , the cross section of the member isAo . Calculate the
solution of a traction-free plane-strain problem with a temperat
distributionT(xo ,y,z) on a region identical toAo using the ma-
terial properties of the beam. Denote the stresses of the pl
strain problem assxxo , syyo , szzo, and syzo. This should be
done at every cross section along the length of the beam. Axo
varies, the shape ofAo and the plane-strain stresses vary. This s
MAY 2002, Vol. 69 Õ 227
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should be repeated for every member of the structure. These
culations can be done by a general purpose finite element co
Step 2: Evaluate the integrals that defineMTz , MTy , andPT as

PT52E
A0

sxxodA; MTy52E
Ao

zsxxodA;

(23)

MTz52E
Ao

ysxxodA

which vary with respect tox. This should be repeated for ever
member of the structure. A numerical method can be used to
form the integration.
Step 3: Define a fictitious temperature distribution,Tf5a1(x)
1ya2(x)1za3(x), that satisfies

2E
A
kaETfdA5E

A
ksxxodA; ~k51,y,z! (24)

for each member of the structure. If they andz-axes correspond to
the principal axes, thena15PT /aEAo , a25MTz /aEIz , anda3
5MTy /aEIy whereMTz , MTy , andPT are defined in Step 2.
Step 4: Use a general purpose finite element program to ana
the structure. Apply the boundary conditions and force loads
the model. Instead of using the true temperature distributions
the beam elements, use the fictitious ones defined in Step 3.
solution will give the correct thermoelastic values for the str
resultants and centroid displacements along the length of e
member of the structure.
Step 5: Once the stress resultants have been calculated in Ste
the distributions ofsxx , syy , szz, andsyz on the cross section
Ao of any member of the structure can be computed by

syy5syyo ; szz5szzo; syz5syzo (25)

sxx5sxxo1
1

Ao
~Nx1PT!1y

I y~2Mz1MTz!2I yz~M y1MTy!

I yI z2I yz
2

1z
I z~M y1MTy!2I yz~2Mz1MTz!

I zI y2I yz
2 .

Step 6: The two shear stressessxy andsxz remain to be consid-
ered. In order to get these shear stresses, repeat Steps 1 and
a particular cross section of interest, but useT,x(xo ,y,z) instead
of T(xo ,y,z) as the thermal load. Denote the stresses of the pla
strain problem assxxp , syyp , szzp, andsyzp, the displacements
asuyp anduzp , and the values defined in Step 2 asMTzp, MTyp
andPTp .
Step 7: Solve for the warping,w(y,z), on the cross section o
interest by using the differential equation

w,yy1w,zz1
sxxp

m
1uyp,y1uzp,z

1S 1

m
2

2n

E D S PTp1Nx,x

Ao
1yB21zB3D50 (26)

and boundary condition

w,y cosc1w,z sinc

5F n

E S y
PTp1Nx,x

Ao
1

~y22z2!

2
B21yzB3D2uypGcosc

1F n

E S z
PTp1Nx,x

Ao
1yzB21

~z22y2!

2
B3D2uzpGsinc

(27)

where theB2 andB3 are defined as
228 Õ Vol. 69, MAY 2002
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B25
I y~2Mz,x1MTzp!2I yz~M y,x1MTyp!

I yI z2I yz
2

(28)

B35
I z~M y,x1MTyp!2I yz~2Mz,x1MTzp!

I yI z2I yz
2 .

andNx,x , M y,x , andMz,x are the derivatives of the stress resu
ants found in Step 4. A two-dimensional steady-state ther
conduction problem is defined by the differential equationk(T,xx
1T,yy)1Q50 and the boundary conditionk(T,x cosc
1T,y sinc)5q wherek is the thermal resistance,Q is the thermal
source, andq is the thermal flow. By comparing these equations
~26! and ~27!, it is clear that an analogical solution forw can be
calculated by a two-dimensional general purpose finite elem
code for thermal conduction ifk51, q is equal to the right-hand
side of Eq.~27! and

Q5
sxxp

m
1uyp,y1uzp,z1S 1

m
2

2n

E D S PTp1Nx,x

Ao
1yB21zB3D .

(29)

Step 8: Calculate the remaining shear stresses on the cross se
of interest by using

sxy5mFw,y1uyp2
n

E S y
PTp1Nx,x

Ao
1

~y22z2!

2
B21yzB3D G

(30)

sxz5mFw,z1uzp2
n

E S z
PTp1Nx,x

Ao
1yzB21

~z22y2!

2
B3D G .

Simply Connected Example
Consider a free-free beam that lies along thex-axis with a

square cross section. The height and width of the cross sectio
H50.1 meters and the length isL510.0 meters. The thermal loa
is defined as

T~x,y,z!5Tc

x

L S z

H D 3

where Tc51 K and the material constants areE570 GPa,
n50.35, anda523.6 E-6/K.

Strength of Materials Solution. The strength of materials
solution, presented by Boley@1# and Ugural and Fenster@4#,
yields

sxx5TcaE
x

L F3

5 S z

H D2S z

H D 3G
sxz5aTc

E

L Fz2

H S 3

10
2

z2

4H2D2
H

20G sxy50.

The remaining stresses are ignored. The maximum stress va
on the cross section atx50.1 calculated by this solution are liste
in Table 1.

Proposed Thermoelastic Solution. The plane-strain solu-
tions in Steps 1 and 5 use uniform 10310 meshes of ANSYS
stif42 ~plane-strain option! elements. The Newton-Cotes metho
is used to evaluate the integrals in Steps 2 and 6. To solve
v(y,z) in Step 7, a uniform 50350 mesh of ANSYS stif55 ele-
ments is used. The maximum stress values on the cross secti
x50.1 calculated by this solution are listed in Table 1.

Direct Three-Dimensional Thermoelastic Solution. As a
check on the accuracy of the method presented in this pap
three-dimensional finite element solution is performed. A 0
meter length of the beam is modeled using ANSYS stif45 e
ments. The element mesh is 10310320 and spans the distanc
betweenx520.1 andx50.3. This model will serve as a chec
Transactions of the ASME
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for the stresses atx50.1. The maximum stress values on the cro
section atx50.1 calculated by this solution are listed in Table

Summary. As can be seen by Table 1, the proposed th
moelastic solution technique produced accurate maximum s
values. Due to the large transverse normal stresssyy , this prob-
lem is outside of the usual range of problems that elemen
strength of materials is intended to solve. Hence, it is not surp
ing that strength of materials calculates a maximum normal st
that is in error by 30 percent and a maximum shear stress that
error by 72 percent.

The computational requirements of the proposed thermoela
solution technique to solve this problem were considerably
than the three-dimensional thermoelastic solution. The ratio
computer memory required to run both solutions is 90/1. The r
of computer time is 82/1.

Tubular Example
Consider a free-free tubular beam that lies along thex-axis

betweenx52L and x5L. The inner radius isa and the outer
radius isb wherea,b«L. The material properties areE, n anda,
and the temperature distribution isT5T(x,r ) where r 25y2

1z2. Defineu as the circumference coordinate.

Thermoelastic Solution. Step 1 becomes the solution of a
axisymmetric plane-strain problem presented by Timoshenko@5#.
By starting with Timoshenko’s closed-form solution, the rema
ing steps of the solution technique can be calculated without
merical techniques. All the differential equations are ordinary a
can be solved directly. This solution gives stress distributions

s rr 5
aE

~12n!

1

r 2 F S r 22a2

b22a2D E
a

b

Trdr2E
a

r

TrdrG
suu5

aE

~12n!

1

r 2 F S r 21a2

b22a2D E
a

b

Trdr1E
a

r

Trdr2r 2TG
sxx5

aE

^12n& F 2

~b22a2! Ea

b

Trdr2TG

Table 1 Largest Stress Values Calculated by Each Method
„Pa… at xÄ0.1

Stress
3-D Thermoelastic

Solution

Proposed
Thermoelastic

Solution
Strength of

Materials Solution

sxx 9386 9433 6608 (z52H)
syy 8977 9054 ignored
szz 4430 4525 ignored
sxy 1938 2066 0
sxz 2981 3073 826 (z50)
syz 1531 1582 ignored
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ss
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n-
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of

s rx5
aE

~12n!r F S a22r 2

b22a2D E
a

b

T,xrdr 1E
a

r

T,xrdr G
s ru5sux50.

Strength of Materials. By using the strength of materials so
lution, the stresses are found to be

sxx5aEF 2

~b22a2! Ea

b

Trdr2TG
s rx5

aE

r F S a22r 2

b22a2D E
a

b

T,xrdr 1E
a

r

T,xrdr G
sux50.

The remaining stresses are ignored.

Comparison. The ratios ofsxx ands rx produced by the ther-
moelastic technique and strength of materials technique are

sxx~Thermoelastic!

sxx~Strength of Materials!
5

s rx~Thermoelastic!

s rx~Strength of Materials!

5
1

12n
.

Thus, if the stress is nonzero, the error of the strength of mate
solution forsxx ands rx is

Percent Error5n100.

Hence, asn→1/2 the error approaches 50 percent, and asn→0 the
error approaches 0 percent.

Summary

1. Strength of materials is inadequate to solve beam struct
with thermal loads that produce large transverse norm
stresses. These types of problems require thermoela
solutions.

2. The technique presented in this paper solves the thermo
tic equations in an efficient manner using numerical te
niques available on the commercial market. This is due
the fact that the thermoelastic equations have been redu
to a set of uncoupled problems that have been extensi
studied analytically and numerically.

References
@1# Boley, B. A., and Weiner, J. H., 1960,Theory of Thermal Stresses, John Wiley

and Sons, New York, pp. 76–77, 307–314, 328–332.
@2# Barrekette, E. S., 1960, ‘‘Thermoelastic Stresses in Beam,’’ ASME J. Ap

Mech.,27, pp. 465–473.
@3# Pilkey, W. D., and Liu, Y., 1949, ‘‘Thermal Bending Stresses on Beam Cr

Section,’’ Finite Elem. Anal. Design,6, No. 1, pp. 23–31.
@4# Ugural, A. C., and Fenster, S. K., 1975,Advanced Strength and Applied Elas

ticity, Elsevier, New York, pp. 141–144.
@5# Timoshenko, S., and Goodier, J., 1951,Theory of Elasticity, McGraw-Hill,

New York, pp. 408–409.
MAY 2002, Vol. 69 Õ 229



rials
bject

ensity
This
ilar

ies for
ctors
alytic
V. Boniface
Post Doctoral Fellow

L. Banks-Sills
Professor,

Mem. ASME

The Dreszer Fracture Mechanics Laboratory,
Department of Solid Mechanics,

Materials and Structures,
The Fleischman Faculty of Engineering,

Tel Aviv University,
69978 Ramat Aviv, Israel

Stress Intensity Factors for Finite
Interface Cracks Between a
Special Pair of Transversely
Isotropic Materials
An infinite bimaterial system made of two dissimilar, transversely isotropic mate
bonded together (with the lower material being mathematically degenerate) and su
to remote loads is considered. An analytical expression for the complex stress int
factor of a finite crack along the interface between these two materials is obtained.
result is extended to the case of an infinite array of collinear cracks along a sim
interface. Next, the finite element method is employed to analyze these geometr
specific material properties. An area M-integral is used to extract stress intensity fa
from the finite element results, which compare well with those obtained from the an
expressions. Different types of loads are considered.@DOI: 10.1115/1.1459067#
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1 Introduction
In recent years, much research has been directed toward u

standing interface fracture. This is largely stimulated by the
creasing use of composite materials, which often fail by dela
nation. Though work on interface fracture began more than th
decades ago, it received a new thrust from the seminal pape
Rice @1# and Hutchinson@2#. The issue of crack face contact wa
sufficiently resolved by Rice@1# when he obtained bounds on th
phase anglec ~mode mixity!. It was found that there is a larg
range ofc for which the contact region is sufficiently small.

Interface cracks between anisotropic materials were studie
Bassani and Qu@3,4# who derived a condition for nonoscillator
behavior. Later Suo@5# analyzed an interface crack for bot
nonoscillatory and oscillatory singularities. He found that t
near-tip field for the oscillatory singularity is similar to that of
crack between two isotropic materials. Working independen
Ting @6,7# determined the singularity for both the oscillatory a
nonoscillatory cases. In addition, he developed the asymp
stress and displacement fields~@8#!. Recently, Banks-Sills and
Boniface @9# addressed the specific problem of a semi-infin
crack between two transversely isotropic materials one of wh
was mathematically degenerate. They obtained the asymp
stress and displacement fields at the crack tip using the S
formalism~@10#!. An excellent treatise on these issues is provid
by Ting @11#.

Stress intensity factors which characterize a given crack
important parameters in evolving an effective fracture des
methodology. The stress intensity factors along with their criti
values~which are measured experimentally! can be incorporated
into an appropriate fracture criterion. This criterion is useful
predicting crack extension and hence assists in mapping a
operating envelope within which fracture is largely avoided. T
present work is directed towards obtaining stress intensity fac
for specific crack geometries along a bimaterial interface.

In this investigation, an infinite bimaterial system consisting
two transversely isotropic materials, with the lower half ma

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Mar. 1
2000; final revision, Nov. 14, 2000. Associate Editor: K. Ravi-Chandar. Discus
on the paper should be addressed to the Editor, Prof. Lewis T. Wheeler, Depar
of Mechanical Engineering, University of Houston, Houston, TX 77204-4792,
will be accepted until four months after final publication of the paper itself in
ASME JOURNAL OF APPLIED MECHANICS.
230 Õ Vol. 69, MAY 2002 Copyright © 20
der-
in-

i-
ree
s of
s
e

by

h
e

a
tly,
d
otic

ite
ich
otic
troh
ed

are
ign
al

in
safe
he
tors

of
h-

ematically degenerate, is considered. This configuration clo
approximates an interface in a laminated composite with a
deg/90 deg ply layup. So the results presented herein find re
application in understanding fracture of laminated composi
Analytic expressions for the stress intensity factors are obtai
for two crack configurations in this bimaterial system, namely~a!
a finite crack along the interface between the two materials
~b! an infinite array of collinear cracks along such an interface

The M-integral method is used to determine stress inten
factors from finite element results. This method requires exp
sions for the asymptotic stress field in this bimaterial syst
which are available in@9#. Numerical results are obtained an
compared to values computed from the analytic expressions.
M-integral, developed by Wang and Yau@12#, allows for the de-
termination and separation of the stress intensity factorsK1 and
K2 for interface cracks between two isotropic materials. Since
structure of the near-tip fields for cracks between two anisotro
materials is similar, the same integral formulation may be us
This method has been successfully employed in many probl
including isotropic bimaterials@12–14#, orthotropic bimaterials
@15#, and the present bimaterial system~@9#!. Additionally, non-
planar problems were addressed by Nakamura@16#, Nahta and
Moran @17#, and Gosz et al.@18#.

It should be emphasized here that the goal of this paper i
obtain analytic expressions for stress intensity factors of fin
cracks in two geometries. The finite element method a
M-integral are used only for comparison, as this numerical
proach has been developed and validated earlier in@9#.

In Section 2, the bimaterial system is described, and impor
parameters like singularity, stress intensity factors, interface
ergy release rate, and crack-face displacements are defined
problem of a single finite interface crack is addressed in Sectio
and the expression for stress intensity factors derived. Sectio
focuses on stress intensity factors for an infinite array of collin
interface cracks. Finite element results are compared with th
analytical expressions in Section 5.

2 The Bimaterial System
An infinite bimaterial system consisting of two transversely is

tropic materials bonded together under plane-strain condition
considered~Fig. 1!. In one of the materials~assumed here as th
upper material!, the axis of symmetry is thex1-axis and in the
other~i.e., the lower material! it is thex3-axis. The latter results in
a mathematical degeneracy. Two crack problems in this bimate

0,
ion
ment
nd

he
02 by ASME Transactions of the ASME
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system are studied here:~1! a finite crack along the interface a
illustrated in Fig. 2~a!, and~2! an infinite array of collinear cracks
along the interface as in Fig. 3~a!. Relevant mechanical propertie
~Young’s moduli, shear moduli, and Poisson’s ratios! in the axial
and transverse directions areEA , ET , GA , GT , nA , and nT .
Since the material is transversely isotropic,GT5ET/2(11nT).
For simplicity, the two materials are assumed identical althou
their axes of symmetry differ. This assumption is al

Fig. 1 Crack in a transversely isotropic bimaterial system
Journal of Applied Mechanics
s

s

gh
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largely the result of the emphasis of this paper on the 0 deg/90
laminate composite. It should, however, be noted that dissim
materials can be analyzed by using the appropriate material p
erties.

Assuming that singular stresses at the crack tip are proporti
to r d wherer is the radial distance from the crack tip~Fig. 1! and
following @11#

d52
1

2
and 2

1

2
7 i e (1)

with the bimaterial constant

e5
1

2p
lnS 11b

12b D (2)

where

b5H 2
1

2
tr~S̆!2J 1/2

. (3)

The first value ofd in ~1! leads to the nonoscillatory solutio
while the second results in the oscillatory solution. Nonoscillato
behavior is possible if there exists a nonzero vectort0 satisfying
the condition~@11#, p. 428!

S̆t050.

Evaluating S̆ for this bimaterial system, as explained subs
quently, it is seen thatS̆Þ0. Further this particularS̆ leads tot0
50 for the plane-strain condition considered here. So in t
analysis, oscillatory behavior is addressed and

d52
1

2
1 i e. (4)
Fig. 2 A finite interface crack „a… schematic diagram, „b… finite element mesh
MAY 2002, Vol. 69 Õ 231
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Fig. 3 Infinite array of collinear interface cracks „a… schematic diagram, „b… finite element mesh
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It is seen that it is immaterial if the conjugate of the above va
is used, provided one is consistent throughout the analysis.

The 333 matrix S̆ is given by

S̆5D21W (5)

where

D5L1
211L2

21 , (6)

W5S1L1
212S2L2

21 . (7)

The subscripts 1 and 2 in~6! and ~7! represent, respectively, th
upper and lower material.Sj and L j are Barnett-Lothe tensors
Since these tensors are real and

2A jBj
215SjL j

211 iL j
21 , (8)

knowledge of the left-hand side of~8! is sufficient to determine
~6! and~7!. Instead of presenting more general expressions for
matricesA j andBj which may be found in~@11#, pp. 170–172!,
the specific matrices for the upper and lower materials are g
in Appendix A.

Using these matrices,e is obtained as

e5w/AD11D22 (9)

where

w52
~11nT!nA

EA
1b1b2S 12nA

2
ET

EA
D 1

EA
1

~122k!

4GT
, (10)

D115
~b11b2!

EA
S 12nA

2
ET

EA
D1

112k

4GT
, (11)

D225
b1b2~b11b2!

EA
S 12nA

2
ET

EA
D1

112k

4GT
. (12)
Õ Vol. 69, MAY 2002
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The material parametersD11 andD22 are components of the ma
trix D in ~6!. The parameterk is given in Appendix A. Substitut-
ing k in the above relations, it is seen thatD11 and D22 always
have the same sign. The constantsb j , j 51,2,3 are related to
pj

(1) , the three complex eigenvalues for the upper material~@11#,
pp. 121–128!, wherepj

(1)5 ib j for a transversely isotropic mate
rial with this material symmetry.

If the upper and lower materials are exchanged, thenD in ~6!
remains the same butW in ~7! changes sign. In carrying out th
analysis, this reverses the sign ofw in ~10!, and hencee in ~9!.

Asymptotic stress and displacement fields in the neighborh
of the crack tip in Fig. 1 are given in@9#. The stress intensity
factorsK1 andK2 may be combined as a complex stress intens
factor K given by

K5K11 iK 2 (13)

such that the stress components along the interface ahead o
crack tip are related as

SAD22

D11
s221 is12D U

u50

5
Kr i e

A2pr
. (14)

Further, the complex stress intensity factor in~13! may be written
in nondimensional form as

K̃5
KLi e

sApL
(15)

where L is an arbitrary length parameter ands is the applied
stress. The nondimensional complex stress intensity factor
also be expressed as

K̃5uK̃ueic (16)
Transactions of the ASME
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so that the phase angle

c5arctanF Im$KLi e%

Re$KLi e%G5arctanFAD11

D22
S s12

s22
D GU

u50,r 5L

. (17)

Crack-face displacements in the vicinity of the crack tip
terms ofK are found to be

AD11

D22
Du21 iDu15

2D11

~112i e!coshpe
A r

2p
Kr i e (18)

whereDuj5uj
(1)(r ,p)2uj

(2)(r ,2p). The superscripts 1 and 2 o
uj refer to material 1 and 2, respectively.

The interface energy release rateGi is related to the stress in
tensity factors by

Gi5
1

H
~K1

21K2
2! (19)

where

1

H
5

D11

4 cosh2 pe
. (20)

Note that the subscripti in ~19! represents interface andGi has
units of force per length.

It should be noted that inherently for any interface bothK1 and
K2 must be prescribed or equivalentlyGi andc. In describing an
interface fracture criterion, one may prescribe either a rela
betweenK1 andK2 or express the critical energy release rateGic
as a function of the phase anglec.

3 A Finite Interface Crack
The bimaterial system described above is considered. LeG

denote a crack of length 2a which is located at

x2560, 2a,x1,1a

as in Fig. 2~a!. Following @11# ~p. 140!, a stress function vectorF
may be defined with componentsF j such that

s j 152F j ,2 and s j 25F j ,1 (21)

where the comma denotes differentiation with respect tox1 or x2.
In terms of the stress function and displacement vectors (F and
u), boundary and continuity conditions for this problem are

]F(1)

]x1
5

]F(2)

]x1
50 for x2560, ux1u,a (22)

]F(1)

]x1
5

]F(2)

]x1
, u(1)5u(2) for x250, ux1u.a. (23)

Here the superscripts 1 and 2 refer to materials 1 and 2, res
tively. Equation~22! represents zero traction on the crack fac
and ~23! is continuity of tractions and displacements across
interface.

Further, stressess11
`(1) , s11

`(2) , s22
` , ands12

` are prescribed a
infinity. From force and moment equilibrium consideration
stressess22

` and s12
` are the same in both materials. The stre

components11
` is, however, different in the two materials (s11

`(1)

ands11
`(2)); these are related by equating the straine11 across the

interface as shown later in this section.
Displacement and stress function vectors for the upper mat

can be written using remote stresses and strains~@11#, pp. 378–
380! as

u(1)5Re$epeA1^ f 0~z
*
(1) ,e!&B1

21h1e2peA1^ f̄ 0~z
*
(1) ,e!&B1

21h̄%

1x1e1
`(1)1x2e2

`(1) (24)
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F(1)5Re$epeB1^ f 0~z
*
(1) ,e!&B1

21h1e2peB1^ f̄ 0~z
*
(1) ,e!&B1

21h̄%

1x1t2
`(1)2x2t1

`(1) (25)

respectively. Vectorst1
`(1) and t2

`(1) contain information about
stresses at infinity in material 1, while strains at infinity are inc
porated ine1

`(1) ande2
`(1) . They are evaluated as explained in@11#

~pp. 378–380! and are given later in this section. The bar ove
quantity represents its complex conjugate. The functionf 0(z,e) is
continuous everywhere except atG and vanishes at infinity. It is
obtained by solving a Hilbert problem. For the mathematica
degenerate lower material@9#,

u(2)5Re$e2peA28F0~z(2),e!B28
21h1epeA28F̄0~z(2),e!B28

21h̄%

1x1e1
`(2)1x2e2

`(2) (26)

F(2)5Re$e2peB28F0~z(2),e!B28
21h1epeB28F̄0~z(2),e!B28

21h̄%

1x1t2
`(2)2x2t1

`(2) (27)

where

F0~z(2),e!5F f 0~z(2),e! x2f 08~z(2),e! 0

0 f 0~z(2),e! 0

0 0 f 0~z(2),e!
G

and ( )8 represents differentiation with respect toz. As beforet1
`(2)

andt2
`(2) are related to the stresses ande1

`(2) ande2
`(2) are related

to the strains at infinity in material 2, and are presented late
this section.

Using the traction continuity condition in~23! as ux1u→`,

t2
`(1)5t2

`(2) .

Defining these vectors using complex conjugate scalarstg and
t̄ g as

t2
`(1)5t2

`(2)5tgh1 t̄ gh̄ (28)

and satisfying~22! leads to

epeg0
1~x1 ,e!1e2peg0

2~x1 ,e!522tg (29)

e2peḡ0
1~x1 ,e!1epeḡ0

2~x1 ,e!522 t̄ g (30)

where

g0~z,e!5
]

]z
f 0~z,e!. (31)

Solving the Hilbert problem in~29! and ~30! as explained by
Muskhelishvili @19#,

g0~z,e!5
2X~z,e!

p i E
G

e2petgdl

X 1~l,e!~l2z!
1P~z,e!X~z,e!

(32)

ḡ0~z,e!5
2X̄~z,e!

p i
E

G

epe t̄ gdl

X̄1~l,e!~l2z!
1 P̄~z,e!X̄~z,e!

(33)

where the Plemelj function

X~z,e!5~z1a!21/22 i e~z2a!21/21 i e. (34)

One condition forg0(z,e) to be holomorphic at infinity is for
P(z,e) to be a polynomial inz of order less than 1, i.e., a con
stant. The first term in~32! is defined as

I 1[
2X~z,e!

p i E
G

e2petgdl

X 1~l,e!~l2z!
.

Considering vanishingly small contours around the crack,
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I 1[
2X~z,e!

p i

1

~11e22pe!
R

G

e2petgdl

X~l,e!~l2z!
.

Now for large values ofuzu

1

X~z,e!
5z1 i2ae1

a21

z
1

a22

z2
1 . . .

where a21 , a22, . . . are appropriate constants. Applyin
Cauchy’s formula and considering the pole atuzu5`,

R
G

dl

X~l,e!~l2z!
52p i F 1

X~z,e!
2~z1 i2ae!G

so that

I 15
2X~z,e!

p i

tg

2 coshpe
2p i F 1

X~z,e!
2~z1 i2ae!G

5
2tg

coshpe
@12X~z,e!~z1 i2ae!#.

Substituting in~32!,

g0~z,e!5
2tg

coshpe
@12X~z,e!~z1 i2ae!#1P~z,e!X~z,e!.

(35)

Integrating the above expression

f 0~z,e!5E g0~z,e!dz

5
2tg

coshpe
@z2Xp~z,e!#1E P~z,e!X~z,e!dz (36)

where

Xp~z,e!5~z1a!1/22 i e~z2a!1/21 i e. (37)

Similarly

ḡ0~z,e!5
2 t̄ g

coshpe
@12X̄~z,e!~z2 i2ae!#1 P̄~z,e!X̄~z,e!,

(38)

f̄ 0~z,e!5
2 t̄ g

coshpe
@z2X̄p~z,e!#1E P̄~z,e!X̄~z,e!dz,

(39)

X̄p~z,e!5~z1a!1/21 i e~z2a!1/22 i e. (40)

Imposing the condition of zero crack opening at the crack ti
P(z,e)505 P̄(z,e), so that

f 0~z,e!5
2tg

coshpe
@z2Xp~z,e!# (41)

and

f̄ 0~z,e!5
2 t̄ g

coshpe
@z2X̄p~z,e!#. (42)

Defining

d5
tg

coshpe
h (43)

and using strategies explained in@11# ~pp. 378–380! to incorpo-
rate uniform stresses at infinity, the displacement and stress f
tion vectors for the two materials become
234 Õ Vol. 69, MAY 2002
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u(1)5Re$epeA1^ f ~z
*
(1) ,e!&B1

21d1e2peA1^ f̄ ~z
*
(1) ,e!&B1

21d̄%

1x1F S 12nA
2

ET

EA
D 1

EA
s11

`(1)2~11nT!
nA

EA
s22

`

0

0

G
1x2F 1

GA
s12

`

~11nT!
nA

EA
s11

`(1)1~12nT
2!

1

ET
s22

`

0

G (44)

and

F(1)5Re$epeB1^ f ~z
*
(1) ,e!&B1

21d1e2peB1^ f̄ ~z
*
(1) ,e!&B1

21d̄%

1x1F s12
`

s22
`

0
G2x2F s11

`(1)

s12
`

0
G (45)

where

f ~z,e!5~z2a!1/21 i e~z1a!1/22 i e2z. (46)

Along thex1-axis,

f ~x1 ,e!5H 6Ax1
22a2ei eX2x1 for x250,6x1.a

6 iAa22x1
2e7eX2x1 for x2560,ux1u,a

(47)

where

X5 lnUx12a

x11aU.
The same function in~46! was obtained by Ting@11# ~p. 428!, for
a finite length crack with tractions applied to it. The diagon
matrix

^ f ~z
*
(1) ,e!&5diag@ f ~z1

(1) ,e!, f ~z2
(1) ,e!, f ~z3

(1) ,e!#

where zj
(1)5x11pj

(1)x2 and d is a complex 331 vector to be
determined. For the specific case at hand, transversely isotr
material with the axial direction coinciding with thex1-axis,
pj

(1)5 ib j with j 51,2,3. The matricesA1 and B1
21 are given in

Appendix A.
For the mathematically degenerate lower material,

u(2)5Re$e2epA28F~z(2),e!B28
21d1eepA28F̄~z(2),e!B28

21d̄%

1x1F S 1

ET
2

nA
2

EA
Ds11

`(2)2S nT

ET
1

nA
2

EA
Ds22

`

0

0

G
1x2F 1

GT
s12

`

S nT

ET
1

nA
2

EA
Ds11

`(2)1S 1

ET
2

nA
2

EA
Ds22

`

0

G (48)

and
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F(2)5Re$e2epB28F~z(2),e!B28
21d1eepB28F̄~z(2),e!B28

21d̄%

1x1F s12
`

s22
`

0
G2x2F s11

`(2)

s12
`

0
G (49)

where

F~z(2),e!5F f ~z(2),e! x2f 8~z(2),e! 0

0 f ~z(2),e! 0

0 0 f ~z(2),e!
G . (50)

The function f (z(2),e) is defined in~46! and ( )8 represents dif-
ferentiation with respect toz. For a transversely isotropic materia
with the axial direction coinciding with thex3-axis,pj

(2)5 i ; hence
z(2)5z5x11 ix2.

Using ~28! and ~43! along with the following from@11# ~p.
427!,

S̆d52 ibd and S̆d̄5 ibd̄ (51)

so that the vectord is obtained as

d5
A12b2

2 F s12
` 2 iAD22

D11
s22

`

iAD11

D22
s12

` 1s22
`

0

G . (52)

To determineK as defined in~14!, stressess22 ands12 on the
interface ahead of the crack tip are required. These stresses
tained from~21!, are equal in the two materials as a result of t
first equation in~23!. Using one of the materials, say material
these stresses are given by

F s12

s22

s32

G
u50

5
]F(1)

]x1
U

u50

52 coshpe Re$g~x1 ,e!d%1F s12
`

s22
`

0
G .

Differentiating ~46! to obtain g(x1 ,e) and substituting in the
above equation,

F s12

s22

s32

G
u50

52 coshpe Re$@~x11 i2ae!~x11a!21/22 i e

3~x12a!21/21 i e21#d%1F s12
`

s22
`

0
G .

Moving the coordinate system to the right crack tip by relati
x15r 1a and considering only singular terms forr !a,

F s12

s22

s32

G
u50

52 coshpe Re$r 21/21 i e~2a!1/22 i e~1/21 i e!d%.

Substituting ford from ~52! in the above equation, singular com
ponents ofs22 ands12 are obtained which along with~14! relate
K to stresses at infinity as

K5~112i e!Apa~2a!2 i eFAD22

D11
s22

` 1 is12
` G . (53)
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If the two materials are isotropic~and not transversely isotropic!,
D115D22 asb15b251 in ~11! and~12!. Then the above expres
sion for K agrees with Rice@1# for a finite crack along the inter-
face of isotropic bimaterials.

Following Rice and Sih@20# for isotropic bimaterials, displace
ment continuity is imposed across the interface as in~23! for
ux1u→`, and stressess11

`(1) ands11
`(2) are related as

s11
`(2)5

ET

EA
s11

`(1)1FEAnT1ET~nA
22nA2nAnT!

EA2nA
2ET

Gs22
` . (54)

4 Infinite Array of Collinear Interface Cracks
Next, an infinite array of cracks of equal length 2a along the

interface of the above bimaterial system is considered. They
spaced at constant intervals 2b (.2a) as shown in Fig. 3~a!. Let
G denote the cracks which are located at

x2560, 2nb2a,x1,2nb1a, n52`, . . . ,0, . . . ,1`.

As before, stressess11
`(1) , s11

`(2) , s22
` , ands12

` are prescribed at
infinity. Again s11

`(1) and s11
`(2) are related using displacemen

continuity across the interface asux1u→`. Boundary and continu-
ity conditions in terms of stress function and displacement vec
(F andu) are

]F(1)

]x1
5

]F(2)

]x1
50

for x2560, 2nb2a,x1,2nb1a,

n52`, . . . ,0, . . . ,1` (55)

]F(1)

]x1
5

]F(2)

]x1
, u(1)5u(2)

for x250, 2nb1a,x1,2~n11!b2a,

n52`, . . . ,0, . . . ,1` (56)

where superscripts 1 and 2 refer to materials 1 and 2, respecti
Since the bimaterial system is the same as in Section 3, s

function and displacement vectors given in~24!, ~25!, ~26!, and
~27! are valid here though the functionf 0(z,e) is different. Pro-
ceeding as before and formulating the Hilbert problem in~29! and
~30!, the solution is obtained as~32! and ~33! where the Plemelj
function

X~z,e!5 )
n52`

`

@z2~2nb2a!#21/22 i e@z2~2nb1a!#21/21 i e

5 )
n52`

`

@~z22nb!1a#21/22 i e@~z22nb!2a#21/21 i e

(57)

and P(z,e) is a polynomial inz of order less thann. Evaluating
the first term in~32! by considering vanishingly small contour
around the cracks leads to

g0~z,e!5
2tg

coshpe H 12X~z,e! )
n52`

`

@~z22nb!1 i2ae#J
1P~z,e!X~z,e!. (58)

Integrating the above expression

f 0~z,e!5E g0~z,e!dz

5
2tg

coshpe
@z2Xp~z,e!#1E P~z,e!X~z,e!dz (59)

where
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Xp~z,e!5 )
n52`

`

@~z22nb!1a#1/22 i e@~z22nb!2a#1/21 i e.

(60)

Imposing the condition of zero crack opening at the crack tips

f 0~z,e!5
2tg

coshpe
@z2Xp~z,e!#. (61)

Similarly

f̄ 0~z,e!5
2 t̄ g

coshpe
@z2X̄p~z,e!#. (62)

Since the remote loads are identical to those in the previous
tion, the last two terms in~24!, ~25!, ~26!, and~27! are the same.
As before if

d5
tg

coshpe
h

the displacement and stress function vectors in the two mate
are given by~44!, ~45!, ~48!, ~49!, and~50! with

f ~z,e!5 )
n52`

`

@~z22nb!1a#1/22 i e@~z22nb!2a#1/21 i e2z.

(63)

Also the vectord is the same as that in~52!.
Stressess22 ands12 on the interface ahead of the crack tip a

used to obtainK. Proceeding as in the previous section,

F s12

s22

s32

G
u50

52 coshpe Re$g~x1 ,e!d%1F s12
`

s22
`

0
G .

Substituting forg(x1 ,e) by differentiating~63! and neglecting the
uniform stress terms,

F s12

s22

s32

G
u50

52 coshpe ReH )
n52`

`

@~x122nb!1 i2ae#

3@~x122nb!1a#21/22 i e@~x122nb!2a#21/21 i edJ .

(64)

Following Rice and Sih@20# and using

sinpt5pt)
n51

`

~12t2/n2!,

)
n52`

`

@~x122nb!1 i2ae#@~x122nb!1a#21/22 i e

3@~x122nb!2a#21/21 i e

5sinFp~x11 i2ae!

2b G H sinFp~x11a!

2b G J 21/22 i e

3H sinFp~x12a!

2b G J 21/21 i e

.

This result is substituted into~64! and the coordinate system
moved to the right crack tip by relatingx15r 1a. Considering
only singular terms forr !a,b
236 Õ Vol. 69, MAY 2002
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F s12

s22

s32

G
u50

52 coshpe ReH sinFpa~11 i2e!

2b G
3FsinS pa

b D G21/22 i eS pr

b D 21/21 i e

dJ .

Using d from ~52! in the above equation, singular components
s22 and s12 are obtained. They are substituted in~14! to deter-
mine K as

K5A2b
1

Asin~2pa/b!
@sin~pa/b!cosh~2pae/b!

1 i cos~pa/b!sinh~2pae/b!#3expH 2 i e lnF b

p
sin~2pa/b!G J

3FAD22

D11
s22

` 1 is12
` G . (65)

Again, if the two materials are isotropic~and not transversely
isotropic!, D115D22 from ~11! and ~12!. The above expression
then matches that given by Murakami@21# which has been de-
rived from relations given in@20#.

Stressess11
`(1) ands11

`(2) are related by the earlier expression
~54! since conditions at infinity remain the same.

5 Finite Element Calculations
The finite element method is exploited to numerically det

mine stress intensity factors for the geometries considered in
tions 3 and 4 and a specific material combination. To extract thK
values from the numerical results a conservative area integr
the M-integral—is employed. It was presented by Banks-Sills a
Boniface@9# and is described for completeness in Appendix B

5.1 Finite Length Crack in an Infinite Body. The geom-
etry and loading exhibited in Fig. 2~a! are considered. The infinite
body is approximated by considering one with width and hei
equal to 20 times the crack length@i.e., H5W520a, see Fig.
2~b!#. Symmetry is exploited to model half the body. The fini
element mesh containing 1344 eight-noded isoparametric
ments and 4195 nodal points is illustrated in Fig. 2~b!. The mesh
is finer near the crack tip and quarter-point elements are emplo
at the crack tip. A uniform remote tensile stresss22

` 51 Pa is
applied on the upper and lower surfaces as shown. Assum
s11

`(1)51 Pa and using~54!, s11
`(2)50.601 Pa. Finite elemen

analyses are carried out with ADINA@22#. Since this package
does not include transversely isotropic material behavior exp
itly, the orthotropic scheme is used with material properties in t
perpendicular directions assumed equal. WhileGA is the control-
ling shear modulus in the upper material, it isGT in the lower
material. It is seen that a very accurate value ofGT5ET/2(1
1nT) must be input to ensure transerve isotropy, failing whi
errors creep into the subsequent processing of finite elemen
sults. Although the singularity at the crack tip is a combination
square root and oscillatory, it was found~@14#! that better results
are obtained for interface cracks in bimaterial isotropic bod
when quarter-point elements are employed instead of reg
eight-noded isoparametric elements.

The analyses presented in Sections 3 and 4 are for hom
neous transversely isotropic materials. In this study, homogen
effective mechanical properties of a graphite/epoxy~AS4/3501-6!
fiber-reinforced material are employed. Some of these prope
are presented in Table 1~@23#!. The volume fraction of the fibers
is about 65 percent. In the upper material, the graphite fibers
aligned with thex1-direction, while in the lower material they ar
along the x3-direction resulting in a mathematical degenera
Transactions of the ASME
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~shown schematically in Fig. 1!. Parameters necessary for calc
lation of the stress intensity factors and energy release rate
given in Table 2.

For this configuration,K1 andK2 are obtained by applying the
area M-integral method to the numerical results. These are c

Table 1 Effective mechanical properties of a graphite Õepoxy
„AS4Õ3501-6… fiber-reinforced composite †23‡

Table 2 Material parameters required for stress intensity fac-
tor and energy release rate calculations

Table 3 Stress intensity factors for a finite interface crack
„units of K are NmÀ„3Õ2¿ i e…

…

Journal of Applied Mechanics
-
are

om-

pared with analytical values from~53! in Table 3. Excellent agree
ment is observed validating the expression in~53!, as well as the
M-integral calculations. These M-integral results are obtain
from the third ring outside the crack tip. This ring was chosen
the basis of error estimates from the superconvergent patch re
ery technique~@24,25#!. While the maximum error in energy norm
in the first ring is approximately 35 percent, it reduced to abou
percent in the third ring. However, on evaluating the ar
M-integral in the outer rings~greater than 3!, it is seen that this
value does not vary by more than 0.2 percent. Since it is adv
tageous to minimize the number of elements in the M-integ
computation, the third ring is considered optimum.

5.2 Collinear Cracks Along the Interface. Next, the ge-
ometry and loading in Fig. 3~a! are considered. The finite elemen
mesh of this geometry is shown in Fig. 3~b!. It has 1200 eight-
noded isoparametric elements and 3780 nodes, and correspon
the strip enclosed by dotted lines in Fig. 3~a!. Values ofb52a
andH510a are chosen. Three different cases of remote loads
considered:~a! tension only,~b! tension and shear, and~c! shear
only. The bimaterial system is made of graphite/epoxy~AS4/
3501-6! fiber-reinforced composite as in the previous subsecti
Effective mechanical properties and material parameters are
same as in Tables 1 and 2. For this configuration,K1 and K2
obtained using the area M-integral method are shown along w
analytical values from~65! in Table 4. It is seen that they compar
well confirming both the analytic expression given in~65!, as well
as the numerical analysis. Again, the area M-integral values
from the third ring from the crack tip. To study the effect of me
refinement, the number of elements was quadrupled by halv
the dimensions of each element in the coarse mesh shown in
3~b!. Results from the fine mesh are also shown in Table 4. Th
values show a closer match with the analytical result compare
the earlier coarse mesh. However, the relatively coarse mesh
initially also produces reasonably accurate results.

6 Conclusion
This paper presents analytical expressions of stress inten

factors for two different crack geometries in a particular bima
rial system. This bimaterial system is made of two dissimi
transversely isotropic materials~with the lower material math-
Table 4 Stress intensity factors for an infinite array of collinear interface cracks
„units of K are NmÀ„3Õ2¿ i e… and percentage error is given in brackets …
MAY 2002, Vol. 69 Õ 237



y
o

t
l

i
n

e

o

t

t

-

h

i

i

s

e

they
rial

ei-

e

ac-

t
au
ies.
by
ematically degenerate! bonded together. Uniform loads at infinit
were applied. First, stress intensity factors for a finite crack al
the interface between these two materials were obtained by s
tion of a Hilbert problem. This result was then extended to
problem of an infinite array of collinear cracks along a simi
interface.

In addition, finite element analyses for a specific fiber re
forced material were carried out on these bodies. Stress inte
factors were calculated by means of an area M-integral. Th
compared well with results obtained from the analytic expr
sions. These analytic expressions provide a simple means to
derstandany problem pertaining to this crack configuration an
bimaterial system, without resorting to numerical analysis ofspe-
cific ones. Also they can be used as benchmarks for more com
cated problems.

The accuracy of the finite element computations, together w
the M-integral for determining the stress intensity factors has b
demonstrated earlier in@9#. This approach will next be applied t
a Brazilian disk specimen composed of fiber-reinforced mate
in order to determine calibration equations for testing.
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Appendix A

Some Important Matrices. In this Appendix, the matrices
A j , Bj , andBj

21 which appear in the paper are presented for
specific transversely isotropic materials studied here. They are
lated to the material properties. The subscriptj represents the up
per and lower materials, 1 and 2, respectively.

Thex1-direction is the axial direction of the upper material. T
matrix A1 is given by

A152F k1
(1)Q1 k2

(1)Q2 0

ik1
(1)Q3 /b1 ik2

(1)Q4 /b2 0

0 0 2 ik3
(1)/b3GT

G (66)

wherekj
(1) , j 51,2,3, are normalization factors for the upper m

terial and are given by

k1
(1)5

~11 i !

2 F ~11nT!2

b1ET
2

b1
3

EA
S 12nA

2
ET

EA
D G21/2

, (67)

k2
(1)5

~11 i !

2 F ~11nT!2

b2ET
2

b2
3

EA
S 12nA

2
ET

EA
D G21/2

, (68)

k3
(1)5

~11 i !

2 F2~11nT!

b3ET
G21/2

. (69)

The constantsb j , j 51,2,3 are related to the three complex e
genvalues of the elastic constantspj

(1) ~@11#, pp. 121–128!, where
pj

(1)5 ib j for a transversely isotropic material with this mater
symmetry. The constantsQj are related to the material propertie
as

Q15
1

EA
@b1

2~12nA
2ET /EA!1nA~11nT!#, (70)

Q25
1

EA
@b2

2~12nA
2ET /EA!1nA~11nT!#, (71)

Q35~11nT!@b1
2nA /EA1~12nT!/ET#, (72)

Q45~11nT!@b2
2nA /EA1~12nT!/ET#. (73)

The material parametersEA , ET , GA , GT , nA , andnT are the
usual material properties in the axial and transverse direct
238 Õ Vol. 69, MAY 2002
ng
olu-
he
ar

n-
sity
ese
s-
un-
d

pli-

ith
een

rial

h

he
re-

e

a-

i-

al
s

ons

~namely, Young’s moduli, shear moduli, and Poisson’s ratio!;
since the material is transversely isotropic,GT5ET/2(11nT).
The matrixB1 is given by

B15F 2 ik1
(1)b1 2 ik2

(1)b2 0

k1
(1) k2

(1) 0

0 0 2k3
(1)
G . (74)

Its inverse is given by

B1
215

1

b22b1
F 2 i /k1

(1) b2 /k1
(1) 0

i /k2
(1) 2b1 /k2

(1) 0

0 0 2~b22b1!/k3
(1)
G .

(75)

In the lower material, the axial direction coincides with th
x3-direction. The mechanical propertiesEA , ET , GA , GT , nA ,
andnT are taken to be the same as for the upper material; but
are in different coordinate directions. It turns out that this mate
is mathematically degenerate. It has three identical complex
genvaluespj

(2)5 i where the subscriptj 51,2,3. To determine the
stress and displacement fields, matrices alternative toA2 and B2

are required; these areA28 andB28 . Since

AB215A8B821 (76)

it is possible to calculatee with the aid of~8!. On the other hand,
one may determineA2B2

21 without calculating the individual ma-
trices ~@11#, p. 173!. For brevity, only the primed matrices ar
presented as

A285F k1
(2) 2 ik1

(2)k 0

ik1
(2) 2k1

(2)k 0

0 0 k3
(2)
G (77)

B285F 2iGTk1
(2) GTk1

(2) 0

22GTk1
(2) 2 iGTk1

(2) 0

0 0 iGAk3
(2)
G (78)

and

B28
215F 2 i /~4GTk1

(2)! 21/~4GTk1
(2)! 0

1/~2GTk1
(2)! i /~2GTk1

(2)! 0

0 0 2 i /~GAk3
(2)!

G
(79)

where

k5
32nT24nA

2ET /EA

2~11nT!
. (80)

The orthogonalization employed to obtain the normalization f
tors k1

(2) andk3
(2) may be found in@11# ~pp. 489–492! and @26#;

they are given by

k1
(2)5

1

4AET~12nA
2ET /EA!

, (81)

k3
(2)5

~12 i !

2AGA

. (82)

Appendix B

Area M-Integral. In this Appendix, the path-independen
M-integral is described. The M-integral was introduced by Y
et al.@27# for separation of mixed modes in homogeneous bod
It was converted to an area integral for isotropic bimaterials
Shih and Asaro@28#. It may be written as
Transactions of the ASME
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M (1,2)5E
A
Fs i j

(1)
]ui

(2)

]x1
1s i j

(2)
]ui

(1)

]x1
2W(1,2)d1 j G ]q1

]xj
dA.

(83)

In ~83!, indicial notation is employed, the superscripts (1) and (
represent two solutions andd is the Kronecker delta. The mutua
strain energy densityW(1,2) of the two solutions is given by

W(1,2)5s i j
(1)e i j

(2)5s i j
(2)e i j

(1) . (84)

The functionq1 is defined for finite element analysis as

q15 (
m51

8

Nm~j,h!q1m (85)

whereNm are the finite element shape functions of an eight-no
isoparametric element andj and h are the coordinates in th
parent element~@29#!. The calculation of theM-integral is carried
out in a ring of elements surrounding the crack tip~the areaA in
~83!!. The elements within the ring move as a rigid body. For ea
of these elementsq1 is unity; so that, the derivative ofq1 with
respect toxj is zero. For all elements outside the ring,q1 is zero;
so that, again the derivative ofq1 is zero. For elements belongin
to the ring, the vectorq1m in ~85! is chosen so that the virtua
crack extension does not disturb the relative nodal point posit
in their new locations; for example, a regular element with no
at the mid-sides contains only midside nodes after distortion.
relationship

M (1,2)5
2

H
@K1

(1)K1
(2)1K2

(1)K2
(2)# (86)

may also be obtained.
In ~83! and ~86!, problem (1) is that for which a solution i

sought. Two auxiliary solutions are required in order to determ
both K1

(1) and K2
(1) for this problem. These are denoted as (2a)

and (2b).
For solution (2a), chooseK1

(2a)51 andK2
(2a)50. Such a solu-

tion does exist for some special loading. Equation~86! becomes

M (1,2a)5
2

H
K1

(1) (87)

and from~83!

M (1,2a)5E
A
Fs i j

(1)
]ui

(2a)

]x1
1s i j

(2a)
]ui

(1)

]x1
2W(1,2a)d1 j G ]q1

]xj
dA.

(88)

The displacements required for solution~1! are taken from a finite
element analysis of the problem to be solved; the stresses
strains are calculated from these. Asymptotic expressions for
stresses, strains, and displacements for solution (2a) are em-
ployed. These stresses and displacements are presented in@9#.

For solution (2b), K1
(2b)50 andK2

(2b)51. Equation~86! be-
comes

M (1,2b)5
2

H
K2

(1) (89)

and from~83!

M (1,2b)5E
A
Fs i j

(1)
]ui

(2b)

]x1
1s i j

(2b)
]ui

(1)

]x1
2W(1,2b)d1 j G ]q1

]xj
dA.

(90)
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After calculating these integrals,K1
(1) and K2

(1) are found by
equating~87! and ~88!, ~89!, and~90!.
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Stress field for stationary cracks, aligned along the gradient, in functionally graded
terials is obtained through an asymptotic analysis coupled with Westergaard’s stress
tion approach. The first six terms of the stress field are obtained for both opening m
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1 Introduction
Several researchers have established that the near-tip s

fields around cracks in functionally graded materials~FGMs! re-
tain the inverse square root behavior~@1,2#!. Without assuming
any specific form of property variation, Eischen@3# has shown
that the angular functions associated with the first two terms~r 21/2

and r 0! of the stress field in nonhomogeneous materials are
affected by the material property variation and the effect of n
homogeneity reflects only in higher order terms. However, exp
form of the higher order terms is not yet established for FGM
hence, one has to use the expansions available for homogen
materials in order to extract fracture parameters from full fi
experimental data. This could lead to serious errors, as the s
field in FGMs is identical to that of homogeneous materials o
very close to the crack tip.

In the present work, stress field for stationary cracks align
along the direction of property variation in an FGM with exp
nentially varying elastic modulus is developed through
asymptotic analyses coupled with Westergaard’s stress func
approach~@4#!. The first six terms of the expansion for openin
mode and shear mode loading are obtained. Using this stress
contours of constant maximum shear stress are generated fo
different levels of nonhomogeniety and the effect of nonhomo
neity on these contours is discussed.

2 Theoretical Formulation
The elastic modulus of the FGM (E(x)) is assumed to vary

exponentially along the line of the crack as given in~1! and the
Poisson’s ratio~n! is assumed to be constant.

E~x!5Ec exp~lx! (1)

Ec is the modulus at the crack tip (x50) andl is the nonhomo-
geneity parameter having dimension~length!21. Defining the in
plane stress components (s i j ,i , j P$x,y%) in terms of the Airy’s
stress functionF(x,y) and using Hooke’s law, the compatibilit
equation takes the following form:

1To whom correspondence should be addressed.
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¹2~¹2F !22l
]

]x
~¹2F !1l2¹2F2l2~11n!

]2F

]y2 50,

where ¹25
]2

]x2 1
]2

]y2 . (2)

The solution to ~2! is obtained in a series form through a
asymptotic analysis discussed in the next section.

3 Asymptotic Analysis
The crack-tip coordinates are scaled to fill the entire field

observation using the transformation

h15
x

«
, and h25

y

«
, 0,«<1. (3)

In the scaled coordinates (h1 ,h2), ~2! takes the form

¹2~¹2F !22l«
]

]h1
~¹2F !1l2«2¹2F2l2«2~11n!

]2F

]h2
2 50,

where ¹25
]2

]h1
2 1

]2

]h2
2 . (4)

It is assumed at this stage that the stress functionF(«h1 ,«h2)
can be expanded in powers of the parameter« as follows:

F~«h1 ,«h2!5 (
m50

`

«~m13/2!fm~h1 ,h2!1(
n50

`

«~n12!cn~h1 ,h2!.

(5)

Of the two series the first one corresponding tofm is the sin-
gular series and the second one containingcn corresponds to tha
for finiteness of the domain~@5#!. Substitution of this solution into
~4! leads to a series of differential equations each associated
a specific power of the parameter« as given in~6!.

(
m50

` H «~m13/2!¹2~¹2fm!2«~m15/2!2l
]

]h1
~¹2fm!

1«~m17/2!S l2¹2fm2l2~11n!
]2fm

]h2
2 D J

1(
n50

` H «~n12!¹2~¹2cn!2«~n13!2l
]

]h1
~¹2cn!

1«~n14!S l2¹2cn2l2~11n!
]2cn

]h2
2 D J 50 (6)
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For ~6! to be valid the differential equations corresponding
each power of«(«3/2,«2,«5/2...) should vanish independently
This leads to the following set of differential equations:

m5n50, ¹2~¹2fm!50, ¹2~¹2cn!50 (7)

m5n51, ¹2~¹2fm!22l
]

]h1
~¹2fm21!50,

(8)

¹2~¹2cn!22l
]

]h1
~¹2cn21!50

m,n.1, ¹2~¹2fm!22l
]

]h1
~¹2fm21!1l2¹2fm22

2l2~11n!
]2fm22

]h2
2 50,

¹2~¹2cn!22l
]

]h1
~¹2cn21!1l2¹2cn22

2l2~11n!
]2cn22

]h2
2 50.

It should be noticed at this stage that~7! is identical to that for
homogeneous materials for which the solutions exist~@4#!. The
differential Eqs.~8! and ~9!, corresponding to the higher powe
of «, are coupled to the lower-order functions. These are solve
a recursive manner and the solutions for opening mode and s
mode are provided in the following sections.

4 Opening Mode Loading
Considering the symmetry of the normal stress compone

about the line of the crack and the traction-free crack-face bou
ary conditions, the first three terms in the expansion (m50,1,2)
are

f05Re$G% 0%1h2 Im$Ḡ0%,

f15Re$G% 1%1h2 Im$Ḡ1%2
l

2
h2

2 Re$Ḡ0%

f25Re$G% 2%1h2 Im$Ḡ2%2
l

2
h2

2 Re$Ḡ1%2
~32n!l2

24
h2

3 Im$Ḡ0%

(10)

G% 05
4

3
A0z3/2, G% 15

4

15
A1z5/2 and G% 25

4

35
A2z7/2,

z5h11 ih2 , Ḡ05
]G% 0

]z
, i 5A21.

G% 0 , G% 1 , and G% 2 are the first, second, and third terms in t
series solution of the stress function for homogeneous mate
~@4#!. For n50, 1, and 2 the solutions can be written in terms
the functionsH̄0 , H̄1 , andH̄2 , which are the first three terms o
the series solution~@5#! for homogeneous materials, as

c05h2 Im$H̄0%

c15h2 Im $H̄1%2
l

2
h2

2 Re$H̄0%
(11)

c25h2 Im$H̄2%2
l

2
h2

2 Re$H̄1%2
~32n!l2

24
h2

3 Im$H̄0%

2
~11n!l2

8
h2

2 Re$H% 0%

and H% 05
1

2
B0z2, H̄05B0z, H̄15

1

2
B1z2
Journal of Applied Mechanics
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and H̄25
1

3
B3z3.

In ~10! and~11!, An andBn are real constants. Switching bac
to the~x, y! coordinates through~3! and~5!, a six-term expansion
for the stresses can be obtained as

sxx5(
n50

2

$Re$Zn%2y Im$Zn8%12 Re$Yn%2y Im$Yn8%%

2(
n50

1 H l

2
$2 Re$Z̄n%24y Im$Zn%2y2 Re$Zn8%12 Re$Ȳn%

24y Im$Yn%2y2 Re$Yn8%%J 2
~32n!

24
l2$6y Im$Z̄0%16y2

Re$Z0%2y3 Im$Z08%16y Im$Ȳ0%16y2 Re$Y0%2y3

3Im$Y08%%2
~11n!

8
l2$2 Re$Y% 0%24y Im$Ȳ0%

2y2 Re$Y0%%

syy5(
n50

2

$Re$Zn%1y Im$Zn8%1y Im$Yn8%%2(
n50

1 H l

2
$y2 Re$Zn8%

1y2 Re$Yn8%%J 2
~32n!

24
l2$y3 Im$Z08%1y3 Im$Y08%%

2
~11n!

8
l2y2 Re$Y0%

sxy5(
n50

2

2$y Re$Zn8%1y Re$Yn8%1Im$Yn%%

1(
n50

1 H l

2
$2y Re$Zn%2y2 Im$Zn8%12y Re$Yn%

2y2 Im$Yn8%%J
1

~32n!

24
l2$3y2 Im$Z0%1y3 Re$Z08%13y2 Im$Y0%

1y3 Re$Y08%%1
~11n!

8
l2$2y Re$Ȳ0%2y2 Im$Y0%%. (12)

The complex functionsZn and Yn , which are counterparts o
the functionsGn andHn in the ~x, y! coordinate system, are liste
in the Appendix. Unlike homogeneous materials, Eqs.~12! for the
stress field contain functions of the Poisson’s ratio. This is due
the presence of Poisson’s ratio-dependent coefficients in the
erning Eq.~2! as opposed to the bi-harmonic equation for hom
geneous materials. Note that the stresses collapse to their h
geneous counterparts on setting the nonhomogeneity paramel
to zero.

5 Shear Mode Loading
Following the same procedure, outlined in the previous sec

and keeping in view the inherent nature of the shear mode p
lem, the first six terms of the expansion for the stress field
obtained as
MAY 2002, Vol. 69 Õ 241
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n50

2

$2 Im$Zn%1y Re$Zn8%1Im$Yn%1y Re$Yn8%%

2(
n50

1 H l

2
$2 Im$Z̄n%14y Re$Zn%2y2 Im$Z08%12 Im$Ȳn%

14y Re$Yn%2y2 Im$Y08%%J 1
~32n!

24
l2$6y Re$Z̄0%26y2

3Im$Z0%2y3 Re$Z08%16y Re$Ȳ0%26y2 Im$Y0%2y3

3Re$Y08%%2
~11n!

8
l2$2 Im$Z% 0%14y Re$Z̄0%2y2Im$Z0%%

syy5(
n50

2

$2y Re$Zn8%1Im$Yn%2y Re$Yn8%%

2(
n50

1 H l

2
$y2 Im$Zn8%2y2 Im$Yn8%%J

1
~32n!

24
l2$y3 Re$Z08%1y3 Re$Y08%%

2
~11n!

8
l2$y2 Im$Z0%%

sxy5(
n50

2

$Re$Zn%2y Im$Zn8%2y Im$Yn8%%1(
n50

1 H l

2
$2y Im$Zn%

1y2 Re$Zn8%12y Im$Yn%1y2 Re$Yn8%%J
2

~32n!

24
l2$3y2 Re$Z0%2y3 Im$Z08%13y2 Re$Y0%

2y3 Im$Y08%%1
~11n!

8
l2$2y Im$Z̄0%1y2 Re$Z0%%. (13)

6 Discussion on Solutions
In order to visualize the influence of nonhomogeneity on

structure of crack-tip stress fields, contours of constant maxim
shear stress~isochromatics! were generated for different levels o
nonhomogeneity using~12! for opening mode. The contours ar
generated using two values ofl ~l50.7 andl520.7!, for which
the elastic modulus varies by a factor of 2 and 1/2, respectiv
over a distance ofh51 m. The constantA0 is expressed in terms
of the stress intensity factor,K I , asA05K I /A2p. The constants
A1 , A2 , B0 , B1 , andB2 are usually obtained by fitting the stres
field to experimental data. For generating the contours the co
cientsA1 , A2 , B1 , andB2 are set to zero, however, the nonh
mogeneity specific parts of the high-order terms correspondin
A0 are retained.

Figure 1 shows the opening mode isochromatics correspon
to aK I of 2 MPaA m for the two values ofl and for homogeneous
material ~l50!. The isochromatics very near the crack tip a
identical to those in homogeneous materials. However, as
move away from the crack tip the shape of the contours dev
from their homogeneous counterparts substantially. The deviat
are in the fringe tilt angle and the fringe apogee point~point of
maximum radius!. The fringes tilt towards the stiffer side, i.e.,
positive value ofl results in a forward~away from the crack face!
tilt where as a negativel leads to a backward~towards the crack
face! tilt. The apogee is seen to increase~note the second orde
fringe! as the magnitude of the nonhomogeneity parameterulu
increases.
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7 Closure
Higher-order terms in the expansion for crack-tip stress field

FGMs are derived for Mode I and Mode II cracks. Using th
stress field, contours of constant maximum shear stress are g

Fig. 1 Opening mode isochromatics for a functionally graded
material „FGM… with exponentially varying elastic modulus
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observed to deviate from those for homogeneous material and
deviation increases as the distance from crack tip increases.

Appendix
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The Interface Crack Problem of
Bonded Piezoelectric and Elastic
Half-Space Under Transient
Electromechanical Loads
The interface crack problem of bonded piezoelectric and elastic half-space under
sient electromechanical loads is considered. Both the permeable and imperm
boundary conditions are examined and discussed. Based on the use of integral
form techniques, the problem is reduced either to a singular integral equation
the permeable boundary condition or to two coupled singular integral equations
the impermeable boundary condition, which can be solved using Chebyshev
nomial expansions. Numerical results are provided to show the effect of the ap
electric fields, the electric boundary conditions along the crack faces and a free su
on the resulting dynamic stress intensity factor and electric displacement inte
factor. @DOI: 10.1115/1.1460910#
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1 Introduction
With the increasing usage of piezoelectric materials and c

posites as actuating and sensing devices in smart structures, w
dynamic loading is dominant, much attention has been paid
their dynamic fracture behavior. Shindo and Ozawa@1# first inves-
tigated the steady-state dynamic response of cracked piezoele
materials under the action of incident plane harmonic waves.
dynamic Green’s functions for anisotropic piezoelectric mater
were derived by Norris@2#. Khutoryansky and Sosa@3# proposed
dynamic representation formulas and fundamental solutions
piezoelectricity. Shindo et al.@4# studied the dynamic response
a cracked dielectric medium under the action of harmonic wa
in a uniform electric field. In their recent works, Narita an
Shindo@5,6# investigated the dynamic antiplane shear of a crac
piezoelectric ceramic and the scattering of Love waves b
surface-breaking crack in a piezoelectric layer over an elastic
plane. Meguid and Wang@7# studied the dynamic anti-plane inte
action of two cracks in a piezoelectric medium under incid
shear wave loading using the conducting crack assumption. W
@8# further investigated the interaction of multiple interface crac
between two piezoelectric mediums.

All of the above-mentioned references are concerned with
steady-state dynamic responses of cracked piezoelectric mat
and composites. However, piezoelectric materials and compo
are often subjected to the action of transient dynamic loads as
in engineering applications. It is, therefore, of great importance
investigate the transient response of cracked piezoelectric ma
als and composites. Li and Mataga@9,10# studied the problem of a
semi-infinite crack propagating in an infinite piezoelectric m
dium. They investigated the effect of the propagating velocity
the crack on the crack-tip fields. By the use of integral transfor
and Copson-Sih’s method, Chen and Yu@11#, Chen and Karihaloo
@12# investigated the transient response of a finite crack in
infinite piezoelectric medium under the action of antiplane m
chanical loads and in-plane electric displacements. Chen

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Mar.
2001; final revision, Nov. 26, 2001. Associate Editor: K. Ravi-Chandar. Discus
on the paper should be addressed to the Editor, Prof. Lewis T. Wheeler, Depar
of Mechanical Engineering, University of Houston, Houston, TX 77204-4792,
will be accepted until four months after final publication of the paper itself in
ASME JOURNAL OF APPLIED MECHANICS.
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Meguid @13#, Wang and Yu@14#, and Shin et al.@15# considered
the dynamic crack problem in a piezoelectric strip under elec
mechanical impact. Wang et al.@16# analyzed a cracked piezo
electric laminae subjected to electromechanical impact loads.

From the analyses concerning the transient response of cra
piezoelectric materials and composites, it can be seen that the
least exist three concerns that require further study. The firs
concerned with the effect of the applied electromechanical lo
on the crack tip fields. Analogous to the analyses in elastic the
Chen and Yu@11#, Chen and Karihaloo@12#, Chen and Meguid
@13#, Wang and Yu@14#, and Wang et al.@16# assumed that both
mechanical loads and electric displacements are applied to
crack faces, and that the loads areindependentof the externally
applied electric fields. However, this assumption is inappropr
for piezoelectric materials. In fact, the application of electric fie
will induce stresses in a piezoelectric material. When a crac
present, the stresses will be applied as external loads to the c
faces. That is to say, the loads on the crack faces are depende
the applied electric fields. Therefore, the results in those re
ences may be misleading. The second is concerned with the e
of the electric boundary conditions on the crack-tip fields. T
modeling of electric boundary conditions along the crack face
still an open problem. Generally, there are two well-accepted e
tric boundary conditions, namely: the permeable and imperme
boundary conditions. From the physical viewpoint, those t
electric boundary conditions are the two extreme cases, with
permeable boundary condition representing the case where
crack faces are in complete contact and the impermeable bo
ary condition representing the case where the crack is open
filled with vacuum. Most of the existing works address the imp
meable boundary condition. Although Wang and Yu@14# have also
discussed the permeable boundary condition, and concluded
the two boundary conditions lead to the same results, the cur
authors have doubt about the validity of this finding. The third
concerned with the effect of the presence of a free surface on
crack-tip fields. Crack-tip fields will change due to the arrival
the reflecting waves from a free surface, but one cannot see
basic requirement from the existing studies. It is for those reas
that we offer the present study.

In this paper, we consider the problem of bonded piezoelec
and elastic half-space with an interface crack subjected to t
sient electromechanical loads. Both the permeable and impe
able boundary conditions are discussed. The main purpose
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provide an analytical treatment to investigate the transient be
ior of piezoelectric composites under different boundary con
tions, which is important for the design and numerical simulat
of smart structures. Based on the use of integral transforms
problem is reduced either to a singular integral equation for
permeable boundary condition or to two coupled singular integ
equations for the impermeable boundary condition, which can
solved using Chebyshev polynomial expansions. Numerical
sults are provided to show the effect of applied electric fiel
electric boundary conditions along the crack faces, and a
surface on the resulting dynamic stress intensity factor and e
tric displacement intensity factor.

2 Formulation of the Problem
Suppose that a crack of length 2a is present along the interfac

of a piezoelectric layer and the elastic half space, as shown in
1. A set of Cartesian coordinates (x,y,z) is attached to the cente
of the crack. Thex-axis is directed along the crack line andy-axis
is perpendicular to it. The poled piezoelectric strip, with thez-axis
being the poling direction, occupies the region~2h,y,0, 2`
,x,1`!. At the timet50, both the antiplane load and in-plan
electric displacement suddenly begin to act on the lower sur
of the piezoelectric strip, resulting in a coupled electric and str
wave field.

In this configuration, the piezoelectric boundary value probl
is simplified considerably because only the out-of-plane displa
ment and the in-plane electric fields exist. The constitutive re
tion for the piezoelectric material can be expressed as

txz5c44

]w

]x
1e15

]f

]x
, tyz5c44

]w

]y
1e15

]f

]y
(1)

and

Dx5e15

]w

]x
2k11

]f

]x
, Dy5e15

]w

]y
2k11

]f

]y
(2)

wheretxz andtyz are the shear stress components,Dx andDy are
the electric displacements,w andf are the mechanical displace
ment and electric potential, whilec44, e15, andk11 are the elastic
modulus, the piezoelectric constant, and the dielectric constan
the piezoelectric material, respectively.

The equilibrium equation and the Maxwell equation for t
piezoelectric material under antiplane loading are given by

]txz

]x
1

]tyz

]y
5r

]2w

]t2 (3)

]Dx

]x
1

]Dy

]y
50 (4)

Fig. 1 Geometric configuration of the problem
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wherer is the density of the piezoelectric material.
Substituting Eqs.~1! and ~2! into ~3! and ~4! results in the

following governing equations:

¹2w5c2
22]2w/]t2, k11¹

2f5e15¹
2w (5)

in which

c25Am/r, m5c441e15
2 /k11. (6)

The constitutive relation for the elastic material can be writt
as

txz15c441

]w1

]x
, tyz15c441

]w1

]y
(7)

wheretxz1 andtyz1 are the shear stress components,w1 andc441
are the displacement and the elastic modulus, respectively.
governing equation is given by

¹2w15c21
22]2w1 /]t2 (8)

in which c215Ac441/r1, and r1 is the density of the elastic
material.

In the theoretical studies of crack problems, the permeable
impermeable conditions are extensively used. For the pre
case, it is assumed that the surface of the elastic materia
grounded, so that the boundary conditions for the permeable c
problem can be written as

tyz~x,2h,t !5t~x,t !, 2`,x,` (9a)

Dy~x,2h,t !5D~x,t !, 2`,x,` (9b)

tyz~x,0,t !5tyz1~x,0,t !, 2`,x,` (9c)

tyz~x,0,t !50, uxu,a (9d)

w~x,0,t !5w1~x,0,t !, uxu.a (9e)

f~x,0,t !50, 2`,x,`. (9f)

The boundary conditions for the impermeable crack probl
can be expressed as

tyz~x,2h,t !5t~x,t !, 2`,x,` (10a)

Dy~x,2h,t !5D~x,t !, 2`,x,` (10b)

tyz~x,0,t !5tyz1~x,0,t !, 2`,x,` (10c)

tyz~x,0,t !50, uxu,a (10d)

w~x,0,t !5w1~x,0,t !, uxu.a (10e)

Dy~x,0,t !50, uxu,a (10f)

f~x,0,t !50, uxu.a. (10g)

The analysis is performed using Laplace and Fourier transfo
over time and space, respectively. The Laplace transform o
time, t, and its inverse are defined by

f * ~p!5E
0

`

f ~ t !exp~2pt!dt, f ~ t !5
1

2p i EBr
f * ~p!exp~pt!dp

(11)

in which Br stands for the Bromwich path of integration andp is
the transform variable. The time-dependency in~5! and ~8! are
eliminated by the application of Eq.~11!. The Fourier transforms
are then applied, resulting in

w* ~x,y,p!5
1

2p E
2`

`

@A1~j,p!exp~2gy!

1A2~j,p!exp~gy!#exp~2 i jx!dj (12)
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f* ~x,y,p!5
e15

k11
w* ~x,y,p!1c* ~x,y,p! (13)

c* ~x,y,p!5
1

2p E
2`

`

@A3~j,p!exp~2ujuy!

1A4~j,p!exp~ ujuy!#exp~2 i jx!dj (14)

w1* ~x,y,p!5
1

2p E
2`

`

A5~j,p!exp~2g1y!exp~2 i jx!dj.

(15)

The stresses and electric displacements in Laplace trans
are found to be

txz* ~x,y,p!52
m i

2p E
2`

`

j@A1~j,p!exp~2gy!

1A2~j,p!exp~gy!#exp~2 i jx!dj

2
e15i

2p E
2`

`

j@A3~j,p!exp~2ujuy!

1A4~j,p!exp~ ujuy!#exp~2 i jx!dj (16)

tyz* ~x,y,p!5
m

2p E
2`

`

g@2A1~j,p!exp~2gy!

1A2~j,p!exp~gy!#exp~2 i jx!dj

1
e15

2p E
2`

`

uju@2A3~j,p!exp~2ujuy!

1A4~j,p!exp~ ujuy!#exp~2 i jx!dj (17)

Dx* ~x,y,p!5
k11i

2p E
2`

`

j@A3~j,p!exp~2ujuy!

1A4~j,p!exp~ ujuy!#exp~2 i jx!dj (18)

Dy* ~x,y,p!52
k11

2p E
2`

`

uju@2A3~j,p!exp~2ujuy!

1A4~j,p!exp~ ujuy!#exp~2 i jx!dj (19)

txz1* ~x,y,p!52
c441i

2p E
2`

`

A5~j,p!j exp~2g1y!exp~2 i jx!dj

(20)
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tyz1* ~x,y,p!52
c441

2p E
2`

`

A5~j,p!g1 exp~2g1y!exp~2 i jx!dj.

(21)

In the above formulation,Aj (j,p)( j 51,2,3,4,5) are unknown
functions, which will be determined from boundary conditions~9!
and ~10!, and

g5Aj21p2c2
22, g15Aj21p2c21

22. (22)

3 Solution of the Permeable Crack Problem
In this section, we consider the permeable crack problem.

Laplace transform of boundary conditions~9a!–~9f! can be ex-
pressed as

tyz* ~x,2h,p!5t* ~x,p!, 2`,x,` (23a)

Dy* ~x,2h,p!5D* ~x,p!, 2`,x,` (23b)

tyz* ~x,0,p!5tyz1* ~x,0,p!, 2`,x,` (23c)

tyz* ~x,0,p!50, uxu,a (23d)

w* ~x,0,p!5w1* ~x,0,p!, uxu.a (23e)

f* ~x,0,p!50, 2`,x,`. (23f)

Substituting~12!–~15!, ~17!, ~19!, and ~21! into the boundary
conditions~23a!–~23c! and ~23f!, we find

A2~j,p!5exp~2gh!A1~j,p!1
exp~gh!

mg S t̄1
e15

k11
D̄ D (24)

A3~j,p!52
e15@11exp~2gh!#

k11@11exp~2ujuh!#
A1~j,p!

1
exp~ ujuh!D̄

k11uju@11exp~2ujuh!#
2

e15 exp~gh!

k11mg@11exp~2ujuh!#

3S t̄1
e15

k11
D̄ D (25)

A4~j,p!52
e15@11exp~2gh!#

k11@11exp~2ujuh!#
exp~2ujuh!A1~j,p!

2
exp~ ujuh!D̄

k11uju@11exp~2ujuh!#
2

e15 exp@~g12uju!h#

k11mg@11exp~2ujuh!#

3S t̄1
e15

k11
D̄ D (26)
A5~j,p!5
mg@12exp~2gh!#@11exp~2ujuh!#1e15

2 /k11uju@11exp~2gh!#@exp~2ujuh!21#

c441g1@11exp~2ujuh!#
A1~j,p!

1
2e15ujuexp~ ujuh!D̄

k11c441ujug1@11exp~2ujuh!#
1

exp~gh!

c441g1
H e15

2 uju@exp~2ujuh!21#

k11mg@11exp~2ujuh!#
21J S t̄1

e15

k11
D̄ D (27)
de-

where

t̄5E
2`

`

t* ~x,p!exp~ i jx!dx (28)

D̄5E
2`

`

D* ~x,p!exp~ i jx!dx. (29)

The remaining unknownA1(j,p) may then be determined from
the mixed boundary conditions~23d! and ~23e!. To reduce the
mixed boundary conditions into an integral equation, we first
fine the following new dislocation function:

w~x,p!5
]

]x
@w1* ~x,0,p!2w* ~x,0,p!#. (30)

Then, from~23e! we have
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E
2a

a

w~a,p!da50. (31)

Substitution of~12! and ~15! into ~30! yields

w~x,p!52
1

2p E
2`

`

i j@A5~j,p!2A1~j,p!2A2~j,p!#

3exp~2 i jx!dj. (32)

From the above equation and the definition of Fourier transfo
we obtain

A5~j,p!2A1~j,p!2A2~j,p!52
1

i j E2a

a

w~a,p!exp~ i ja!da.

(33)

Further, from~24!, ~26!, and~33!, we have

A1~j,p!52
c441g1@11exp~2ujuh!#

i jF1~j,p! E
2a

a

w~a,p!exp~ i ja!da

1
c441g1@11exp~2ujuh!#F2~j,p!

F1~j,p!
(34)

where
t

-

e

e
i

n

o

Journal of Applied Mechanics
m,

F1~j,p!5@11exp~2ujuh!#$mg@12exp~2gh!#

2c441g1@11exp~2gh!#%1
e15

2

k11
uju@11exp~2gh!#

3@exp~2ujuh!21# (35)

F2~j,p!5H 1

mg
1

1

c441g1
1

e15
2 uju@12exp~2ujuh!#

k11c441mgg1@11exp~2ujuh!#J
3exp~gh!S t̄1

e15

k11
D̄ D2

2e15 exp~ ujuh!D̄

k11c441g1@11exp~2ujuh!#
.

(36)

By using Eq.~23d!, it is shown that

E
2`

` g1F~j,p!exp~2 i jx!

i j E
2a

a

w~a,p!exp~ i ja!dadj

5E
2`

`

F3~j,p!g1exp~2 i jx!dj, uxu,a (37)

where
F~j,p!5
mg@11exp~2ujuh!#@12exp~2gh!#1e15

2 /k11uju@exp~2ujuh!21#@11exp~2gh!#

F1~j,p!
(38)

F3~j,p!5
2 exp~gh!@11exp~2ujuh!#

F1~j,p! S t̄1
e15

k11
D̄ D2

2e15 exp~ ujuh!@11exp~2gh!#D̄

k11F1~j,p!
. (39)
ts
an

d
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nd
The right-hand side of~37! represents the load acting on th
crack faces. From~39!, one can see that the load depends on

electric displacementD̄. We further notice that whenp→0,

F3(j,p) is independent ofD̄. From the initial-value theorem con
cerning Laplace transform, this indicates that only in the sta
case will the load become independent of the electric field. Th
fore, the assumption that the mechanical loads acting on the c
faces are independent of the applied electric fields is inappro
ate. It is also shown that the dynamic response of cracked pi
electric materials and composites will present different behav
from the static solution. In the static case, the electric field has
influence on the crack-tip fields when the permeable conditio
considered.

The kernel of the infinite integration in Eq.~37! tends to a
constant whenuju→`, which corresponds to the singular part
the integration. After performing the appropriate asympto
analysis, we find

lim
uju→`

g1F~j,p!

j
5

c44

c441c441
sign~j!. (40)

In order to extract the singular part from the integration, we e
ploy the termc44 sign(j)/(c441c441) in the kernel. By interchang-
ing the integration order in Eq.~37! and after the appropriate
treatment, the governing equation for determining the unkno
function w(a,p) is obtained in terms of the following singula
integral equation:
e
he

tic
re-

rack
pri-
zo-

ors
no
is

f
tic

m-

wn
r

E
2a

a w~a,p!

a2x
da1E

2a

a

k~a,x,p!w~a,p!da

5
c441c441

2c44
E

2`

`

F3~j,p!g1 exp~2 i jx!dj, uxu,a

(41)

where

k~a,x,p!5E
0

`F ~c441c441!g1F~j,p!

c44j
21Gsin@j~a2x!#dj.

(42)

It is clear that Eq.~31! is satisfied.
Equation~41! is a singular integral equation of the first kind, i

solution includes the well-known square-root singularity and c
be expressed as

w~a,p!5(
j 50

`
Bj~p!

A12a2/a2
Tj~a/a! (43)

whereTj (a/a) are Chebyshev polynomials of the first kind an
Bj (p) are unknown functions. From the orthogonality conditio
of Chebyshev polynomials, Eq.~31! leads toB0(p)50. Substitut-
ing Eq. ~43! into ~41!, the following algebraic equation forBj (p)
is obtained:

(
j 51

`

Bj~p!U j 21~x/a!1(
j 51

`

Bj~p!L j~x,p!5t1~x,p!, uxu,a

(44)
where U j (x/a) represent Chebyshev polynomials of the seco
kind, with
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L j~x,p!5E
2a

a 1

pA12a2/a2
k~a,x,p!Tj~a/a!da (45)

and

t1~x,p!5
c441c441

2pc44
E

2`

`

F3~j,p!g1 exp~2 i jx!dj. (46)

Truncating the Chebyshev polynomials in Eq.~43! to the Nth
term and assuming that Eq.~44! is satisfied atN collocation points
along the crack faces,

xm5a cosS mp

N11D , m51,2, . . . ,N. (47)

Equation~44! can be reduced to a linear algebraic system of eq
tions of the following form:

(
j 51

N

Bj~p!sinS m jp

N11D Y sinS mp

N11D1(
j 51

N

Bj~p!L j~xm ,p!

5t1~xm ,p!, m51,2, . . . ,N. (48)
OnceBj (p) are determined from~48!, the stress component

can be obtained. Then, the dynamic stress intensity factor ca
evaluated using the following expressions:

K3* ~p!5 lim
x→a1

A2p~x2a!tyz* ~x,0,p!52
c44c441Apa

c441c441
(
j 51

`

Bj~p!.

(49)

4 Solution of the Impermeable Crack Problem
Consider now the impermeable crack problem. Perform

Laplace transform to the boundary conditions~10a!–~10g!
leads to

tyz* ~x,2h,p!5t* ~x,p!, 2`,x,` (50a)

Dy* ~x,2h,p!5D* ~x,p!, 2`,x,` (50b)

tyz* ~x,0,p!5tyz1* ~x,0,p!, 2`,x,` (50c)

tyz* ~x,0,p!50, uxu,a (50d)

w* ~x,0,p!5w1* ~x,0,p!, uxu.a (50e)

Dy* ~x,0,p!50, uxu,a (50f)

f* ~x,0,p!50, uxu.a (50g)

From ~50a!–~50c!, it can be seen that

A2~j,p!5A1~j,p!exp~2gh!1
exp~gh!

mg S t̄1
e15

k11
D̄ D (51)

A4~j,p!5A3~j,p!exp~2ujuh!2
exp~ ujuh!D̄

k11uju
(52)

A5~j,p!5
mg

c441g1
@12exp~2gh!#A1~j,p!

1
e15uju
c441g1

@12exp~2ujuh!#A3~j,p!

2
exp~gh!

c441g1
S t̄1

e15

k11
D̄ D1

e15 exp~ ujuh!D̄

k11c441g1
(53)

Let us again introduce the following dislocation function:

w1~x,p!5
]

]x
@w1* ~x,0,p!2w* ~x,0,p!# (54)

and the following definition:

w2~x,p!52
]f* ~x,0,p!

]x
. (55)

According to Eqs.~50e! and ~50g!, those two functions mus
satisfy
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E
2a

a

w1~a,p!da50 (56)

E
2a

a

w2~a,p!da50. (57)

By using Eqs.~54!, ~55!, ~12!–~15!, and the definition of Fourier
transform, we obtain

A5~j,p!2A1~j,p!2A2~j,p!52
1

i j E2a

a

w1~a,p!exp~ i ja!da

(58)

e15

k11
@A1~j,p!1A2~j,p!#1A3~j,p!1A4~j,p!

5
1

i j E2a

a

w2~a,p!exp~ i ja!da. (59)

Substitution of~51!–~53! into ~58! and ~59! yields

A1~j,p!52
c441g1@11exp~2ujuh!#

i jF1~j,p! E
2a

a

w1~a,p!exp~ i ja!da

2
e15uju@12exp~2ujuh!#

i jF1~j,p!

3E
2a

a

w2~a,p!exp~ i ja!da1H S 11
c441g1

mg D
3@11exp~2ujuh!#

1
e15

2 uju@12exp~2ujuh!#

k11mg J exp~gh!

F1~j,p! S t̄1
e15

k11
D̄ D

2
2e15 exp~ ujuh!D̄

k11F1~j,p!
(60)

A3~j,p!5
c441e15g1@11exp~2gh!#

ik11jF1~j,p! E
2a

a

w1~a,p!exp~ i ja!da

1
mg@12exp~2gh!#2c441g1@11exp~2gh!#

i jF1~j,p!

3E
2a

a

w2~a,p!exp~ i ja!da

2
2e15 exp~gh!

k11F1~j,p! S t̄1
e15

k11
D̄ D1H 1

1
2e15

2 uju@11exp~2gh!#

k11F1~j,p! J exp~ ujuh!D̄

k11uju@11exp~2ujuh!#
.

(61)

From ~50d! and ~50f!, we have

E
2`

` H g@exp~2gh!21#A1~j,p!1
exp~gh!

m S t̄1
e15

k11
D̄ D J

3exp~2 i jx!dj50, uxu,a (62)

E
2`

` H uju@exp~2ujuh!21#A3~j,p!2
exp~ ujuh!D̄

k11
J

3exp~2 i jx!dj50, uxu,a. (63)

By substituting Eqs.~60!, ~61! into ~62! and ~63!, we obtain
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1

i E2`

`

a11~j,p!exp~2 i jx!E
2a

a

w1~a,p!exp~ i ja!dadj

1
1

i E2`

`

a12~j,p!exp~2 i jx!E
2a

a

w2~a,p!exp~ i ja!dadj

5t2~x,p!, uxu,a (64)

1

i E2`

`

a21~j,p!exp~2 i jx!E
2a

a

w1~a,p!exp~ i ja!dadj

1
1

i E2`

`

a22~j,p!exp~2 i jx!E
2a

a

w2~a,p!exp~ i ja!dadj

5t3~x,p!, uxu,a (65)
t

i
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where

a11~j,p!5
c441gg1@11exp~2ujuh!#@exp~2gh!21#

jF1~j,p!
(66)

a12~j,p!5
e15ujug@12exp~2ujuh!#@exp~2gh!21#

jF1~j,p!
(67)

a21~j,p!5
e15c441ujug1@exp~2ujuh!21#@exp~2gh!11#

k11jF1~j,p!
(68)
a22~j,p!5
uju@exp~2ujuh!21#$mg@12exp~2gh!#2c441g1@11exp~2gh!#%

jF1~j,p!
(69)

t2~x,p!52E
2`

` 2c441g1@11exp~2ujuh!#12e15
2 /k11uju@12exp~2ujuh!#

mF1~j,p!
exp~gh2 i jx!S t̄1

e15

k11
D̄ Ddj

2E
2`

` 2e15g@exp~2gh!21#exp~ ujuh2 i jx!D̄

k11F1~j,p!
dj (70)

t3~x,p!5E
2`

` 2e15uju@exp~2ujuh!21#

k11F1~j,p!
exp~gh2 i jx!S t̄1

e15

k11
D̄ Ddj

1E
2`

` 2mg@12exp~2gh!#22c441g1@11exp~2gh!#

k11F1~j,p!
exp~ ujuh2 i jx!D̄dj. (71)
One can see that the right-hand side of~70! and ~71! depends
on botht̄ andD̄. This again indicates that the assumption that
loads acting on the crack faces are independent of the app
electric fields is inappropriate. However, by the use of the init
value theorem as applied to Laplace transform, we can ded
that in the static case the electric field does have influence on
crack-tip fields when the impermeable condition is considered

Performing appropriate asymptotic analysis leads to

lim
uju→`

a11~j,p!52
c441

c441c441
sign~j! (72)

lim
uju→`

a12~j,p!5
e15

c441c441
sign~j! (73)

lim
uju→`

a21~j,p!52
e15c441

k11~c441c441!
sign~j! (74)

lim
uju→`

a22~j,p!5F11
e15

2

k11~c441c441!
Gsign~j!. (75)

In a similar fashion to Section 3 and from Eqs.~64!, ~65!, and
~72!–~75!, we have the following singular integral equations:
he
lied

al-
uce
the

.

2
c441

c441c441
E

2a

a w1~a,p!

a2x
da1

e15

c441c441
E

2a

a w2~a,p!

a2x
da

1E
2a

a

k11~a,x,p!w1~a,p!da1E
2a

a

k12~a,x,p!w2~a,p!da

5
1

2
t2~j,p!, uxu,a (76)

2
e15c441

k11~c441c441!
E

2a

a w1~a,p!

a2x
da1F11

e15
2

k11~c441c441!
G

3E
2a

a w2~a,p!

a2x
da1E

2a

a

k21~a,x,p!w1~a,p!da

1E
2a

a

k22~a,x,p!w2~a,p!da5
1

2
t3~j,p!, uxu,a (77)

where

k11~a,x,p!5E
0

`Fa11~j,p!1
c441

c441c441
Gsin@j~a2x!#dj

(78)

k12~a,x,p!5E
0

`Fa12~j,p!2
e15

c441c441
Gsin@j~a2x!#dj

(79)
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k21~a,x,p!5E
0

`Fa21~j,p!1
e15c441

k11~c441c441!
Gsin@j~a2x!#dj

(80)

k22~a,x,p!5E
0

`H a22~j,p!2F11
e15

2

k11~c441c441!
G J

3sin@j~a2x!#dj. (81)

The functionsw1(a,p) andw2(a,p) are defined in terms of the
Chebyshev polynomials:

w1~a,p!5(
j 50

`
Bj~p!

A12a2/a2
Tj~a/a!,

w2~a,p!5(
j 50

`
Ej~p!

A12a2/a2
Tj~a/a!. (82)

From ~56! and~57!, it follows thatB0(p)5E0(p)50. By truncat-
ing the series to a reasonable number of terms and by usi
simple collocation technique, we can determine the remaining
knowns using the following algebraic equations:

(
j 51

N F sinS m jp

N11D
sinS mp

N11D2L11j~xm ,p!G Bj~p!

2(
j 51

N F e15 sinS m jp

N11D
c441sinS mp

N11D 1L12j~xm ,p!G Ej~p!

52
c441c441

2pc441
t2~xm ,p! (83)

2(
j 51

N F sinS m jp

N11D
sinS mp

N11D2L21j~xm ,p!G Bj~p!

1(
j 51

N H @k11~c441c441!1e15
2 #sinS m jp

N11D
e15c441sinS mp

N11D
1L22j~xm ,p!J Ej~p!5

k11~c441c441!

2pe15c441
t3~xm ,p!

(84)

m51,2, . . . ,N

where

L11j~xm ,p!

5
c441c441

c441
E

2a

a 1

pA12a2/a2
k11~a,xm ,p!Tj~a/a!da (85)

L12j~xm ,p!

5
c441c441

c441
E

2a

a 1

pA12a2/a2
k12~a,xm ,p!Tj~a/a!da (86)
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L21j~xm ,p!

5
k11~c441c441!

e15c441
E

2a

a 1

pA12a2/a2
k21~a,xm ,p!Tj~a/a!da

(87)

L22j~xm ,p!

5
k11~c441c441!

e15c441
E

2a

a 1

pA12a2/a2
k22~a,xm ,p!Tj~a/a!da.

(88)

Based on the solutions of~83! and ~84!, the dynamic stress
intensity factor and electric displacement intensity factor can
obtained, as follows:

K3* ~p!5 lim
x→a1

A2p~x2a!tyz* ~x,0,p!

52
mc441Apa

c441c441
(
j 51

`

Bj~p!

1
me15Apa

c441c441
(
j 51

`

Ej~p!2
e15

k11
KD* ~p! (89)

KD* ~p!5 lim
x→a1

A2p~x2a!Dy* ~x,0,p!

52
e15c441Apa

c441c441
(
j 51

`

Bj~p!

1ApaS k111
e15

2

c441c441
D(

j 51

`

Ej~p!. (90)

5 Numerical Results and Discussions
Numerical calculations have been carried out to show the in

ence of the pertinent parameters. In the following calculations,
piezoelectric material is assumed to be the commercially availa
piezoceramic PZT-4, and the elastic material is assumed to
aluminum. The elastic, piezoelectric, and dielectric properties
the materials are as follows~@17#!:

c4452.56* 1010 N/m2, e15512.7 C/m2,

k11564.6* 10210 C/vm, r57500 kg/m3;

c44152.65* 1010 N/m2, r152706 kg/m3.

For the sake of simplicity, the electromechanical loads are
sumed to act uniformly over the range2b<x<b and in the form
of a Heaviside step function; namely,t(x,t)5t0H(t) and
D(x,t)5D0H(t), wheret0 andD0 are constants. In this case, w
havet̄52t0 sin(bj)/(pj), D̄52D0 sin(bj)/(pj).

To check the convergence of the expansions in~43! and~82!, a
number of runs with varying number of terms were used.
found that good convergence~2 percent difference between tw
successive runs! can be reached when the number exceeds
terms. In all our calculations, we used 20 terms.

Both the dynamic intensity factor and the electric displacem
intensity factor in the physical plane are obtained by the numer
inversion of Laplace transform. Numerous numerical techniq
have been developed for the inversion. Naraynan and Beskos@18#
made a comparison study of those techniques and found tha
Durbin’s method~@19#! can give reliable results even for compl
cated functions. In the present analysis, we tried two techniq
the Durbin’s method and the method developed by Miller and G
@20#. Due to its simplicity, Miller and Guy’s method has been us
in most of the existing studies concerning the transient respo
of cracked piezoelectric materials~see, e.g., Chen and Yu@11#,
Transactions of the ASME
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Chen and Karihaloo@12#, Chen and Meguid@13#, Wang and
Yu @14#, Shin et al.@15#!. However, we found that this metho
gives diverging and inaccurate results. This is because the me
uses very little information of the transformed domain, as c
also be seen from the work of Naraynan and Beskos@18#. There-
fore, only the results of the Durbin’s method are presented h
~Figs. 2–11!. In these figures, normalized parameters are u
with SIF5K3(t)/(t0Apa), EDIF5KD(t)/(D0Apa), T5c2t/h
andDh5e15D0 /(k11t0).

Figures 2–4 are concerned with the results of the perme
crack problem. Specifically, Fig. 2 shows the influence of
applied electromechanical loads on the dynamic stress inten
factor. It is seen that ifT,1, the incident stress wave does n
arrive and the medium is completely at rest if no electric field
applied (Dh50). This is reflected by the fact that the SIF is ze
in that period of time. In the presence of the electric field, the S
increases or decreases gradually with increasing time, depen
on the direction of the electric field. The positive electric fie
(Dh50.5) induces negative SIF, and the negative electric fi
(Dh520.5) causes positive SIF. WhenT51, the incident stress
wave arrives. Thereafter, the SIF rises rapidly with increas
time, and reaches a peak, then decreases until the arrival o
first reflecting wave from the free surface (T53). It is shown that
this process is intensified by the presence of the positive ele
field, and alleviated by the presence of the negative electric fi
The same phenomenon can also be observed, if we conside
first reflecting wave (3<T,5) and the second reflecting wav
(T>5). In the calculation of this figure, we also checked t
accuracy of the Durbin’s method. From the physical viewpoint
is expected the SIF to be zero beforeT51, since there is no
electric field applied. The calculation shows that the error is l
than 1 percent. The physical model indicates that the time
which the first and the second reflecting waves arrive should
T53 andT55, respectively. However, our calculations show th
they areT52.9 andT54.9. This discrepancy is due to the a
proximation used in the model.

Figure 3 displays the variation of the SIF with variousa/h at
Dh50.5. Due to the arrival of the incident stress wave, the
crease ofa/h results in an increase in the SIF. However, when
reflecting waves arrive atT53 and T55, the decrease ofa/h
results in a decrease in the SIF. The effects of the loading rang
the dynamic stress intensity factor are shown in Fig. 4.

Figures 5–8 are concerned with the results of the imperme
crack problem. Generally, similar observations can be dedu
from Figs. 5–7. However, the effect of the electric field is mo
pronounced, as depicted in Fig. 5. It is seen that before the ar

Fig. 2 Normalized SIF versus normalized time for various elec-
tromechanical loads and the permeable boundary condition
Journal of Applied Mechanics
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of the incident stress wave, only the electric field is present.
T50, the SIF has a jump. Then, a small overshoot takes pl
From Figs. 6 and 7, one can deduce the influence ofa/h and the
loading range on this process.

The variation of the electric displacement intensity factor w
variousa/h at Dh50.5 is depicted in Fig. 8. From this figure w
can observe the dynamic overshoot phenomenon. Moreover
phenomenon is intensified with the increase ofa/h. This is quite
different from the earlier results obtained in Chen and Yu@11#,
Chen and Karihaloo@12#, Chen and Meguid@13#, Wang and Yu
@14#, and Wang et al.@16#, where the electric displacement inten
sity factor is in the form of a Heaviside step function.

Figures 9–11 compare the solutions of the dynamic stress
tensity factor for the permeable and impermeable conditio
Whena/h50.2, the difference between the two solutions is ne
ligible. However, when the ratio ofa/h becomes large, the differ
ence is appreciable. This indicates that for smaller cracks,
permeable and impermeable conditions provide comparable
sults for the local stress fields. For larger cracks, the two bound
conditions lead to different solutions for those local stress fiel

Fig. 3 Normalized SIF versus normalized time for various aÕh
and the permeable boundary condition

Fig. 4 Effects of loading range on the normalized SIF for the
permeable boundary condition
MAY 2002, Vol. 69 Õ 251



Fig. 5 Normalized SIF versus normalized time for various elec-
tromechanical loads and the impermeable boundary condition

Fig. 6 Normalized SIF versus normalized time for various aÕh
and the impermeable boundary condition

Fig. 7 Effect of loading range on the normalized SIF for the
impermeable boundary condition
252 Õ Vol. 69, MAY 2002
Fig. 8 Normalized EDIF versus normalized time for various
aÕh and the impermeable boundary condition

Fig. 9 Comparison between solutions of the permeable and
impermeable boundary conditions for aÕhÄ0.2, DhÄ0.5, and
bÄ12 h

Fig. 10 Comparison between solutions of the permeable and
impermeable boundary conditions for aÕhÄ0.6, DhÄ0.5, and
bÄ12 h
Transactions of the ASME
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6 Conclusions
The dynamic problem of bonded piezoelectric and elastic h

space with an interface crack subjected to transient electro
chanical load is investigated. The analysis is based on the us
integral transform techniques and integral equation methods.
merical calculations are carried out to study the effect of the
plied electric field, electric boundary conditions along the cra
faces and a free surface on the resulting dynamic stress inte
factor and the electric displacement intensity factor. The st
reveals that

1 The presence of the electric field results in an increase
decrease of the dynamic stress intensity factor, depending on
direction of the electric field and the stage of responses. T
indicates that both a positive electric field and a negative elec
field can retard or promote the propagation of a crack. It is wo
noting that an electric field alone can induce the stress inten
factor in cases involving transient loading. This result is differe
from the corresponding static problem. In the static case, the e
tric field has no influence on the crack tip fields when the perm
able boundary condition is considered.

2 For both the permeable and impermeable boundary co
tions, the interaction between a crack and the reflecting wa
from a free surface is prevalent, which is manifested by the
crease in the stress intensity factor due to the arrival of the refl
ing waves.

3 An overshoot phenomenon exists for the electric displa
ment intensity factor when the impermeable boundary conditio
considered. Moreover, the phenomenon is intensified with the
crease in the crack length.

Fig. 11 Comparison between solutions of the permeable and
impermeable boundary conditions for aÕhÄ1.0, DhÄ0.5, and
bÄ12 h
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4 For a crack of small length~for the present case,a/h,0.2!,
both the permeable boundary condition and the impermea
boundary condition give comparable results for the local str
fields. When the crack length is relatively large, the differen
between the two cases becomes evident.
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Numerical Simulation of Pulsed
Laser Bending
The aim of this work is to develop an efficient method for computing pulsed laser ben
During pulsed laser bending, thousands of laser pulses are irradiated onto the ta
Simulations of the thermomechanical effect and bending resulted from all the laser p
would exceed the current computational capability. The method developed in this
requires only several laser pulses to be calculated. Therefore, the computation tim
greatly reduced. Using the new method, it is also possible to increase the domain s
calculation and to choose dense meshes to obtain more accurate results. The new m
is used to calculate pulsed laser bending of a thin stainless-steel plate. Results calc
for a domain with a reduced size are in good agreement with those obtained by comp
all the laser pulses. In addition, experiments of pulsed laser bending are performed
found that experimental data and computational results are consistent.
@DOI: 10.1115/1.1459070#
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1 Introduction

Laser bending or laser forming is a newly developed, flexi
technique which modifies the curvature of sheet metal or h
material using energy of a laser. The schematic of a laser ben
process is shown in Fig. 1. The target is irradiated by a focu
laser beam passing across the target surface with a certain
ning speed. After laser heating, permanent bending is resu
with the bending direction toward the laser beam~the positive
z-direction shown in Fig. 1!. Laser bending has been explained
the thermoelastoplastic theory~@1–4#!. During the heating period
irradiation of the laser beam produces a sharp temperature g
ent in the thickness direction, causing the upper layers of
heated material to expand more than the lower layers. This n
uniform thermal expansion causes the target to bend away f
the laser beam. In the meantime, compressive stress and stra
produced by the bulk constraint of the surrounding materials.
cause of the high temperature achieved, plastic deformations
cur. During cooling, heat flows into the adjacent area and
stress changes from compressive to tensile due to thermal sh
age. However, the compressive strain generated during heati
not completely cancelled. Therefore, the residual strain in
laser-irradiated area is compressive after the target cools, cau
a permanent bending deformation toward the laser beam.

A large amount of experimental and numerical work has b
conducted to study CW~continuous wave! laser bending of shee
metals ~@5–10#!. Applications of laser bending include formin
complex shapes and straightening automobile body shells. L
bending is also being used for high-precision curvature modifi
tion during hard disk manufacturing, in which low energy puls
lasers are used~@4#!. Chen et al.@11# studied bending by a line
shape pulsed laser beam using a two-dimensional finite elem
model. Since the laser beam intensity they used was unif
across the target surface~along they-direction shown in Fig. 1!,
the effect of bending was calculated using a two-dimensional h
transfer model and a plane-strain model, and the calculation

1Current address: CNH Global NV, Burr Ridge, IL.
2To whom correspondence should be addressed.
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF

MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
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of Mechanical Engineering, University of Houston, Houston, TX 77204-4792,
will be accepted until four months after final publication of the paper itself in
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greatly simplified. Relations between bending angles and pu
laser parameters were determined by both computational and
perimental methods.

Little work has been done on pulsed laser bending usin
three-dimensional model. In a common pulsed laser bending
eration such as the one used for curvature adjustment in hard
manufacturing, thermal and thermomechanical phenomena
volved are three-dimensional. Laser pulses with Gaussian in
sity distributions and high repetition rates are irradiated along
scanning line, as shown in Fig. 2. The main difficulty for sim
lating pulsed laser bending is that thousands of laser pulses a
the laser scanning direction need to be calculated. For examp
a scanning speed of 10 mm/s and a pulse repetition rate of 10
there will be a total of 2000 pulses irradiated on a 2-mm w
target. Also, the numbers of nodes and elements in a th
dimensional model are much more than that in a two-dimensio
model. Direct simulations of any actual pulsed laser bending p
cess are impractical in terms of both the computation time and
computer resource.

In this paper, an efficient calculation method is developed
simulate pulsed laser bending. Instead of calculating bending
sulted from all the laser pulses, bending due to a fraction of
total laser pulses is computed. Then, the calculated strain di
bution at a cross section perpendicular to the scanning directio
imposed onto the whole target as an initial condition to calcul
bending. A computational algorithm is developed. The accurac
this method is verified by both numerical calculations and exp
mental measurements.

2 Numerical Procedure

2.1 Calculation of Deformations From the Strain Field
In most pulsed laser bending processes, constant stress and
fields along the laser scanning direction are obtained. Althoug
single laser pulse generates nonuniform stress and strain dist
tions, in practice, laser pulses with same pulse energy, sepa
by a very small distance compared with the laser beam radius
used. Thus, the laser-induced stress and strain vary little along
scanning direction. With this in mind, it is only necessary to c
culate several laser pulses until the stress and strain fields in ax-z
cross-sectional area are not changed by a new laser pulse. T
the residual strain field in this cross section can be imposed o
the whole domain to calculate the deformation~bending!. In other
words, a strain field$« r%, which can be used to calculate displac
ments of the target after pulsed laser scanning, is generate
calculating only a fraction of the total pulses.

-
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Before discussing the method of calculating displaceme
from a strain field, it is worth mentioning that the residual stre
field couldn’t be used to calculate displacements. The reaso
that displacements are dependent not only on the stress but al
the load path when the plastic strain is involved. Different d
placements will result from different load paths; even the resid
stress fields are the same. On the other hand, there is a one-t
correspondence between the strain and displacement fields. T
fore, the displacement field of the target can be completely de
mined by the strain field.

The finite element solver, ABAQUS~HKS, Inc., Pawtucket, RI!
is used for the numerical calculation. In ABAQUS, only the stre
field can be used as an initial condition for computation. The
fore, an initial stress field, which can produce the strain field eq
to the laser produced strain field$« r%, needs to be obtained firs
The method for calculating this stress field is described below

Consider an undeformed domain without any external forc
but with an initial stress field$s i%. In order to satisfy force equi-
librium, this initial stress should relax completely. For stress
laxation, the stress field in the domain can be written by

$s%5$s i%1@E#$«% (1)

where@E# is the matrix of elastic stiffness,$«% is the strain field
due to stress relaxation, and$s% is the stress field. After stres
relaxation,$s%→$0%. The strain field can be obtained by

$«%52$s i%/@E#. (2)

Fig. 2 Irradiation of laser pules on the target surface. The la-
ser scans in the positive y -direction.

Fig. 1 Schematic of the laser bending process. The laser
beam scans along a line in the y -direction, causing residual
stress and strain in the laser irradiated area and permanent
bending.
Journal of Applied Mechanics
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This equation determines the relationship between an initial st
field and the resulted strain field after stress relaxation. It can
seen that, if an initial stress field$s i%52@E#$« r% is used in the
stress relaxation calculation, the resulted strain field will be id
tical to the strain field$« r%.

Therefore, in a brief summary, the computation starts with c
culating a strain field$« r% from several pulses and impose th
strain field to the entire domain. Then a stress field$s i% is ob-
tained by computing2@E#$« r%. This stress field is applied to a
undeformed domain followed by a stress relaxation calculati
This calculation yields both the strain$« r% as well as the displace
ment ~bending!.

To verify this simulation method and use it to compute t
pulsed laser bending process, a three-dimensional model is
and simulations of pulsed laser bending are conducted. In the
case, a full-hard 301 stainless steel sample that is 400mm long,
120 mm wide, and 100mm thick is irradiated by a pulsed lase
The scanning speed of the laser beam is set to be 195 m
resulting in a total of fourteen pulses along the scanning line;
a 9mm step size between two adjacent laser pulses. Although
domain size used here is smaller than many of those use
practice, the reduced domain size makes it possible to calcu
the temperature, stress, and strain distributions produced by a
14 laser pulses. On the other hand, to test the new calcula
method, the strain distribution in thex-z cross section aty
560mm after eight laser pulses is imposed onto the whole
main, and the procedures outlined above are used to comput
deformation caused by all the pulses. Results from the two
proaches are then compared. In the second case, a full-hard
stainless steel sample that is 8 mm long, 1.2 mm wide, and
mm thick is irradiated by a pulsed laser. The laser scanning sp
is also 195 mm/s, resulting in a total of 134 pulses. In this ca
only the new method is used since it is impossible to complete
computation of all the 134 pulses within a reasonable amoun
time. Experiments are conducted on samples with same dim
sions and processing parameters, and the results of experim
and simulations are compared. The laser parameters used i
simulation and the experiment are summarized in Table 1.

The computational domain and mesh for the first case
shown in Fig. 3. Only half of the target is calculated because
central plane is approximated as a symmetry plane. A dense m
is used around the laser path and then stretched away in le
and thickness directions~x and z-directions!. In the dense mesh
region, eight elements are used in thex-direction, 33 elements in
thez-direction, and 24 elements in they-direction. A total of 9944
elements are used in the mesh. The same mesh is used for th
analyses and stress-displacement calculations. The mesh tes
conducted by increasing the mesh density until the calcula
result is independent of the mesh density.

Dissipation of energy by the plastic deformation is negligib
compared with the high laser energy density during bendi
Therefore, it is assumed that the thermal and mechanical prob
are decoupled, so that the thermal analysis and the stress
strain calculation can be conducted separately.
Table 1 Pulsed laser parameters
MAY 2002, Vol. 69 Õ 255
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2.2 Thermal Analysis. The thermal analysis is based o
solving the three-dimensional heat conduction equation. The
tial condition is that the whole specimen is at the room tempe
ture ~300 K!. Since the left and right boundaries as well as t
bottom surface are far away from the laser beam, the boun
conditions at these boundaries are prescribed as the room
peratures. The laser flux is handled as a volumetric heat so
absorbed by the target. The laser intensity at the target surfa
considered as having a Gaussian distribution in bothx and
y-directions, which can be expressed as

I s~x,y,t !5I 0~ t !�expS 22
x21~y2y0!2

w2 D (3)

whereI 0(t) is the time-dependent laser intensity at the cente
the laser beam (x50;y5y0) andw is the beam radius. The tem
poral profile of the laser intensity is treated as increasing line
from zero to the maximum at 60 ns, then decreasing to zero a
end of the pulse at 120 ns. The local radiation intensityI (x,y,z,t)
within the target is calculated considering exponential attenua
and surface reflection as

I ~x,y,z,t !5~12Rf !I s~x,y,t !e2az (4)

whereRf is the optical reflectivity.a is the absorption coefficien
given by

Fig. 3 Computational mesh „x :200 mm, y :120 mm, z:100 mm…
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The imaginary part of the refractive indexk of stainless steel 301
at the laser wavelength 1.064mm is unknown, andk54.5 of iron
is applied. Properties used in the calculation are considere
temperature-dependent, and are shown in Fig. 4.

Sensitivity of calculated bending with respect to optical refle
tivity has been studied~@11#!. It was found that a 10% change o
optical reflectivity value would cause a 23% difference in t
bending angle. Therefore, the uncertainty in reflectivity does
fluence calculation results significantly. In this work, the reflect
ity is measured to be 0.66, which has an uncertainty less than

The thermal analysis is carried out for laser pulse energy of
mJ, 5.4mJ, and 6.4mJ, respectively. The maximum temperatur
obtained are all lower than the melting point of steel~1650 K!.

2.3 Stress and Strain Calculation. For each laser pulse
the transient temperature field obtained from the thermal anal
is used as thermal loading, and residual stress and strain field
the previous pulse are input as initial conditions to solve
quasi-static force equilibrium equations. The material is assum
to be linearly elastic-perfectly plastic. The Von Mises yield crit
rion is used to model the onset of plasticity. The boundary con
tions are zero displacement in thex-direction and no rotations
aroundy andz-axes in the symmetry plane, and all other surfac
are stress free. Details of the equations to be solved have
described elsewhere~@10#!.

As shown in Fig. 4, material properties including density, yie
stress, and Young’s modulus are considered temperat
dependent. However, the strain rate enhancement effect is
glected because temperature-dependent data are unavailab
constant value~0.3! of Poisson’s ratio is used. Sensitivity of un
known material properties on the computational results has b
studied ~@11#!. It was found that possible errors resulting fro
extrapolating material properties at high temperatures and usi
constant Poisson’s ratio were within a few percent.
Fig. 4 Thermal and mechanical properties of full-hard 301 stainless steel
Transactions of the ASME
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3 Experimental Measurements
Experiments of bending of stainless steel are performed

verify the calculation results. The laser used in experiments
pulsed Nd:VA laser with the same operation parameters show
Table 1. Figure 5 illustrates the experimental setup for perform
pulsed laser bending as well as for measuring the bending an
The Nd:VA laser beam scans the specimen surface along
y-axis ~Fig. 1! at a speed of 195 mm/s. The scanning speed
accurately controlled by a digital scanning system and the p
step is 9mm at this speed. An He-Ne laser beam is focused at
free end of the target to measure the bending angle in
z-direction. The reflected He-Ne laser beam is received by a
sition sensitive detector~PSD! with 1-mm sensitivity in position
measurements. The accuracy of the bending angle measurem
about61.5mrad when the distance between the specimen and
PSD is set to 750 mm in the experiment. After laser scanning,
target bends toward the laser beam, causing the reflected H
laser beam to move across the PSD. The position chang
He-Ne laser beam can be converted to the bending angle o
specimen using geometrical calculations. The whole apparatu
set on a vibration-isolation table. Polished full hard 301 stainl
steel sheets are used as targets.

4 Results and Discussion
Results calculated using a reduced domain size are present

illustrate the temperature and residual strain and stress dist
tions induced by laser pulses. Bending deformations obtained
the new calculation method and by computing all laser pulses
then compared. Bending deformations resulted from different
ser pulse energy are also presented. For the second case for
a larger sample is used, the calculated bending angles using
new method are compared with the experimental data.

4.1 Results Calculated Using a Reduced Domain Siz
Temperature distributions alongx andy-directions and at differen
times are shown in Fig. 6. The laser pulse energy is 5.4mJ and the
pulse center is located aty554mm. Figure 6~a! shows the tem-
perature distribution along the scanning line~the y-direction!. It
can be seen that the maximum temperature,Tmax, is reached at the
pulse center.Tmax increases once the laser pulse is irradiated
the surface and reaches its peak value 988.1 K at 87.7 ns, and
drops slowly to 365.5 K at 2.2ms. It can be estimated that th
laser-heated region is around 30mm in radius. Figure 6~b! is the
temperature distribution along the depth direction~the
z-direction!, beginning from the upper surface of the target. T
maximum temperature is obtained at the upper surface
reaches 988.1 K att587.7 ns. The heat propagation depth

Fig. 5 Experimental setup for pulsed laser bending and for
measuring the bending angle †1–ND:VA laser, 2–shutter,
3–polarizing beam splitter, 4–mirror, 5–beam expander, 6–X&Y
scanner, 7–specimen, 8–beam splitter, 9–position-sensitive
detector, 10–lens, 11–He-Ne laser ‡
Journal of Applied Mechanics
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around 4mm at 2.2ms and the temperature gradient during he
ing period is as high as 350 K/mm. This sharp temperature grad
ent causes nonuniform plastic strains in the target and the pe
nent bending deformation after laser heating.

Residual strain«xx and stresssxx distributions along the lase
scanning path obtained from calculating all the fourteen pulses
plotted in Fig. 7~a! and Fig. 7~b!, respectively. Only the compo
nents«xx andsxx are plotted since they are more important to t
bending deformation than other components. It can be seen f
Fig. 7~a! that after four pulses, the strain field in regions about
mm behind the new laser pulse is no longer changed. In o
words, in they-direction, each pulse only affects the stress a
strain field within 15mm from its center. It is also seen that afte
the laser pulses pass the whole target width, the residual stres
strain fields of the target are independent of they-coordinate with
the exception near the two edges, which is caused by the
stress boundary conditions. The uniform stress and strain a
they-direction are consistent with the assumption used in the
culation.

Residual strain«xx and stresssxx distributions along the
x-direction at the upper surface are shown in Fig. 8~a! and Fig.
8~b!, respectively. They are obtained after eight laser pulses in
cross sectiony560mm. It can be seen from Fig. 8~a! that the
strain «xx is compressive within 15mm from the center of the
laser pulse. This agrees with the theoretical prediction that
compressive residual strain will be obtained near the cente
laser-irradiated area where the temperature is the highest an
plastic deformation occurs~@4#!. The residual strain«xx becomes
positive ~tensile strain! at locations more than 15mm away from
the center. The tensile strain in this region is due to the ten
force produced by thermal shrinkage during cooling. The to
strained region is about 30mm from the center of the laser beam
and is slightly larger than the radius of the laser beam~25 mm!. In

Fig. 6 Temperature distributions induced by the seventh
pulse „pulse energy 5.4 mJ; pulse center at yÄ54 mm… „a… along
the scanning line, „b… along the z-direction
MAY 2002, Vol. 69 Õ 257
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Fig. 8~b!, the stresssxx is tensile and its value is around 1.1 GP
in the region within 15mm from the pulse center. This larg
tensile stress cancels more than 90% of the plastic strain prod
during heating in this region. The tensile stress drops quickly
zero at about 25mm from the center of the laser beam.

The strain distribution«xx calculated from the initial stress fiel
$s i% using the new simulation method is shown in Fig. 9. T
average value of«xx obtained from the new method is23.47
31024, comparing with the value of23.4231024 calculated
from all the 14 pulses. The two strain values are in very go
agreement except at two edges. Again, the difference is cause
the free boundary conditions at the edges.

The off-plane displacementw is of prime interest since it re
flects the amount of bending. The comparison between the de
mation calculated from the initial stress$s i% and that obtained by
calculating all the pulses is shown in Fig. 10. Results at the c
sectiony560mm are plotted. It can be seen that displacementw
of the two approaches are consistent and the bending angle
almost identical. The difference between the two curves is loca
around the transition mesh region. This is because that the ele
size and the shape in the transition region are not all the same
errors are produced when the residual strain of onex-z cross
section is imposed to the whole domain. It is seen from Fig.
that a ‘‘V’’ shape surface deformation is resulted after laser sc
ning, with the valley located at around 10mm from the center of
the scanning line. The positive off-plane displacement near

Fig. 7 „a… Residual strain „«xx …, „b… residual stress „sxx … dis-
tributions along the scanning line induced by each laser pulse
„pulse energy 5.4 mJ; scanning speed 195 mm Õs…
258 Õ Vol. 69, MAY 2002
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center of the scanning line is produced by thermal expans
along the positivez-direction because of the free-surface bounda
condition.

Figure 11 shows the off-plane displacementw of the central
point on the free edge of the surface (x5200mm,y560mm,z
5100mm) produced after each laser pulse with pulse energy
4.4 mJ, 5.4mJ, and 6.4mJ, respectively. As expected, laser puls
with high energy produce more bending. It is also seen thaw
increases almost linearly with the number of pulses for all
three cases.

4.2 Comparison Between Experimental and Numerical
Results. Bending angles obtained experimentally are compa
with calculated values as shown in Fig. 12. Laser energy of
mJ, 5.4mJ, and 6.4mJ is used in the experiment. On the oth
hand, calculations are carried out using the new method, in wh
the strain distribution obtained after eight laser pulses is impo
onto the entire computation domain. The size of the computa
domain is 0.2 mm31.2 mm30.1 mm, which is identical to the
sample size used in the experiment in they andz-directions. Using
a smaller size in thex-direction does not affect the computatio
results, since regions atx greater than 0.2 mm undergo a rigi
rotation only. From the figure, it is seen that the experimen
results agree with the calculated values within the experime
uncertainty. Both the experiment and simulation show the bend
angle increases almost linearly with the pulse energy.

The agreements between the results of two numerical meth
and between the experimental and numerical results show tha

Fig. 8 „a… Residual strain „«xx …, „b… residual stress „sxx … dis-
tributions along the x -direction „yÄ60 mm and zÄ0 mm… after
eight pulses
Transactions of the ASME
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Fig. 9 Residual strain «xx along the scanning line on the top
surface obtained by calculating all the 14 pulses and by using
the new method „pulse energy 5.4 mJ; scanning speed 195
mm Õs…

Fig. 10 Displacement w along the x -direction „yÄ60 mm and
zÄ0 mm… obtained by calculating all the laser pulses and by
using the new method „pulse energy 5.4 mJ; scanning speed
195 mm Õs…

Fig. 11 Calculated displacement w at the free edge after each
laser pulse as a function of laser energy
Journal of Applied Mechanics
newly developed method is indeed capable of computing pu
laser bending. As indicated previously, the advantage of the
method is that the computation time is greatly reduced. For e
laser pulse in the first case, about two hours are needed for
temperature calculation and four hours for the stress calcula
using an 800 MHz Dell PC Workstation. It takes about 84 hours
obtain the bending deformation resulted from all the 14 puls
and 50 hours when the new method is used. On the other hand
the second case, it would have taken more than 10,000 hou
obtain the bending deformation if all the pulses were to be ca
lated. Using the new method, it only takes about 100 hours
complete the calculation. Thus, even for a sample as small
few mm in size, bending can only be calculated with the use of
new method.

One concern of using the new method for calculating puls
laser bending is when the laser beam scans the surface at a
high speed, thus the pulse step-size becomes large enoug
cause nonuniform stress and strain along the scanning line. H
ever, if the laser-induced stress and strain distribution is perio
i.e., produced by high-speed scanning of the laser beam with
stant energy per pulse, this method still works. The strain dis
bution within a period along they-direction can be imposed to th
whole domain, and the remaining steps follow those descri
previously in Section 2.1.

5 Conclusion
A new efficient method for computing pulsed laser bending

developed. The total computation time is greatly reduced and
sults are found to agree with those obtained using a conventi
computation method. Experimental studies are also carried ou
verify the simulation results. It is found that the calculated resu
agree with the experimental values. For most pulsed laser ben
processes, the newly developed method is the only possible
to compute bending within a reasonable amount of time.
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Coupled Torsion-Lateral Stability
of a Shaft-Disk System Driven
Through a Universal Joint
Understanding the instability phenomena of rotor-shaft and driveline systems incorp
ing universal joints is becoming increasingly important because of the trend tow
light-weight, high-speed supercritical designs. In this paper, a nondimensional, peri
linear time-varying model with torsional and lateral degrees-of-freedom is develope
a rotor shaft-disk assembly supported on a flexible bearing and driven through a U-j
The stability of this system is investigated utilizing Floquet theory. It is shown tha
interaction between torsional and lateral dynamics results in new regions of param
instability that have not been addressed in previous investigations. The presence o
inertia and misalignment causes dynamic coupling of the torsion and lateral mo
which can result in torsion-lateral instability for shaft speeds near the sum-type co
nations of the torsion and lateral natural frequencies. The effect of angular misalignm
static load-torque, load-inertia, lateral frequency split, and auxiliary damping on
stability of the system is studied over a range of shaft operating speeds. Other
avoiding the unstable operating frequencies, the effectiveness of using auxiliary la
viscous damping as a means of stabilizing the system is investigated. Finally, a c
form technique based on perturbation expansions is derived to determine the aux
damping necessary to stabilize the system for the least stable case (worst case).
@DOI: 10.1115/1.1460907#
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1 Introduction
Universal joints, commonly known as U-joints, are used

many power transmission applications when power must be tr
mitted across noncollinear shafts. U-Joints are widely used
cause they are relatively inexpensive and easy to maintain c
pared with many other types of shaft couplings. Furthermore, t
design allows them to accommodate relatively large angular m
alignments. Additionally, U-joints have high torque capability a
can withstand relatively large axial loads.

Despite the advantages of the U-Joint, their nonconstant ve
ity nature can lead to undesirable vibration and even instab
under certain conditions. Since the joint rotations are about
successive axes, there is a nonconstant velocity relationship
tween the driving and the driven end of the U-joint. This diffe
ence between the driving and driven shaft speed is comm
known as the Cardan Error. When the driving and driven sh
are not collinear, the driven shaft speed fluctuates at a frequ
twice the driving shaft speed, even if the driving shaft speed
constant. This fluctuation can excite torsional vibration of the s
tem and can lead to instability. Furthermore, torque transmi
through a U-joint in the presence of angular misalignment gen
ates lateral moments that fluctuate at twice the driving shaft sp
These lateral moments can excite lateral motion of the shaft
can also destabilize the system.

Several researchers have investigated the dynamics and s
ity of rotating shafts driven through U-joints. Iwatsubo and Sa
@1# have studied the effect of load-torque on the transverse vi
tion of a nominally aligned rigid rotor disk driven through
U-joint. They derived the expressions for the parametric and s
exciting transverse moments created by torque transm

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Feb. 1
2001; final revision, Oct. 3, 2001. Editor: N. C. Perkins. Discussion on the pa
should be addressed to the Editor, Prof. Lewis T. Wheeler, Department of Mecha
Engineering, University of Houston, Houston, TX 77204-4792, and will be accep
until four months after final publication of the paper itself in the ASME JOURNAL OF
APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
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through the U-joint. It was determined that static load-torque c
induce parametric instabilities at the sum-type combinations of
transverse natural frequencies. Additionally, it was shown t
load-torque also induces flutter instability~@1#!.

Similar to @1#, Mazzei et al.@2# considered a flexible shaf
U-joint system without the rotor disk. The effect of static loa
torque on the stability of a misaligned, slender, flexible shaft s
ported by compliant bearings was investigated. Torsion dynam
were neglected since the shaft was slender with no rotor d
Similar to results presented in@1#, Mazzei et al.@2# found that the
static load-torque produced parametric instability near the s
type combinations of the lateral bending natural frequencies of
shaft as well as flutter instability. Also,@2# compared the stability
of a flexible shaft U-joint system to a rigid shaft U-joint system
They showed that the instability zones of the flexible shaft mo
associated with modes involving mainly rigid motion were ve
similar to the instability zones predicted by the rigid shaft mod
Thus, the presence of shaft flexibility only adds additional ins
bility zones associated with the flexible modes, but does not f
damentally alter the instability zones predicted by the rigid mod

Rosenberg@3# considered the effect of static misalignment o
the stability of a flexible shaft driven by a U-joint. Here the mi
alignment angle is modeled as a static nominal angle plus a
namic misalignment due to shaft vibration. Here again, torsio
dynamics are neglected, and only lateral shaft flexibility is co
sidered. Compared to the effect of static load-torque in@1,2# the
results from@3# show that angular misalignment only weakly a
fects the stability near the sum-type lateral combination frequ
cies of the shaft.

Xu and Marangoni@4,5# examined how static angular misalign
ment between two shafts affects the lateral moments created
U-joint. In this analysis, they considered only the static portion
the angular misalignment. Thus the effect of the misalignm
was modeled by time periodic transverse moment forcing te
which contain integer multiple harmonics of twice the drivin
shaft speed. However, since dynamic misalignment due to s
vibration was neglected, the potentially destabilizing parame
terms were not included in the analysis.
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Kato and Ota,@6#, studied U-joint frictional effects for a stati
cally misaligned shaft. Here, they derived expressions for lat
moments generated by viscous and coulomb friction between
yokes and cross piece of the U-joint. They concluded that inte
friction in the U-joint generates harmonic lateral moments t
occur at even multiples of the shaft operating speed, i.e., 2V, 4V,
. . . , etc. Additionally, they demonstrated that the visco
friction-induced lateral moments are suppressed if the friction
efficients at the driven and driving yokes are equal.

Asokanthan and Hwang@7# and Asokanthan and Wang@8# both
studied the stability of two torsionally flexible, misaligned sha
coupled by a U-joint. In their analyses, the shafts were driving
inertia load and the orientations were fixed, thus lateral mot
was neglected and only torsional dynamics were considered. A
kanthan and Hwang@7# concluded that shaft speed variation kin
matics due to static angular misalignment caused fundamenta
sum type parametric instabilities. They also showed that the w
of the parametric instability zones increased with increasing m
alignment angle.

2 Problem Statement and Research Objective
For a shaft/U-joint system carrying an inertia load, it has be

shown that angular misalignment causes periodic speed varia
of the driven shaft and induces torsional dynamics. Furtherm
other studies have shown that load-torque transmitted acro
U-joint generates lateral moments that excite lateral dynam
However, since these two phenomena have been investig
separately, the important interaction between the torsion and
eral dynamics has not been addressed in previous investigat
Because the effective misalignment is the sum of some nom
static misalignment plus the dynamic slope of the shaft at
U-joint due to lateral vibration, the misalignment-induced spe
variation and resulting torsional dynamics are a function of
lateral dynamics. Thus, lateral shaft dynamics induce torsio
dynamics. On the other hand, torsional dynamics generate a
namic load-torque proportional to the inertia load. This tors
dynamics-induced dynamic load-torque is transmitted through
U-joint and generates lateral moments, which means torsiona
namics excite lateral dynamics. Therefore, the torsion and lat
modes of vibration are dynamically coupled, and due to the na
of the U-joint, this dynamic coupling is periodic.

As will be seen in the next few sections, this torsion-late
coupling phenomena is important for supercritical rotor-shaft
plications since it creates shaft speed regions of parametric in
bility not previously identified in the literature. The objective
this research is to address this critical but unexamined issue,
t

i

a
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is, to understand the interaction between lateral and torsional
namics and explore the bounds of the torsion-lateral instab
regions. Specifically, the dynamic stability of a torsionally fle
ible, misaligned, U-joint driven shaft-disk assembly mounted o
compliant bearing/damper is examined.

3 System Description and Model
Equations of motion are derived for the system illustrated

Fig. 1. The torsionally flexible shaft, carrying a rotor disk, is su
jected to a follower torque load and mounted on a spring bear
damper while being driven through a U-joint coupling. The dri
ing shaft speed,V, and the magnitude of the follower load-torqu
TL , are assumed constant. Since the driven shaft is considere
be rigid in bending and pinned at the U-joint, the orientation c
be completely described in the fixed frame,$n%, by two orthogonal
projected slopes in then1-n2 and n1-n3 planes. The statically
misaligned equilibrium operating condition of the driven shaft
defined by static misalignment anglesd2 andd3 in the n1-n3 and
n1-n2 planes, respectively. The dynamic portion of the misalig
ment is then measured from the static misaligned operating c
dition by projected slopes,v8 and v8, which correspond to the
n1-n3 andn1-n2 planes, respectively. Figure 2 shows the rotati
sequence from the fixed frame$n%, to the body fixed frame of the
driven shaft,$b%.

From the fixed$n% frame, the intermediate frame,$n8% which
follows the driven shaft, is defined by the combined static a
dynamic projected slopesv81d3 and v81d2 . Next, the body
fixed frame,$b%, is obtained by the driven shaft spin angle,f2 ,
about the intermediaten18-axis. The coordinate transformation ma
trix from the $n% frame to the$b% frame is shown in Eq.~1!.

Fig. 1 Misaligned shaft and disk driven through a U-joint
F b1

b2

b3

G5S 1 0 0

0 cosf2 sinf2

0 2sinf2 cosf2

D S 12
~d31v8!2

2
2

~d21w8!2

2
d31v8 d21w8

2~d31v8! 12
~d31v8!2

2

~d31v8!~d21w8!

2

2~d21w8! 2
~d31v8!~d21w8!

2
12

~d21w8!2

2

D F n1

n2

n3

G (1)
e

Since the shaft is torsionally flexible, the total spin angle of
disk, f2d , is the sum of the driven yoke spin,f2 , plus the elastic

twist angle,f̂2d . Due to the kinematics of the U-joint, the sp
angle of the driven yoke,f2 , is a function of the driving yoke
spin anglef, and the misalignments,v81d3 andv81d2 , of the
driven shaft relative to the driving shaft. Since the driving sh
he

n

ft

speed,V, is a given constant, the spin anglef5Vt, is also
known. Thusf2 can be determined as a function off, v8, v8, d2 ,
andd3 .

In order to determine the above relationship forf2 , the coor-
dinate transformation from$n% to $b% is represented in terms of th
driving yoke spin angle,f, about then1-axis, followed by two
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Euler angles,a andb, about successive axes,a2 anda38 , defined
by the U-joint center cross piece. See Fig. 3.

The resulting coordinate transformation matrix from$n% to $b%
is shown in Eq.~2!.

F b1

b2

b3

G5S cosa cosb sinb 2sina cosb

2sinb cosa cosb sinb sina

sina 0 cosa
D

3S 1 0 0

0 cosf sinf

0 2sinf cosf
D F n1

n2

n3

G (2)

By equating the two coordinate transformation expressions g
in Eqs.~1! and~2! and dropping higher order terms, the two Eul
anglesa and b and the driven yoke spin angle,f2 , are deter-
mined as functions off, v8, v8, d2 , andd3 for small misalign-
ments. See Eqs.~3! and ~4!.

Fab G5S sinf 2cosf

cosf sinf
D F v81d3

w81d2
G1O~v82d! (3)

f25f1
sin 2f

4
@~d31v8!22~d21w8!2#2

cos 2f

2
~d31v8!

3~d21w8!1
1

2
@d2v82d3w8#1O~v83d! (4)

Differentiating Eq.~4! with respect to time yields the expressio
for the driven yoke speed,V2 in Eq. ~5!.

Fig. 2 Projected slopes v 8¿d3 and v8¿d2 and driven shaft
spin angle, f2 from ˆn ‰ to ˆb ‰

Fig. 3 Driving shaft spin angle, f, and Euler angles a and b
from ˆn ‰ to ˆb ‰
Journal of Applied Mechanics
ven
r

n

V25V1
V

2
cos 2f@~v81d3!22~w81d2!2#

1V sin 2f~v81d3!~w81d2!1
1

2
@d2v̇82d3ẇ8#

1
sin 2f

2
@~v81d3!v̇82~w81d2!ẇ8#

2
cos 2f

2
@~w81d2!v̇81~v81d3!ẇ8# (5)

Note that the above expression forV2 is more comprehensive
than expressions used by other researchers since terms invo
time derivatives ofv8 andv8 are included in the expression. Sinc
the elastic twist of the shaft at the U-joint end is zero, and sin
the polar inertia of the disk is much greater than the shaft po
inertia, it is assumed that all of the torsion dynamics are lumpe
the disk. Thus, only one elastic twist degree-of-freedom is nee
to describe the torsion dynamics. The functional relationships
the spin,f2d , and spin rate,V2d , of the disk about theb1-axis
due to the driven yoke spin,f2 , and spin rate,V2 , and elastic
twist f̂2d are shown in Eq.~6!.

f2d5f2~f,v8,w8,d2 ,d3!1f̂2d~ t !
(6)

V2d5V2~V,v̇8,ẇ8,v8,w8,d2 ,d3 ,t !1f̂
˙

2d~ t !

The body fixed angular velocity of the disk can be expressed

NvB5FV2d1
1

2
~ v̇8w82ẇ8v8!Gb1

1@sin~f2d
!v̇82cos~f2d

!ẇ8#b2

1@sin~f2d
!ẇ81cos~f2d

!v̇8#b3 . (7)

The total kinetic energy of the system is

T5
I m

2
~ v̇821ẇ82!1

Jm

2
~V2d1V2d@w8v̇82ẇ8v8# ! (8)

where the total moments of inertia about point O are

I m[I ms1I d1mdLd
2 and Jm[Jms1Jd . (9)

Here,I ms andJms are the transverse and polar moments of ine
of the shaft about point O.I d andJd are the transverse and pola
moments of inertia of the disk.md is the mass of the disk, andLd
is the axial location of the disk measured from point O. The to
potential energy of the system is

V5
kf

2
f̂2d

2 1
kvL2

2
v821

kwL2

2
w82 (10)

With the lumped torsion spring stiffnesskf is defined as

kf5
GJcs

Ld
. (11)

Also, kv andkw are the transverse bearing spring stiffness val
corresponding to thev8 and v8-directions, respectively.L is the
shaft length, which is also the axial location of the bearing m
sured from point O.GJcs is the torsional stiffness of the shaft. Th
virtual work due to the follower torque load,TL is expressed as

dW5QTL
�dq52TLduL , with duL5

]@NvB
�b1#T

]q̇
dq

(12)

where QTL is the generalized force vector and the degree-
freedom vector,q, is defined as

q5@v8 w8 f̂2d#T. (13)
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Also to account for viscous damping, a Rayleigh dissipation fu
tion, D, is defined as

D5
1

2
~cvL2v̇821cwL2ẇ821cff̂

˙
2d
2 ! (14)

Where cv , cv , and cf , are viscous damping terms. Using th
above expressions derived for the kinetic and potential ener
along with the virtual work and dissipation terms, the equations
motion are obtained from Lagrange’s equations. Furthermore,
ognizing the fact that

d

dt F]V2d

]q̇ G2
]V2d

]q
50. (15)

The resulting nonlinear equations of motion are shown below
terms ofV2d .

d

dt F]T

]q̇G2
]T

]q
1

]V

]q
1

]D

]q̇
2QTL

5F I m 0 0

0 I m 0

0 0 Jm

G q̈1V2dF cvL2 Jm 0

2Jm cwL2 0

0 0 cf

G q̇

1F kvL2 0 0

0 kwL2 0

0 0 kf

G q1~JmV̇2d1TL!F ]V2d

] v̇8
1

w8

2
]V2d

]ẇ8
2

v8

2
1

G
1

Jm

2
~w8v̈82ẅ8v8!F ]V2d

] v̇8
]V2d

]ẇ8
0

G50 (16)

By using the expressions given in Eqs.~5! and ~6! for V2d , and
taking the necessary partial and time derivatives ofV2d , the full
nonlinear equations are derived.

Since the torque load,TL , is constant, the equations of motio
can be linearized about a static twist angle. Thus, the total ela
twist angle can be written as

f̂2d[cs1cd with cs5
TL

kf
(17)

wherecs is the static part of the elastic twist due toTL , andcd is
the relatively small dynamic portion of the elastic twist. Aft
linearizing about the static twist operating condition, the equati
of motion still contain many higher order terms. An orderin
scheme, based on the order-of-magnitude assumptions show
Eq. ~18!, is used to determine the dominant terms.

O~d3!5O~d2!5O~cs!51e22'1 deg
(18)

O~v8!5O~w8!5O~cd!51e24'0.01 deg

After dropping terms with order of magnitude smaller than 1e26,
and nondimensionalizing, the result is the nondimensional lin
periodic system shown in Eqs.~19! through ~21!. Here the ‘‘* ’’
operator indicates differentiation with respect to nondimensio
time.

@ I1M01M s2 sin 2f1M c2 cos 2f# x
**

1@Csd1Caux1G1Cs2 sin 2f1Cc2 cos 2f#x
*

1@L1K01K s2 sin 2f1K c2 cos 2f#x

5F01Fs2 sin 2f1Fc2 cos 2f1O~v8d2,v82! (19)
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The nominal system consists ofI , Csd , G, andL, which are the
nondimensional mass, structural damping, gyroscopic, and s
ness matrices, respectively. The matrixCaux, accounts for the
damping provided by an auxiliary viscous damper. See Eq.~20!.

I5F 1 0 0

0 1 0

0 0 1
G , Csd5F 2zv f v 0 0

0 2zwf w 0

0 0 2zf f f

G ,

Caux5F cd 0 0

0 cd 0

0 0 0
G , G5F 0 f h 0

2 f h 0 0

0 0 0
G ,

L5F f v
2 0 0

0 f w
2 0

0 0 f f
2
G (20)

with x5@v8 w8 cd#T

The matrices in Eq.~19! that account for the static angular mis
alignments,d2 andd3 , and static load-torque,TL , are defined in
Eq. ~21!.

M05
1

2 F 0 0 d2h

0 0 2d3h

d2 2d3 0
G ,

M s25
1

2 F 0 0 d3h

0 0 2d2h

d3 2d2 0
G , M c25

1

2 F 0 0 2d2h

0 0 2d3h

2d2 2d3 0
G

Cs25F 0 0 0

0 0 0

2 f d2 2 f d3 0
G , Cc25F 0 0 0

0 0 0

2 f d3 22 f d2 0
G ,

(21)

K05F 0 t 0

2t 0 0

0 0 0
G , K s25F t 0 0

0 2t 0

22 f 2d3 2 f 2d2 0
G ,

K c25F 0 2t 0

2t 0 0

2 f 2d2 2 f 2d3 0
G

The forcing terms due to misalignment and load torque on
right-hand side of Eq.~19! are shown in Eq.~22!.

F05tF2d2

d3

0
G1

f 2h

4 F d2
2d31d3

3

d3
2d21d2

3

0
G ,

Fs25tF2d3

d2

0
G1

f 2h

2 F d3
2d22d2

3

d2
2d32d3

3

2d3
222d2

2
G , (22)

Fc25tF d2

d3

0
G1 f 2hF 2d2

2d3

d3
2d2

22d2d3

G
The equations have been nondimensionalized with respect
reference frequency,V0 , such that the nondimensional sha
speed isf 5V/V0 and f v , f v , and f f are the nondimensiona
natural frequencies. The modal damping ratios due to struct
damping are denoted byzv , zv , andzf , and the nondimensiona
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damping coefficient of the auxiliary damper iscd . h is the tor-
sional to lateral inertia ratio andt is the nondimensional load
torque parameter, see Eq.~23!.

V05A~kv1kw!L2

2I m
, cd5

CdL2

I mV0
, h5

Jm

I m
, t5

TL

2I mV0
2

(23)

f v5AkvL2

I mV0
2, f w5AkwL2

I mV0
2, f f5A kf

JmV0
2

The static torque load,TL , creates the stiffness coupling matrice
K0 , K s2 , andK c2 , and the dynamic torque,JmV̇2d , creates the
inertia coupling matrices,M0 , M s2 , andM c2 .

Several more physically significant nondimensional parame
are defined for a solid circular crosssection shaft. First, the ine
ratio, h, is rewritten in terms of the following nondimension
parameters.

l d5
Ld

L
, «s5

r s

L
, g5

Jd

Jms
, m5

md

ms
,

h5
Jm

I m
5

2~11g!«2

~11g!«21
4

3
14l dm

(24)

l d is the nondimensional axial distance of the disk from point
«s is the shaft slenderness ratio with shaft radiusr s . g is the polar
inertia ratio between the disk and the shaft, andm is the mass ratio
between the disk and the shaft. Also, the torsion-lateral stiffn
ratio, D, and nondimensional torsion natural frequency,f f , are
defined as

D5
kf

~kv1kw!
L2

2

, f f
2 5

D

h
. (25)

Also, since the reference frequency,V0 , is the root mean of the
two lateral frequencies, the two nondimensional lateral frequ
cies, f v and f v , are always evenly split about 1. Thus, the non
mensional lateral frequencies can be written as

f v
2511l and f w

2 512l (26)

wherel is the lateral mode frequency-split parameter. Since o
rigid lateral modes are considered, the shaft bending stiffn
must be higher than the bearing support stiffness. Also the l
torque, t, should be less than the load torque that exceeds
shear yield strain of the shaft material,tmax. These two require-
ments are summarized below.

1)
1

2
@kv1kw#,

3EIcs

L3 ⇒3~11n!l df f
2 h.1

(27)

2) t,tmax where tmax5gyield

l df f
2 h

2«

Heren is the Poisson’s ratio, which relates the elastic modulusE,
to the shear modulus,G, andgyield is the shear yield strain of the
shaft material.

4 Stability Analysis
Since the equations of motion shown in Eq.~19! are linear and

periodic, Floquet theory is used to assess the stability of the
tem @9#. The stability is determined numerically by examining t
eigenvalues of the Floquet transition matrix~FTM!. This tech-
nique is numerically intensive, but deemed necessary to cap
all the instability behavior of the equations of motion.

With equations in Eq.~19! cast in first order form and the
forcing terms set to zero, the system is written as
Journal of Applied Mechanics
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Ẋ5A~ t !X, with X5@x ẋ#T and A~T1t !5A~ t !
(28)

whereA(t) is 2n32n system matrix, withn53. T is the period,
which in this case isT5p/V, and in the nondimensional cas
T* 5p/ f . Next, the FTM matrix, denoted byF(T* ), is gener-
ated, where

F~T* !5@$x1~T* !%,$x2~T* !%, . . . ,$x2n~T* !%# (29)

and @$x1(t)%,$x2(t)%, . . . ,$x2n(t)%# are the 2n linearly indepen-
dent solutions obtained by numerically integrating Eq.~28! from 0
to T* with the following initial conditions:

F~0!5F 1 0 ¯ 0

0 1 ¯ 0

] ] � 0

0 0 0 1

G
2n32n

. (30)

The FTM matrix,F(T* ), maps the state of the system from som
initial state,X0 , to the state at timet5kT* , such thatX(kT* )
5F(T* )kX0 . Thus the eigenvalues,l i , of F(T* ), which govern
the stability of the mapping, also determine the stability of t
system.

ln l i

T*
5a i1 j v i

stable if a i<0

unstable if a i.0
for @ i 51,2 . . . 2n#

(31)

where a i is the effective damping of the time varying system
Furthermore, the equivalent modal damping ratio of theith mode,
zi , is defined as

zi52
a i

v i
. (32)

As discussed in@10#, it is expected that parametric instabilitie
may occur when the parametric excitation frequency, which
twice the driving shaft speed in this case, is in the neighborh
of the principle, sum combination and difference combination f
quencies. Thus, the potential parametric instability zones are w
ten as

2 f 5u f ni
6 f nj

u1p, @ i , j 51,2,3, . . . #. (33)

Here thef ni’s are the natural frequencies of the linear, time inva
ant portion of the system andp is a small frequency detuning
parameter.

In this portion of the investigation, the effects of static loa
torque, lateral frequency-split, and static operating misalignm
angle on the stability of the system are examined. In terms of
nondimensional parameters, the individual and combined eff
of t, l, d2 , and d3 are studied. The damping is assumed to
purely structural withzv5zw5zf5z50.01 and no auxiliary
damping,cd50.0.

The t- f stability boundary calculated for the system with n
static misalignment, i.e.,d25d350 deg is shown in Fig. 4. Othe
researchers@1,2# have shown that the constant skew-symmet
matrix, K0 , due to the follower torque load,t, causes flutter in-
stability for sufficient torque and shaft speeds. The flutter stabi
boundary is a continuous curve that bisects thet- f parameter
space into a stable and an unstable region. It was shown in@1# that
the lateral frequency-split,l, increases the critical torque require
to induce flutter. Additionally, the parametric stiffness matric
due to torque transmission through the U-joint,K s2 and K c2 ,
induce parametric instability in frequency range I. Specifically t
torque-induced parametric instabilities occur near the frequen
f w , f v , and (f v1 f w)/2.

Figure 5 depicts how static misalignment between the driv
and driven shafts affects stability. As shown in Eqs.~19! through
~21!, the static misalignment angles,d2 andd3 , give rise to inertia
MAY 2002, Vol. 69 Õ 265
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coupling matrices,M0 , M s2 , andM c2 , which couple the torsion
and lateral degrees-of-freedom. The two parametric inertia c
pling matrices,M s2 andM c2 , alter the stability in the neighbor
hood of the torsion-lateral combination frequencies in range
however, the torque-induced parametric instability zones in ra
I are not affected. The four torsion-lateral combination frequ
cies in range II are defined as

f 15
f f2 f v

2
, f 25

f f2 f w

2
, f 35

f f1 f w

2
, f 45

f f1 f v

2
. (34)

Here f 1< f 2< f 3< f 4 where f 1 and f 2 are the difference-type
combinations andf 3 and f 4 are the sum-type combinations. Sinc

Fig. 4 t-f stability boundary with no misalignment. d2Äd3
Ä0 deg, lÄ0.4, DÄ3, «sÄ0.05, l dÄ0.5, mÄ0.1, gÄ10, c dÄ0.0.
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f v
2511l and f w

2 512l, combinations involvingf v are called
stiff-mode combinations and those involvingf w are called soft-
mode combinations. Since misalignment only affects stability n
the torsion-lateral combination frequencies, a more detailed
of the t- f stability region over frequency range II is shown
Fig. 6.

The stability for several static misalignment angles is examin
for both positive and negative values of the follower torque,t. A
positivet is a load-torque that resists the rotation, and a nega
t is a driving torque that is applied in the same direction as
rotation. In most practical situations,t.0, since this correspond
to power being transmitted from the driving shaft to the driv
shaft.

Misalignment is stabilizing for shaft speeds near the torsi
lateral difference combination frequencies,f 1 and f 2 , and is de-
stabilizing for speeds near the torsion-lateral sum combina
frequencies,f 3 and f 4 . Specifically, misalignment can be stabiliz
ing since it increases the magnitude of the critical load-torq
required to causes instability nearf 5 f 1 and nearf 5 f 2 on the
upper and lowert- f stability boundaries, respectively. On th
other hand, misalignment can be destabilizing since it lowers
magnitude of the critical load-torque nearf 5 f 3 and nearf 5 f 4 on
the lower and uppert- f stability boundaries, respectively. Fu
thermore, even whent50, misalignment alone can be sufficient
cause instability. This is shown in Figs. 5 and 6, where instabi
zones of finite width are present fort50 near the torsion-latera
sum combination frequencies,f 3 and f 4 .

Figure 7, shows the stabilizing effect of the lateral frequen
split, l, on the uppert- f stability boundary,t>0, with d2
52 deg over the shaft speed range of the torsion-lateral comb
tion frequencies.l has a stabilizing effect since increasingl in-
creases the critical destabilizing load torque,t, across the entire
shaft speed range. Misalignment causes the minimum destab
ing load-torque to occur near the sum-type, torsion-lateral com
nation frequency,f 4 , regardless ofl. Thus the least stable con
figuration is when the lateral frequencies are equal,l50.0, and
the least-stable operating speed is in the vicinity of the sum-t
torsion-lateral combination frequencyf 4 whent>0.
Fig. 5 t-f stability boundary for several misalignments. lÄ0.4, DÄ3, «s
Ä0.05, l dÄ0.5, mÄ0.1, gÄ10, c dÄ0.0.
Transactions of the ASME
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Fig. 6 t-f stability boundary for several misalignments. lÄ0.4, DÄ3, «s
Ä0.05, l dÄ0.5, mÄ0.1, gÄ10, c dÄ0.0.
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5 Stabilization via Auxiliary Lateral Damping
In the previous section it is shown that misalignment cau

instability whenf is near the torsion-lateral sum combination fr
quencies,f 4 and f 3 , for positive and negative values of load
torque, respectively. Therefore, if shaft alignment cannot be g
anteed due to external factors such as foundation deflection,
then it is important to avoid these frequency zones during s
operation. However, avoiding these zones maybe too restric
for certain supercritical shaft applications, especially if the sh
operating speed must be variable. Therefore, in this section,
use of auxiliary damping as a means of stabilizing the system

Fig. 7 t-f stability boundary for several l. d2Ä2.0 deg, d3
Ä0.0 deg, DÄ3, «sÄ0.05, l dÄ0.5, mÄ0.1, gÄ10, c dÄ0.0.
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investigated. The system is augmented with an auxiliary visc
damper that dissipates energy from lateral motion of the shaft
has a nondimensional damping coefficientcd . See Eqs.~20! and
~23!. The total system damping is due to both the inherent str
tural damping and the damping provided by the auxiliary damp

Figure 8 shows the required auxiliary nondimensional damp
coefficient,creq, necessary to guarantee stability for several co
binations of load-torque,t, and static misalignment,d2 , over the
shaft speed range covering the torsion-lateral combina
frequencies.

When misalignment is present with no load-torque, only pa
metric instability occurs, hence auxiliary damping is only requir
for shaft operating speeds near sum-type torsion-lateral comb
tion frequenciesf 3 and f 4 . When both misalignment and load
torque are present, parametric and flutter instability occur, he
auxiliary damping is required across the entire shaft speed ra
shown. The stabilizing effect of the misalignment nearf 5 f 1 is
shown by a reduction in required auxiliary damping near the sh
speedf 1 . The maximum required auxiliary damping coefficien
cmax-req, occurs at the torsion-lateral combination frequencyf 4 for
all t>0. Thus, the damping coefficient of the auxiliary damp
cd , must be at least as high as the required auxiliary dampin
f 5 f 4 in order to guarantee stability for all shaft operating spee
This condition is summarized in Eq.~35!.

cmax-req[max
f >0

@creq~ f !#5creq~ f 4!

(35)

for stablilty cd>cmax-req

Figure 9 shows howcmax-req varies with the degree of angula
misalignment,d2 , for several values of load-torque,t.

The auxiliary damping coefficient required to guarantee sta
ity increases rapidly with the degree of angular misalignme
This is because the dynamic load-torque terms, accounted fo
the inertia coupling matricesM0 , M s2 , andM c2 , are proportional
to the angular misalignment. Additionally,cmax-req, also increases
with load torque,t.
MAY 2002, Vol. 69 Õ 267
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Fig. 8 Required auxiliary damping for stability versus shaft speed for several
t. zÄ0.005, lÄ0.4, DÄ3, «sÄ0.05, l dÄ0.5, mÄ0.1, gÄ10.
i
e
d
o
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Finally, Fig. 10 shows howcmax-req varies with misalignment
for several disk-shaft polar inertia ratios,g, with t50. As the
disk-shaft polar inertia ratio,g, is increased, more damping
required to stabilize the system for a given angular misalignm
Physically, this is because the dynamic torque load generate
misalignment-induced speed variation is proportional to the p
inertia load carried by the shaft.
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s
nt.
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6 Perturbation Analysis of Least Stable Case

Since determining stability by evaluating the Floquet transit
matrix is computationally intensive, a stability criteria based o
perturbation approach is derived for the least stable case~worst
case!, i.e., f 5 f 4 and l50. Since the governing equation-o
motion, Eq.~19!, is linear and periodically time-varying, the der
Fig. 9 Maximum required auxiliary damping for stability versus misalignment
for several t. fÄf 4 , llÄ0.4, zÄ0.005, DÄ3, «sÄ0.05, l dÄ0.5, mÄ0.1 gÄ10.
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Fig. 10 Maximum required auxiliary damping for stability versus misalign-
ment for several g. fÄf 4 , lÄ0.4, zÄ0.005, DÄ3, «sÄ0.05, l dÄ0.5, mÄ0.1.
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ng
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vation is based on a technique developed by Hsu in refere
@10#, @11#. In order to apply Hsu’s method, the equation must be
the following form:

I
d2x

dt2
1«C~ t !

dx

dt
1K ~ t !x50,

(36)

C~ t !5C~ t1T! and K ~ t !5K ~ t1T!.

However, the system in Eq.~19! does not have the same form a
Eq. ~36! because~19! contains inertia coupling terms,M0 , M s2 ,
and M c2 , that result in an additional periodically time-varyin
inertia matrixM (t). In order to eliminateM (t) and get the equa
tions into the same form as Eq.~36!, Eq. ~19! is multiplied
through by an expression forM (t)21. The expression for
M (t)21, which is valid to the first order, is given in Eq.~37!.

M ~ t!5@ I1«MD~ t!#

«MD~ t!5M01M s2 sin 2f1M c2 cos 2f (37)

M ~ t!215@ I1«MD~ t!#215I2«MD~ t!1O~«2!

Multiplying Eq. ~19! by the approximate expression forM (t)21

yields Eq.~38!.

I x
**

1M ~ t!21C~ t!x
*

1M ~ t!21K ~ t!x50 (38)

Which can be rewritten as

I x
**

1Lx52«@c01cc2 cos~2f!1cs2 sin~2f!#x
*

2«@k01kc2 cos~2f!1ks2 sin~2f!#x (39)

where the perturbation termsc0 , cc2 , cs2 , k0 , kc2 and ks2 are
defined in the Appendix. Next each row of the matrix equation
Eq. ~39! is written in first-order form
hanics
ces
in

s

g

in

x
*

i5yi

yi1v i
2xi52«(

j 51

3

@c0i j
1cc2i j

cos~2f!1cs2i j
sin~2f!#yj

(40)

2«(
j 51

3

@k0i j
1kc2i j

cos~2f!1ks2i j
sin~2f!#xj

for i 51, 2, and 3, wherev i are the nominal system natura
frequencies

v15 f v , v25 f w and v35 f f

Thus

f 35
v31v2

2
and f 45

v31v1

2
. (41)

Following Hsu’s approach and taking the form of the solution
be

xi5Ai~ t !cos~v i t !1Bi~ t !sin~v i t !1« x̂i~ t !
(42)

yi5v i@2Ai~ t !sin~v i t !1Bi~ t !cos~v i t !#1« x̂
*

i~ t !

the first two terms involvingAi andBi on the right-hand side of
Eq. ~42! are the variational terms. The remaining terms involvi
« are the perturbation terms. Substituting the assumed solutio
Eq. ~42! into Eq. ~40! gives
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A
*

i cos~v i t !1B
*

i sin~v i t !50

B
*

i cos~v i t !2A
*

i sin~v i t !1«~ x̂
**

i1v i
2x̂i !

52
«

v i
(
j 51

3

@Xc
i j cos~v j t !1Xs

i j sin~v j t !#

2
«

2v i
(
j 51

3

@H1
i j cos~v j t12 f t !1H2

i j cos~v j t22 f t !# (43)

2
«

2v i
(
j 51

3

@H3
i j sin~v j t12 f t !1H4

i j sin~v j t22 f t !

For i 51, 2, and 3, where

Xc
i j 5k0i j

Aj1v j c0i j
Bj and Xs

i j 5k0i j
Bj2v j c0i j

Aj

H1
i j 5kc2i j

Aj2ks2i j
Bj1v j cc2i j

Bj1v j cs2i j
Aj

H2
i j 5kc2i j

Aj1ks2i j
Bj1v j cc2i j

Bj2v j cs2i j
Aj (44)

H3
i j 5kc2i j

Bj1ks2i j
Aj2v j cc2i j

Aj1v j cs2i j
Bj

H4
i j 5kc2i j

Bj2ks2i j
Aj2v j cc2i j

Aj2v j cs2i j
Bj .

The key step in determining the stability of Eq.~43!, as done in
@10,11#, is to examine the stability of the variational and pertu
bation equations separately. To do this, all terms on the right-h
side of Eq.~43!, except those that would lead to a resonance
near resonance solution, are associated with the perturbation
By treating theAis andBis as constant, the perturbation part b
comes a linear constant-coefficient differential equation, wh
stability is completely determined by the sign of thev is, the sys-
tem natural frequencies. Sincev i.0, the perturbation equation i
stable, hence the overall stability of Eq.~43! is governed by the
stability of the variational part.

In order to proceed with the stability analysis of the variation
part, all the resonance producing terms on the right-hand sid
Eq. ~43! must be identified. Since we are interested in determin
the stability in the vicinity of the least stable shaft speed,f 5 f 4
with least-stable value of lateral frequency-split,l50, we have

for l50, v15v251, and f 35 f 45
v31v1

2
5

v31v2

2
.

(45)

It is apparent that iff is nearly equal to (v j6vk)/2, then certain
terms on the right side of Eq.~43! become resonance producin
terms for several sets ofj andk, see Eq.~46!.

f 5
v j1vk

2
1r with

k51, j 53
k52, j 53
k53, j 51 and 2

(46)

Wherer is a small real number that acts as a frequency detun
parameter. Next, substituting Eq.~46! into Eq.~43! for each of the
three separate sets ofj andk and taking only the resonance pro
ducing terms on the right-hand side, we obtain three pairs
coupled variational equations which govern the stability about
shaft speedf 5 f 35 f 4 . See Eq.~47!.
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A
*

1 cos~v1t !1B
*

1 sin~v1t !50, k51
(47a)

2A
*

1 sin~v1t !1B
*

1 cos~v1t !52
«

v1
@Xc

11 cos~v1t !1Xs
11 sin~v1t !

1Xc
12 cos~v2t !1Xs

12 sin~v2t !#

2
«

2v1
@H2

13 cos~v1t12rt !

2H4
13 sin~v1t12rt !#

A
*

2 cos~v2t !1B
*

2 sin~v2t !50, k52
(47b)

2A
*

2 sin~v2t !1B
*

2 cos~v2t !52
«

v2
@Xc

21 cos~v1t !1Xs
21 sin~v1t !

1Xc
22 cos~v2t !1Xs

22 sin~v2t !#

2
«

2v2
@H2

23 cos~v2t12rt !

2H4
23 sin~v2t12rt !#

A
*

3 cos~v3t !1B
*

3 sin~v3t !50, k53
(47c)

2A
*

3 sin~v3t !1B
*

3 cos~v3t !

52
«

v3
@Xc

33 cos~v3t !1Xs
33 sin~v3t !#2

«

2v3
@~H2

311H2
32!

3cos~v3t12rt !2~H4
311H4

32!sin~v3t12rt !#

This is a more complicated situation than shown in@10# since Hsu
studies the case where all the eigenvalues are distinct, thus
two pairs variational equations are needed to determine the st
ity around any particular combination frequency. In this ca
sincel50 leads to the multiplicityv15v2 , three pairs of varia-
tional equations are needed.

The variational equations in Eq.~47! are solved by averaging
and then transformed to a set of complex coordinates. Specific
~47! is rearranged so thatdAi /dt anddBi /dt are on the left-hand
sides and then both sides of the equations are integrated from
2p. The resulting averaged variational equations are shown in
~48!.

A
*

15
«

v1
F1

2
~Xs

111Xs
12!2

1

4
H2

13 sin~2rt !2
1

4
H4

13 cos~2rt !G
(48a)

B
*

152
«

v1
F1

2
~Xc

111Xc
12!1

1

4
H2

13 cos~2rt !2
1

4
H4

13 sin~2rt !G
A
*

25
«

v2
F1

2
~Xs

211Xs
22!2

1

4
H2

23 sin~2rt !2
1

4
H4

23 cos~2rt !G
(48b)

B
*

252
«

v2
F1

2
~Xc

211Xc
22!1

1

4
H2

23 cos~2rt !2
1

4
H4

23 sin~2rt !G
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A
*

35
«

v3
F1

2
Xs

332
1

4
~H2

311H2
32!sin~2rt !

2
1

4
~H4

311H4
32!cos~2rt !G

(48c)

B
*

352
«

v3
F1

2
Xc

331
1

4
~H2

311H2
32!cos~2rt !

2
1

4
~H4

311H4
32!sin~2rt !G

Next the averaged equations in Eq.~48! are transformed to the
following complex coordinates:

X15A11 jB1 Y15A21 jB2 Z15A31 jB3 (49)

X25A12 jB1 Y25A22 jB2 Z25A32 jB3 .

The transformed, averaged, variational equations become

x
*

152
«

2
Fc011

1 j
k011

v1
GX12

«

2v1
@v2c012

1 jk012
#Y1

1
«

4v1
e2 j 2rt@v3cc213

1ks213
1 j ~v3cs213

2kc213
!#Z2

(50a)

Y
*

152
«

2v2
@v1c021

1 jk021
#X12

«

2
Fc022

1 j
k022

v2
GY1

1
«

4v2
e2 j 2rt@v3cc223

1ks223
1 j ~v3cs223

2kc223
!#Z2

(50b)

Z
*

25
«

4v3
ej 2rt@v1cc231

1ks231
2 j ~v1cs231

2kc231
!#X1

1
«

4v3
ej 2rt@v2cc232

1ks232
2 j ~v2cs232

2kc232
!#Y1

1
«

2
F2c033

1 j
k033

v3
GZ2 . (50c)

Note, a similar set of three equations involvingX2 , Y2 , andZ1 is
also obtained, but the stability properties are identical so only
set is shown, see Eq.~50!. Finally, due to the special structure o
the above equations, the time dependence can be eliminate
assuming a solution with the following form:

X15X10
e~r 2 j r!t Y15Y10

e~r 2 j r!t Z25Z20
e~r 1 j r!t. (51)

Here, r is an unknown complex number called the characteri
exponent. Sincej r is purely imaginary, the sign of the real part o
r completely determines the stability of the solution. The stabi
condition is summarized in the following equation:

stable if Re@r #,0
(52)

unstable if Re@r #>0.

To solve for the characteristic exponents,r, substitute the assume
solution in Eq.~51! into Eq. ~50! and then solve the resultin
algebraic eigenvalue problem. The characteristic exponents,r, are
just the eigenvalues of the 333 complex characteristic matrixG,
shown below in terms of physical parameters.
Journal of Applied Mechanics
ne
f
d by

tic
f
ity

G5F 2
1

2
~cd12z! 2

h

4
~11 f f12r! 2

hd3

8
f f

2

h

4
~11 f f12r! 2

1

2
~cd12z!

hd2

8
f f

2

2
d3

8 f f
~ f f12r!2

d2

8 f f
~ f f12r!2 2 f fz

G
1 jF r 2

t

2
2

hd2

8
f f

2

t

2
r 2

hd3

8
f f

2

d2

8 f f
~ f f12r!2

d3

8 f f
~ f f12r!2 2r

G (53)

Therefore, the determination of the stability about the worst-c
shaft operating speed,f 5 f 4 , with l50 is reduced to solving for
the eigenvalues of the 333 the matrixG. This procedure is much
more computationally efficient than generating the Floquet tra
tion matrix, F(T), via numerical integration and then evaluatin
its eigenvalues. A comparison between the numerical and pe
bation method is shown in Fig. 11.

The difference between the two methods increases with m
alignment angle. Since the time-varying portion of the syst
matrices in Eq.~20! are proportional to the misalignment angle
d2 and d3 , as the misalignment increases theO(«) assumptions
made in Eqs.~37! and ~42! become less appropriate. Despite th
difference between the two methods, the perturbation metho
still a useful design tool since it always over predicts the seve
of the instability, and hence offers a factor of safety.

7 Summary and Conclusions
This research investigates the interaction between lateral

torsional dynamics and explores the bounds of the torsion-lat
instability regions of a torsionally flexible, misaligned shaft-di
system driven through a U-joint. Nondimensional equations-
motion are derived and the effects of angular misalignment, st
load-torque, load-inertia, lateral frequency-split, and auxilia
damping on the stability of the system over a range of shaft
erating speeds is investigated. By including both torsional a
lateral degrees-of-freedom, it is discovered that, when misal
ment is present, the lateral and torsional degrees-of-freedom
dynamically coupled by periodic terms in the inertia matrix. Fu
thermore these periodic inertia-coupling terms are proportiona
the misalignment angle and the torsional inertia load. Physica
misalignment causes speed variation of the driven shaft, whic
turn excites elastic twist dynamics of the driven shaft. If t
driven shaft is carrying a significant torsional inertia load, t
speed variation and elastic twist dynamics induce a dyna
torque load at the U-joint. The dynamic torque load, in addition
any static load torque, generate lateral moments at the U-j
which excite lateral shaft motion resulting in dynamic misalig
ment. Both the dynamic and the original static misalignment
return cause shaft speed variation. Hence, a dynamic coup
mechanism exists between the torsional and lateral degree
freedom. This torsional-lateral coupling results in periodic iner
coupling matrices,M0 , M s2 , andM c2 , which vary with twice the
driving shaft speed and are proportional to the angular misal
ment and the inertia load.

The analysis shows that the torsion-lateral inertia coupling m
trices, M0 , M s2 , and M c2 , induced by misalignment, signifi
cantly affect stability when the shaft speed,f, is near the torsion-
lateral combination frequenciesf 1 , f 2 , f 3 , and f 4 . When the
shaft speed is near the difference-type torsion-lateral comb
tions, f 1 and f 2 , misalignment has a stabilizing effect. On th
other hand, whenf is near the sum-type torsion-lateral combin
tion frequencies,f 3 and f 4 , misalignment can destabilize the sy
MAY 2002, Vol. 69 Õ 271
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Fig. 11 Numerical and perturbation solution. fÄf 4 , zÄ0.005, lÄ0.2, DÄ3, «s
Ä0.05, l dÄ0.5, mÄ0.1, gÄ10.
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tem. Furthermore, for sufficient misalignment, parametric insta
ity zones of finite frequency width occur near both su
combination frequencies,f 3 and f 4 , for all values of load-torque
Therefore, if shaft alignment cannot be guaranteed, it is impor
to avoid the sum-type torsion-lateral combination zones dur
shaft operation.

Since avoiding the sum-type torsion-lateral combination zo
may be difficult for certain applications, it is shown, in this stud
that such a restriction can be relaxed and stability can be gua
teed if the inherent structural damping is augmented with an a
iliary lateral damper with sufficient damping. To determine t
amount of damping necessary for stability, the minimum, non
mensional damping coefficient required for stability,creq, is com-
puted over the shaft speed range for several values of misa
ment and load-torque. Fort.0, and nonzero misalignment, th
required damping reaches a maximum,cmax-req, when f 5 f 4 .
Thus, the worst-case operating speed with respect to stabili
f 5 f 4 . It is demonstrated thatcmax-req, increases with load-torque
t and with misalignment,d2 andd3 . Also, by increasing the lat-
eral frequency-split parameter,l, one can reduce the require
dampingcreq across the entire shaft speed range.

Finally, an efficient method for determining the stability at t
least stable operating condition,f 5 f 4 and l50, is developed.
Following Hsu’s work @10,11#, the method is based on a
asymptotic solution of transformed averaged variational eq
tions. Since the variational equations are obtained from a pe
bation expansion about some nominal shaft speed, the stab
analysis is only valid in the vicinity of this nominal shaft spee
After several transformations, the time-dependence of the va
tional equations is eliminated and the stability determination
duces to a complex eigenvalue problem in terms of the sys
parameters. The order of eigenvalue problem depends on the
ber of system modes involved in the instability.

With l50, i.e., no lateral frequency-split, the lateral mod
have a multiplicity of two hence both lateral modes and the t
sion mode are involved in the torsion-bending stability calcu
tion. Since three modes are involved, the stability calculation
reduced to a 333 eigenvalue problem.
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The perturbation approach stability calculation is much fas
than the numerical Floquet-based calculation since no time i
gration is involved, however, there is some difference between
results especially at high misalignment angles~3 deg or 4 deg!.
This difference could be due to the inverse approximation or
assumption that the time-varying terms are all order« in the per-
turbation expansion. Despite this, the method appears to alw
over predict the severity of the instability, thus it is still a usef
design tool for estimating the necessary lateral damping requ
to suppress instability.
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Appendix
Using the inverse approximation, the perturbation matrices

the right-hand side of Eq.~39! are shown in Eqs.~A1! and ~A2!.

c05F 2z f v1cd f h 0

2 f h 2z f w1cd 0

0 0 2z f f

G
(A1)

cc25F 0 0 0

0 0 0

2 f d3 22 f d2 0
G , cs25F 0 0 0

0 0 0

2 f d2 2 f d3 0
G

Transactions of the ASME



em

a

fts

e
rt I:

e
t II:

n

a

nal
o-

ta-

ing

ic
k05F 0 t 2
1

2
d2h f f

2

2t 0
1

2
d3h f f

2

2
1

2
d2f v

2
1

2
d3f w

2 0

G
kc25F 0 2t

1

2
d2h f f

2

2t 0
1

2
d3h f f

2

d2S 2 f 21
1

2
f v

2D d3S 2 f 21
1

2
f w

2 D 0

G
(A2)

ks25F t 0 2
1

2
d3h f f

2

0 2t
1

2
d2h f f

2

2d3S 2 f 21
1

2
f v

2D d2S 2 f 21
1

2
f w

2 D 0

G

Journal of Applied Mechanics
References
@1# Iwatsubo, T., and Saigo, M., 1984, ‘‘Transverse Vibration of a Rotor Syst

Driven by a Cardan Joint,’’ J. Sound Vib.,95, pp. 9–18.
@2# Mazzei, Jr., A. J., Argento, A., and Scott, R. A., 1999, ‘‘Dynamic Stability of

Rotating Shaft Driven Through a Universal Joint,’’ J. Sound Vib.,222, pp.
19–47.

@3# Rosenberg, R. M., 1958, ‘‘On the Dynamical Behavior of Rotating Sha
Driven by Universal~Hooke! Coupling,’’ ASME J. Appl. Mech.,25, pp. 47–
51.

@4# Xu, M., and Marangoni, R. D., 1994, ‘‘Vibration Analysis of a Motor-Flexibl
Coupling-Rotor System Subjected to Misalignment and Unbalance. Pa
Theoretical Model and Analysis,’’ J. Sound Vib.,176, pp. 663–679.

@5# Xu, M., and Marangoni, R. D., 1994, ‘‘Vibration Analysis of a Motor-Flexibl
Coupling-Rotor System Subjected to Misalignment and Unbalance. Par
Experimental Validation,’’ J. Sound Vib.,176, pp. 681–691.

@6# Kato, M., and Ota, H., 1990, ‘‘Lateral Excitation of a Rotating Shaft Drive
by a Universal Joint With Friction,’’ ASME J. Vibr. Acoust.,112, pp.
298–303.

@7# Asokanthan, S. F., and Hwang, M. C., 1996, ‘‘Torsional Instabilities in
System Incorporating a Hooke’s Joint,’’ ASME J. Vibr. Acoust.,118, pp.
368–374.

@8# Asokanthan, S. F., and Wang, X. H., 1996, ‘‘Characterization of Torsio
Instabilities in a Hooke’s Joint Driven System via Maximal Lyapunov Exp
nents,’’ J. Sound Vib.,194, pp. 83–91.

@9# Bolotin, V. V., 1963,Nonconservative Problems of the Theory of Elastic S
bility, Pergamon Press, New York.

@10# Hsu, C. S., 1963, ‘‘On the Parametric Excitation of a Dynamic System Hav
Multiple Degrees of Freedom,’’ ASME J. Appl. Mech.,30, pp. 367–372.

@11# Hsu, C. S., 1965, ‘‘Further Results on Parametric Excitation of a Dynam
System,’’ ASME J. Appl. Mech.,32, pp. 373–377.
MAY 2002, Vol. 69 Õ 273



e-of-
dom

d to a
ing
ation
ua-
y, the

of
und-
the

ure.
W. Q. Zhu
Professor

M. L. Deng
Graduate Student

Z. L. Huang
Associate Professor

Department of Mechanics,
Zhejiang University,

Hangzhou 310027, P. R. China and
State Key Laboratory of Nonlinear Mechanics,

Institute of Mechanics,
Chinese Academy of Science,

Beijing 100008, P. R. China

First-Passage Failure of
Quasi-Integrable Hamiltonian
Systems
The first-passage failure of quasi-integrable Hamiltonian systems (multidegre
freedom integrable Hamiltonian systems subject to light dampings and weakly ran
excitations) is investigated. The motion equations of such a system are first reduce
set of averaged Itoˆ stochastic differential equations by using the stochastic averag
method for quasi-integrable Hamitonian systems. Then, a backward Kolmogorov equ
governing the conditional reliability function and a set of generalized Pontryagin eq
tions governing the conditional moments of first-passage time are established. Finall
conditional reliability function, and the conditional probability density and moments
first-passage time are obtained by solving these equations with suitable initial and bo
ary conditions. Two examples are given to illustrate the proposed procedure and
results from digital simulation are obtained to verify the effectiveness of the proced
@DOI: 10.1115/1.1460912#
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Introduction
In the theory of random vibration or stochastic structural d

namics, usually two failure models are studied: first-passage~first-
excursion! failure and fatigue failure. In recent years, fatigue fa
ure is treated as the propagation of a dominant crack to a cri
size. Thus, fatigue failure becomes a special kind of first-pass
failure. The first-passage failure is among the most difficult pr
lems in the theory of random vibration or stochastic structu
dynamics. At present, a mathematical exact solution is poss
only if the random phenomenon in question can be treated
diffusive Markov process. Still, known solutions are limited to t
one-dimensional case~@1,2#!.

The state space of a mechanical or structural system mod
generally two-dimensional or higher. For such a system subjec
Gaussian white noise excitation, the response is a vector diffu
Markov process, and a backward Kolmogorov equation govern
the conditional reliability function and a set of generaliz
Pontryagin equations governing the conditional moments of fi
passage time can be set up. However, these equations can u
be solved only numerically. For this purpose, a variety of num
cal methods, such as finite element procedure and generalize
mapping approach have been developed~@3–6#!. Unfortunately, at
present, the problems can be solved in this way are limited to
or three dimensional.

The response quantities of a quasi-Hamiltonian system~a linear
or nonlinear conservative system subject to light dampings
weakly random excitations! can be divided into two categories
rapidly varying processes and slowly varying processes. Usu
the slowly varying processes are much more significant for ch
acterizing the long-term behavior of the system. Stochastic a
aging is a method to derive the equations governing the slo
varying processes from the original equations of the system.
vector of slowly varying processes after averaging are~approxi-
mately! diffusive Markov process and the dimension of the av
aged equations is usually much less than that of the original e
tions. Furthermore, the averaged equations are much more re

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Feb. 2
2001; final revision, Sept. 27, 2001. Associate Editor: N. C. Perkins. Discussio
the paper should be addressed to the Editor, Professor Lewis T. Wheeler, Depa
of Mechanical Engineering, University of Houston, Houston, TX 77204-4792,
will be accepted until four months after final publication of the paper itself in
ASME JOURNAL OF APPLIED MECHANICS.
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than the original equations since there is only one time scale in
former equations while there are two time scales in the later eq
tions. Thus, the stochastic averaging method is a powerful
proximate procedure to deal with quasi-Hamiltonian systems.

The first-passage failure of mechanical and structural sys
usually occurs rarely. It is a long-term behavior and the stocha
averaging method is suitable for studying it. The classical stoch
tic averaging method has been applied by many researche
study the first-passage problem of single-degree-of-freedom o
lators with linear restoring force and with nonlinear restori
force ~@7–17#!. Recently, the stochastic averaging method
quasi-Hamiltonian systems has been developed~@18–20#!. Except
for response prediction, it has been applied to study the stoch
stability and bifurcation~@20–23#!, the first-passage failure o
quasi-non-integrable Hamiltonian systems~@24#! and the nonlin-
ear stochastic optimal control~@25–29#!.

In the present paper, the stochastic averaging method for qu
integrable Hamiltonian systems is first reviewed briefly. Then
backward Kolmogorov equation governing the conditional re
ability function and the generalized Pontryagin equations gove
ing the conditional moments of first-passage time are deri
from the averaged equations of quasi-integrable Hamiltonian
tems, and the initial and boundary conditions are formulated.
nally, two examples are worked out and the results obtained
using the proposed procedure are compared with those from
tal simulation and with those obtained by using the procedure
quasi-non-integrable Hamiltonian systems~@24#!.

Stochastic Averaging of Quasi-Integrable Hamiltonian
Systems

The stochastic averaging method for quasi-integrable Ham
tonian systems has been developed for nonresonant and res
cases, and for white noise and wide-band excitations~@19,23#!.
Here, only the method for nonresonant case and for white n
excitation is briefly reviewed. Consider a quasi-Hamiltonian s
tem of n-degree-of-freedom governed by the following equatio
of motion:

Q̇i5
]H̄

]Pi

Ṗi52
]H̄

]Qi
2«ci j

]H̄

]Pj
1«1/2f ikWk~ t ! (1)
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i , j 51,2, . . . ,n; k51,2, . . . ,m

where Qi and Pi are generalized displacements and momen
respectively; H̄5H̄(Q,P) is twice differentiable Hamiltonian;
ci j 5ci j (Q,P) are functions representing quasi-linear damping
efficients;f ik5 f ik(Q,P) are functions representing excitation am
plitudes; « is a small positive parameter;Wk(t) are Gaussian
white noises in the sense of Stratonovich with correlation fu
tions E@Wk(t)Wl(t1t)#52Dkld(t).

Equation~1! can be modeled as the following set of Itoˆ stochas-
tic differential equations:

dQi5
]H̄

]Pi
dt (2a)

dPi52S ]H̄

]Qi
1«ci j

]H̄

]Pj
2«Dkl f j l

] f ik

]Pj
D dt1«1/2s ikdBk~ t !

(2b)
i , j 51,2, . . . ,n; k51,2, . . . ,m

whereBk(t) are the independent unit Wiener processes andssT

52fDfT. The double summation terms on the right-hand side
Eq. ~2b! are known as the Wong-Zakai correction terms. The
terms usually can be split into two parts: one having the effec
modifying the conservative forces and another modifying
damping forces. The first part can be combined with2]H̄/]Qi to
form an overall effective conservative forces2]H/]Qi with a
modified HamiltonianH5H(Q,P) and with ]H/]Pi5]H̄/]Pi .
The second part can be combined with2«ci j ]H̄/]Pj to constitute
an effective damping forces 2«mi j ]H/]Pj with mi j
5mi j (Q,P). With these accomplished, Eqs.~2a! and ~2b! can be
rewritten as

dQi5
]H

]Pi
dt (3a)

dPi52S ]H

]Qi
1«mi j

]H

]Pj
Ddt1«1/2s ikdBk~ t !

(3b)
i , j 51,2, . . . ,n; k51,2, . . . ,m.

Assume that the Hamiltonian system with HamiltonianH is
integrable and nonresonant. That is, in the Hamiltonian sys
there existn independent first integrals~conserved quantities!
H1 ,H2 , . . . ,Hn , which are in involution. The words ‘‘in involu-
tion’’ implies that the Poisson bracket of any two o
H1 ,H2 , . . . ,Hn vanishes. In principle,n pairs of action-angle
variablesI i ,u i can be introduced for an integrable Hamiltonia
system ofn-degrees-of-freedom. Non-resonance means that tn
frequencies,v i5du i /dt, do not satisfy the following resonan
relation:

ki
uv i50~e! (4)

whereki
u are integers with( i 51

n uki
uu,4.

Introduce transformations

Hr5Hr~Q,P!, r 51,2, . . . ,n. (5)

The Itô stochastic differential equations forHr are obtained from
Eqs.~3a! and ~3b! by using Itôdifferential rule as follows:

dHr5«S 2mi j

]H

]Pj

]Hr

]Pi
1

1

2
s iks jk

]2Hr

]Pi]Pj
Ddt

1«1/2
]Hr

]Pi
s ikdBk~ t !

(6)
r ,i , j 51,2, . . . ,n; k51,2, . . . ,m

wherePi are replaced byHs in terms of Eq.~5!. Now the system
is governed by Eqs.~3a! and~6! and the state variables areQi and
Journal of Applied Mechanics
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Hr . It is seen from these equations thatQi are rapidly varying
processes whileHr are slowly varying processes. According to th
Khasminskii theorem ~@30#!, Hr converge weakly to an
n-dimensional vector diffusion processes as«→0 in a time inter-
val 0<t<T, whereT;0(«21). For simplicity, the same symbol
Hr are used to denoter components of this diffusion process.

The Itô stochastic differential equations for thisn-dimensional
vector diffusion process can be obtained by applying time ave
ing to Eq.~6!. The result is

dHr5ar~H!dt1s̄ rk~H!dB̄k~ t !
(7)

r 51,2, . . . ,n; k51,2, . . . ,m

where H5@H1H2 . . . Hn#T; B̄k(t) are independent unit Wiene
processes;

ar~H!5« K 2mi j

]H

]Pj

]Hr

]Pi
1

1

2
s iks jk

]2Hr

]Pi]Pj
L

t

brs~H!5s̄ rk~H!s̄sk~H!5« K s iks jk

]Hr

]Pi

]Hs

]Pj
L

t

(8)

^@�#& t5 lim
T→`

1

T E
T

t01T

@�#dt.

Note thatHr are kept constant in performing the time averagin
The time averaging in Eq.~8! may be replaced by space ave

aging. For example, suppose that the Hamiltonian is separable
equal to the sum ofn independent first integers, i.e.,

H~q,p!5(
r 51

n

Hr~qr ,pr ! (9)

and for eachHr there is a periodic orbit with periodTr . Then the
averaged drift and diffusion coefficients of Eq.~7! can be obtained
as follows:

ar~H!5
«

T R S 2mr j

]H j

]Pj

]Hr

]Pr
1

1

2
s rks rk

]2Hr

]Pr
2 D

3)
m51

n S 1Y ]Hm

]Pm
Ddqm

(10)

brs~H!5
«

T R S s rkssk

]Hr

]Pr

]Hs

]Ps
D3)

m51

n S 1Y ]Hm

]Pm
Ddqm

wherer@�#Pm51
n (��)dqm represents ann-fold loop integral and

T5T~H!5)
m51

n

Tm5 R )
m51

n S 1Y ]Hm

]Pm
Ddqm . (11)

In the case where action-angle variablesI i , u i are available,Hr
can be replaced byI r and averaged Itoˆ Eq. ~7! by

dIr5ār~ I !dt1s% rk~ I !dB% k~ t !
(12)

r 51,2, . . . ,n; k51, . . . ,m

whereI5@ I 1I 2 . . . I n#T;

ār~ I !5
«

~2p!n E
0

2pS 2mi j

]H

]Pj

]I r

]Pi
1

1

2
s iks jk

]2I r

]Pi]Pj
Ddu

(13)

brs~ I !5s% rk~ I !s% sk~ I !5
«

~2p!n E
0

2pS s iks jk

]I r

]Pi

]I s

]Pj
Ddu

in which u5@u1u2 . . . un#T; *0
2p@�#du denotes ann-fold integral.

Note that averaged Eq.~7! or ~12! is much simpler than origina
Eq. ~1!. The dimension of the former equation is only a half
that of the later equation. Equations~7! and ~12! contain only
MAY 2002, Vol. 69 Õ 275
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slowly varying processH(t) and I (t), respectively, and they ar
suitable for studying the long-term behavior of the system, suc
the first-passage failure.

Backward Kolmogorov Equation and Generalized
Pontryagin Equations

For most mechanical/structural systems HamiltonianH repre-
sents the total energy of the system, andHr the energy of therth
degree-of-freedom of the system.Hr may vary betweenHr0 and
`, whereHr0 is a constant, such asH for a Duffing oscillator with
hardening spring, between2` andHr0 , such asH for a Duffing
oscillator with softening spring, or betweenHr0 andHrm , where
Hrm is a constant, such asH for a pendulum. The state of th
averaged system of a quasi-integrable Hamiltonian system va
randomly in then-dimensional domain defined by the direct pro
uct of the Hr intervals and the safety domainV is a bounded
region with boundaryG within the n-dimensionalHr domain.
Suppose that the lower boundary of a safety domain for eachHr is
at zero ~it is always possible to make so by using coordina
transformation!. Then the boundaryG consists ofG0 ~at least one
of Hr vanishes! and critical boundaryGc . The first-passage fail-
ure occurs whenH(t) crossesGc for the first time, and it is char-
acterized by the conditional reliability function, the condition
probability density or conditional moments of first-passage tim
where the word ‘‘conditional’’ means under the given initial co
dition in the safety domain.

The conditional reliability function, denoted byR(tuH0), is de-
fined as the probability ofH(t) being in safety domainV within
time interval (0,t# given initial stateH05H(0) being inV, i.e.,

R~ tuH0!5P$H~t!PV,tP~0,t#uH0PV%. (14)

It is the integral of the conditional transition probability density
V. The conditional transition probability density is the transiti
probability density of the sample functions which remain inV in
time interval@0,t#. For an averaged system, the conditional tra
sition probability density satisfies the backward Kolmogor
equation with drift and diffusion coefficients defined by Eqs.~8!,
~10!, or ~13!. Thus, the following backward Kolmogorov equatio
can be derived for the conditional reliability function:

]R

]t
5ar~H0!

]R

]Hr0
1

1

2
brs~H0!

]2R

]Hr0]Hs0 (15)
r ,s51,2, . . . ,n

wherear(H0) andbrs(H0) are defined by Eqs.~8! or ~10! with H
replaced byH0 . The initial condition is

R~0uH0!51, H0PV (16)

which implies that the system is initially in the safety domain. T
boundary conditions are

R~ tuG0!5 f inite (17)

R~ tuGc!50. (18)

Equations~17! and ~18! imply that G0 is a reflecting boundary
while Gc is the absorbing boundary.

The first-passage timeT is defined as the time when the syste
reaches critical boundaryGc for the first time givenH0 being in
V. Noting that the conditional probability of the first-passage fa
ure F(tuH0)512R(tuH0), the conditional probability density o
the first-passage time can be obtained from the conditional
ability function as follows:

p~TuH0!5
2]R~ tuH0!

]t U
t5T

. (19)

The conditional moments of first-passage time are defined as
276 Õ Vol. 69, MAY 2002
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m l~H0!5E
0

`

Tlp~TuH0!dT, l 51,2, . . . . (20)

The equations governing the conditional moments of first-pass
time can be obtained from Eq.~15! in terms of relationships~19!
and ~20! as follows:

1

2
brs~H0!

]2m l 11

]Hr0]Hs0
1ar~H0!

]m l 11

]Hr0
52~ l 11!m l

(21)
r ,s51,2, . . . ,n; l 50,1,2, . . . .

It is easily seen from Eq.~20! that m051. The boundary condi-
tions associated with Eq.~21! are obtained from Eqs.~17! and
~18! in terms of Eqs.~19! and ~20!. They are

m l~G0!5 f inite (22)

m l~Gc!50. (23)

Note that both boundary conditions~17! and ~22! are qualitative
rather than quantitative. They can be made to be quantitative
using Eqs.~15! and ~21!, respectively, based on the limiting be
havior of the drift and diffusion coefficients in Eqs.~15! and~21!
at boundaryG0 and it will be illustrated with the followingj ex-
amples.

The conditional reliability function is obtained from solvin
backward Kolmogorov Eq.~15! together with initial condition
~16! and boundary conditions~17! and~18!. The conditional prob-
ability density of first-passage time is obtained from the con
tional reliability function by using Eq.~19!. The conditional mo-
ments of first-passage time are obtained either from
conditional probability density of first-passage time by using de
nition ~20! or directly from solving generalized Pontryagin E
~21! together with boundary conditions~22! and ~23!.

Examples

Example 1. Consider linearly and nonlinearly coupled tw
linear oscillators subject to external and parametric excitation
Gaussian white noises. The equations of motion of the system
of the form

Ẍ11a11Ẋ11a12Ẋ21b1~X1
21X2

2!Ẋ11v1
2X15W1~ t !1X1W3~ t !

(24)
Ẍ21a21Ẋ11a22Ẋ21b2~X1

21X2
2!Ẋ21v2

2X25W2~ t !1X2W4~ t !

where a i j , b i , and v i( i , j 51,2) are constants;Wk(t)(k
51,2,3,4) are independent Gaussian white noises with intens
2Dk ; a i j , b i , andDk are assumed of the same order of«. The
response of system~24! in both nonresonant and resonant cas
with external excitations only has been studied by using the
chastic averaging method for quasi-integrable Hamiltonian s
tems~@19#!. Here we study the first-passage failure of system~24!
in a nonresonant case.

Let X15Q1 , X25Q2 , Ẋ15P1 , Ẋ25P2 . Equation~24! can be
recast in the form of Eq.~1! as follows:

Q̇15P1

Q̇25P2 (25)
Ṗ152v1

2Q12@a111b1~Q1
21Q2

2!#P12a12P2

1W1~ t !1Q1W3~ t !

Ṗ252v2
2Q22@a221b2~Q1

21Q2
2!#P2

2a21P11W2~ t !1Q2W4~ t !.

Equation~25! can be modeled as Itoˆ stochastic differential equa
tions of the form of Eqs.~3a! and ~3b!. Since the Wong-Zakai
Transactions of the ASME
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correction terms in this case vanish, the modified Hamilton
associated with the Itoˆ equations is the same as that associa
with Eq. ~25!, i.e.,

H5H11H2 (26)

Hi5
1

2
~Pi

21v i
2Qi

2!, i 51,2. (27)

The Hamiltonian system with HamiltonianH is integrable.
Thus, system~25! is a quasi-integrable Hamiltonian system. B
using the stochastic averaging method for quasi-integrable Ha
tonian systems, the following averaged Itoˆ equations can be ob
tained in the nonresonant case:

dHr5ar~H1 ,H2!dt1s̄ rk~H1 ,H2!dB̄k~ t !
(28)

r 51,2, k51,2,3,4

where

a152a11H12
b1

2v1
2 H1

22
b1

v2
2 H1H21D11

D3

v1
2 H1

a252a22H22
b2

2v2
2 H2

22
b2

v1
2 H1H21D21

D4

v2
2 H2

b115s̄1ks̄1k52D1H11D3

H1
2

v1
2 (29)

b225s̄2ks̄2k52D2H21D4

H2
2

v2
2

b125b215s̄1ks̄2k50.

It is seen from Eq.~27! that Hi vary from 0 to`. So, the state of
averaged system~28! varies randomly in the first quadrant o
plane (H1 ,H2). Suppose that the limit state of the system isH
5H11H25Hc , i.e.,

Gc : H11H25Hc , H1 ,H2>0. (30)

The safety domain of the system is the inside of a right trian
with boundariesGc in Eq. ~30! andG0 defined by

G05G011G021G03,

G01: H150, 0,H2,Hc (31)
G02: H250, 0,H1,Hc

G03: H15H250

~see Fig. 1!.

Fig. 1 Safety domain V and its boundary on plane H1 and H2
for system „24…
Journal of Applied Mechanics
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Following Eq. ~15!, the conditional reliability function
R(tuH10,H20) of system~24! is governed by the following back
ward Kolmogorov equation:

]R

]t
5a1

]R

]H10
1a2

]R

]H20
1

1

2
b11

]2R

]H10
2 1

1

2
b22

]2R

]H20
2 (32)

wherea1 , a2 , b11, andb22 are defined by Eq.~29! with H1 , H2
replaced byH10 andH20, respectively. The initial condition is Eq
~16! with H05@H10H20#

T. One boundary condition is Eq.~18!
with Gc defined by Eq.~30!. The other qualitative boundary con
dition, Eq. ~17! with G0 defined by Eq.~31!, can be transformed
into a quantitative one by using Eq.~32! and considering the
limiting behavior of drift and diffusion coefficients in Eq.~29! at
boundaryG0 defined by Eq.~31!. It is

]R

]t
5D1

]R

]H10
1S D22a22H202

b2

2v2
2 H20

2 1
D4

v2
2 H20D ]R

]H20

1S D2H201D4

H20
2

2v2
2D ]2R

]H20
2 (33)

for boundaryG01;

]R

]t
5S D12a11H102

b2

2v1
2 H10

2 1
D3

v1
2 H10D ]R

]H10

1D2

]R

]H20
1S D1H101D3

H10
2

2v1
2D ]2R

]H10
2 (34)

for boundaryG02;

]R

]t
5D1

]R

]H10
1D2

]R

]H20
(35)

for boundaryG03.
Equation~32! is a two-dimensional parabolic partial differentia

equation and can be solved numerically together with the ini
and boundary conditions by using the Peaceman-Rachford sch
of the finite difference method to yield the conditional reliabili
function of system~24!. The conditional probability density of the
first-passage time of system~24! is then obtained from the condi
tional reliability function by using Eq.~19!.

Similarly, the generalized Pontryagin equations for the con
tional moments of the first passage time of system~24! can be
derived from the averaged Itoˆ Eq. ~28! as follows:

1

2
b11

]2m l 11

]H10
2 1

1

2
b22

]2m l 11

]H20
2 1a1

]m l 11

]H10

1a2

]m l 11

]H20

52~ l 11!m l (36)

wherea1 , a2 , b1 , andb2 are defined by Eq.~29! with H1 andH2
replaced byH10 andH20, respectively. One boundary condition
~23! with Gc defined by Eq.~30!. The other qualitative boundary
condition, Eq.~22! with G0 defined by Eq.~31!, can be trans-
formed into quantitative one by using Eq.~36! and considering the
limiting behavior of the drift and diffusion coefficients in Eq.~29!
at boundaryG0 . It is

S D2H201D4

H20
2

2v2
2D ]2m l 11

]H20
2 1D1

]m l 11

]H10
1S D22a22H20

2
b2

2v2
2 H20

2 1
D4

v2
2 H20D ]m l 11

]H20
52~ l 11!m l (37)

for boundaryG01;
MAY 2002, Vol. 69 Õ 277
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S D1H101D3

H10
2

2v1
2D ]2m l 11

]H10
2 1S D12a11H102

b1

2v1
2 H10

2

1
D3

v1
2 H10D ]m l 11

]H10
1D2

]m l 11

]H20
52~ l 11!m l (38)

for boundaryG02;

D1

]m l 11

]H10
1D2

]m l 11

]H20
52~ l 11!m l . (39)

Equation ~36! is a two-dimensional elliptical partial differentia
equation and can be solved numerically together with bound
conditions by using the five-point scheme of the finite differen
method to yield the conditional moments of first-passage time
system~24!.

Some numerical results for the conditional reliability functio
the conditional probability density and the conditional mean of
first passage time of system~24! obtained by using the abov
procedure are shown in Figs. 2–4. Similar results from dig
simulation are also shown for comparison. It is seen that the

Fig. 2 Reliability function of system „24… for given initial con-
dition. a11Ä0.01, a12Ä0.03, b1Ä0.1, v1Ä1.0, a21Ä0.04, a22
Ä0.04, b2Ä0.4, v2Ä0.707, 2D1Ä0.03, 2D2Ä0.01, HcÄ0.3. The
other parameters are 2 D3Ä2D4Ä0, H10ÄH20Ä0 for A and A 8;
2D3Ä2D4Ä0, H10Ä0.09, H20Ä0.03 for B and B 8; 2D3Ä0.1, 2D4
Ä0.01, H10ÄH20Ä0 for C and C 8. analytical result by using
the present proposed procedure; – – – –analytical result by us-
ing the procedure proposed in †24‡; s L n from digital simu-
lation.

Fig. 3 Probability density of first-passage time of system „24…
for given initial condition. The parameters and symbols are the
same as those in Fig. 2.
278 Õ Vol. 69, MAY 2002
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results are in excellent agreement. Note that the conditional
ability function is a monotonously decreasing function of tim
Some results for the reliability function, the probability densi
and the mean of first-passage time of system~24! as functions of
the initial condition are shown in Figs. 5–7. It is seen that both
reliability and mean first-passage time are monotonously decr
ing functions ofH10 and/orH20.

As indicated above, system~24! is a quasi-integrable Hamil-
tonian system. However, the procedure for evaluating the co
tional reliability function and the statistics of first-passage time
quasi-non-integrable Hamiltonian systems developed in@24# can
also be applied to system~24!. It is interesting to see if this
method yields good results.

Treat system~24! as a quasi-non-integrable Hamiltonian sy
tem, the averaged Itoˆ equation is of the form

dH5a~H !dt1s̄~H !dB̄~ t ! (40)

whereH is defined by Eqs.~26! and ~27!,

a~H !5D11D22
1

6
~b11b2!S 1

v1
2 1

1

v2
2D

2
1

2 S a111a222
D3

v1
22

D4

v2
2DH

(41)

b~H !5s̄2~H !5
1

3 S D3

v1
2 1

D4

v2
2DH21~D11D2!H.

The conditional reliability functionR(tuH0) of system ~40! is
governed by the following one-dimensional backward Kolmo
orov equation:

]R

]t
5a~H0!

]R

]H0
1

1

2
b~H0!

]2R

]H0
2 (42)

wherea(H0) andb(H0) are defined by Eq.~41! with H replaced
by H0 . The boundary conditions are

R~ tuHc!50 (43)

R~ tu0!5 f inite. (44)

The later condition is qualitative and can be made to be quan
tive by using Eq.~42! and the limiting behavior ofa(H0) and
b(H0) nearH050. It is

Fig. 4 Mean first-passage time of system „24… as function of
H10 for given H20 . 2D3Ä2D4Ä0, H20Ä0 for A and A 8; 2D3
Ä2D4Ä0, H20Ä0.08 for B and B 8; 2D3Ä0.1, 2D4Ä0.01, H20Ä0
for C and C 8. The other parameters and symbols are the same
as those in Fig. 2.
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Fig. 5 Reliability of system „24… at tÄ2 „second … as function of H10 and H20 .
2D3Ä0.1, 2D4Ä0.01. The other parameters are the same as those in Fig. 2.
e
n-
]R

]t
5FD11D22

1

6
~b11b2!S 1

v1
2 1

1

v2
2D G ]R

]H0
. (45)

The initial condition is
R~0uH0!51. (46)
hanics
The one-dimensional boundary-initial value problem, Eqs.~42!,
~43!, ~45!, and ~46!, can be solved by using the finite differenc
method of Crank-Nicolson type. The conditional probability de
sity of first-passage time can be obtained fromR(tuH0) as
follows:
Fig. 6 Probability density of first-passage time of system „24… as function of
H20 and t for given H10Ä0. 2D3Ä0.1, 2D4Ä0.01. The other parameters are the
same as those in Fig. 2.

Fig. 7 Mean first-passage time of system „24… as function of H10 and H20 .
2D3Ä0.1, 2D4Ä0.01. The other parameters are the same as those in Fig. 2.
MAY 2002, Vol. 69 Õ 279
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p~TuH0!5
2]R~ tuH0!

]t U
t5T

. (47)

Similarly, the generalized Pontryagin equations for the m
ments of first-passage time of system~40! can be obtained as
follows:

1

2
b~H0!

]2m l 11

]H0
2 1a~H0!

]m l 11

]H0
52~ l 11!m l . (48)

The boundary conditions are

m l 11~Hc!50 (49)

m l 11~0!5 f inite. (50)

The qualitative condition~50! can be converted into quantitativ
one by using Eq.~48! and the limiting behavior ofa(H0) and
b(H0) nearH050. It is

FD11D22
1

6
~b11b2!S 1

v1
2 1

1

v2
2D G ]m l 11

]H0
52~ l 11!m l .

(51)

Fig. 8 Reliability function of system „52… for given initial con-
dition. a1Ä0.2, a2Ä0.1, a3Ä0.1, b1Ä0.05, vÄ1.0; a4Ä0.4, b2
Ä0.1, kÄ2.0, 2D1Ä0.03, 2D2Ä0.01, HcÄ0.3. The other param-
eters are 2 D3Ä2D4Ä0, H10ÄH20Ä0 for A and A 8; 2D3Ä2D4
Ä0, H10Ä0.04, H20Ä0.02 for B and B 8; 2D3Ä0.1, 2D4Ä0.05,
H10ÄH20Ä0 for C and C 8. analytical result by using the
present proposed procedure; – – – –analytical result by using
the procedure proposed in †24‡; s L n from digital simulation.

Fig. 9 Probability density of first-passage time of system „52…
for given initial condition. The parameters and symbols are the
same as those in Fig. 8.
280 Õ Vol. 69, MAY 2002
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The one-dimensional boundary value problem, Eqs.~48!, ~49!,
and ~51!, can be solved by using the Runge-Kutta method.

Obviously, for evaluating the statistics of the first-passage f
ure of system~24! the procedure for quasi-non-integrable Ham
tonian systems is much simpler than that for the quasi-integra
Hamiltonian system. However, the former generally yields in
curate results as shown in Figs. 2–4. Our experience shows th
may yield good results in some very special cases, for exam
the ratio of excitation intensity to damping coefficient for the fir
degree-of-freedom is the same as that for the second degre
freedom. In this case system~24! will behave like a quasi-non-
integrable Hamiltonian system. On the other hand, the met
proposed in this paper always yields good results for system~24!
although the equations involved are more difficult to solve.

Example 2. Consider a van der Pol oscillator nonlinear
coupled with a Duffing oscillator subject to external and param
ric excitations of Gaussian white noises. The equations of mo
of the system are of the form

Ẍ11~2b11a1X1
21a2X2

41a3Ẋ2
2!Ẋ11v2X15W1~ t !1X1W3~ t !

(52)
Ẍ21~b21a4X1

2!Ẋ21kX2
35W2~ t !1X2W4~ t !

where a1 , a2 , a3 , a4 , b1 , b2 , v, k are constants;Wk(t)(k
51,2,3,4) are independent Gaussian white noises with inten
2Dk . The response of system~52! with external excitations only
has been studied by using the stochastic averaging method
quasi-integrable Hamiltonian systems~@19#!. Let X15Q1 , X2

5Q2 , Ẋ15P1 , Ẋ25P2 , Eq. ~52! can be rewritten as a quas
Hamiltonian system of the form of Eq.~1!, i.e.,

Q̇15P1

Q̇25P2 (53)
Ṗ152v2Q12~2b11a1Q1

21a2Q2
41a3P2

2!P1

1W1~ t !1Q1W3~ t !

Ṗ252kQ2
32~b21a4Q1

2!P21W2~ t !1Q2W4~ t !.

Equation~53! can be modeled as Itoˆ equations. Since the Wong
Zakai correction terms for this example vanish, the modifi
Hamiltonian is the same as that associated with Eq.~53!, i.e.,

H5H11H2 (54)

Fig. 10 Mean first-passage time of system „52… as function of
H20 for given H10 . 2D3Ä2D4Ä0, H10Ä0 for A and A 8; 2D3
Ä2D4Ä0, H10Ä0.04 for B and B 8; 2D3Ä0.1, 2D4Ä0.05, H10Ä0
for C and C 8. The other parameters and symbols are the same
as those in Fig. 8.
Transactions of the ASME
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H15
1
2~P1

21v2Q1
2! (55)

H25
1
2~P2

21
1
2kQ2

4!. (56)

HamiltonianH is separable and so Eq.~53! governs a quasi-
integrable Hamiltonian system. Suppose that the Hamiltonian
tem is nonresonant. The averaged Itoˆ equations can be obtaine
from Eq.~53! by using the stochastic averaging method for qua
integrable Hamiltonian systems~@19#!. It is of the same form of
Eq. ~28! with the following drift and diffusion coefficients:

a15b1H12
a1

2v2 H1
22

4a2

3k
H1H22

4a3

3
H1H21D11

H1

v2 D3

a252
4

3
b2H22

4a4

3v2 H1H21D21

8G2S 7

4D
9G2S 5

4D A
H2

k
D4

b1152D1H11
H1

2

v2 D3 (57)

b225
8

3
D2H21

64G2S 7

4D
45G2S 5

4D H2AH2

k
D4

b125b2150.

SinceHi( i 51,2) vary from 0 to` under the conditionk.0,
the safety domain of system~52! may be of the same form as tha
in Fig. 1. The backward Kolmogorov equation for the condition
reliability function, the generalized Pontryagin equations for
conditional moments of first-passage time, and their associ
initial and boundary conditions for system~52! can be formulated
and solved as for example 1. The only difference is that the d
and diffusion coefficients for this example are defined by Eq.~57!
with H1 andH2 replaced byH10 andH20, respectively.

The procedure for evaluating the statistics of first-passage
ure of quasi-non-integrable Hamiltonian systems~@24#! can also
be applied to applied to systems~52!. The mathematical formula
tion is the same as that for example one, i.e., Eqs.~40!–~51!,
except the drift and diffusion coefficients. For this example, th
coefficients are

a~H !5D11D210.5484D4AH

k
1

4

7 S b12b21
D3

v2DH

2S 16

17

a1

k
1

16

17

a2

v2 1
5

77
a31

16

17

a4

v2DH2

(58)

b~H !5s̄2~H !50.4876D4HAH

k
1

8

7
~D11D2!H1

32

17

D3

v2 H2.

Some numerical results for the conditional reliability functio
the conditional probability density, and mean of first-passage t
of system~52! are shown in Figs. 8–10. Some figures for th
example similar to Figs. 5–7 are not given due to limited spa
The same observations as those for example 1 can be made
these figures.

Conclusions
In the present paper a procedure for evaluating the statistic

the first passage failure, i.e., the conditional reliability functi
and the conditional probability density and moments of the fi
passage time of quasi-integrable Hamiltonian systems has
proposed based on the stochastic averaging method for q
integrable Hamiltonian systems. Using the stochastic avera
method reduces the dimensions of the backward Kolmogo
Journal of Applied Mechanics
ys-
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t
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me
is
ce.
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equations governing the conditional reliability function and t
generalized Pontryagin equations governing the conditional
ments of first-passage time by a half when the associated Ha
tonian system is nonresonant. Furthermore, the backward
mogorov equation and generalized Pontryagin equations o
averaged system are nonsingular and much simpler than thos
the original system. Applications of the proposed procedure to
examples show that the proposed procedure yields quite acc
results. Thus, the proposed procedure is promising and dese
further development and application.

The results for the two examples indicate that both the relia
ity and mean first-passage time are monotonously decrea
functions of initial energy of each degree-of-freedom of the s
tem. This property will be used in the study of nonlinear stoch
tic optimal control of first-passage failure of quasi-integrab
Hamiltonian systems.

The procedure for evaluating the statistics of the first-pass
failure of quasi-non-integrable Hamiltonian systems has also b
applied to the two examples. The numerical results showed th
generally yields inaccurate result for quasi-integrable Hamilton
systems although it is much simpler than the procedure propo
in this paper. Experience shows that only in some very spe
cases it may yield good results.

It is remarked that the criteria for the failure considered in t
paper are functions of the first integrals~energies! of the indi-
vidual oscillators. The stochastic averaging method is the m
effective for this kind of first-passage failure problem. If the fa
ure criterion is given in terms of other physical quantity, such
the displacement, the first-passage failure problem will be m
more difficult to solve. For such a kind of a first-passage failu
problem of a single-degree-of-freedom quasi-Hamiltonian syst
Roberts@31# developed an integral equation for evaluating t
conditional transition probability density in the safety domain~the
integral of which is the reliability function! by using the uncondi-
tional transition probability density obtained from solving the a
eraged FPK equation. Maybe this method can be extended
multi-degree-of-freedom quasi-integrable Hamiltonian system
much more computational work is involved and some difficult
have to be solved. This will be the subject for our future resea

Acknowledgment
The work reported in this paper was supported by the Natio

Natural Science Foundation of China under Grants No. 19972
and 10002015 and the Cao Guang Biao Hi-Science-Techno
Foundation of Zhejiang University.

References
@1# Bharucha-Reid, A. T., 1960,Elements of Markov Processes and Their App

cations, McGraw-Hill, New York.
@2# Cox, D. R., and Miller, H. D., 1965,The Theory of Stochastic Processe,

Chapman and Hall, New York.
@3# Bergman, L. A., and Heinrich, J. C., 1981, ‘‘On the Moments of Time to Fi

Passage of the Linear Oscillator,’’ Earthquake Eng. Struct. Dyn.,9, pp. 197–
204.

@4# Bergman, L. A., and Heinrich, J. C., 1982, ‘‘On the Reliability of the Line
Oscillator and Systems of Coupled Oscillators,’’ Int. J. Numer. Methods En
18, pp. 1271–1295.

@5# Sun, J. Q., and Hsu, C. S., 1988, ‘‘First-Passage Time Probability of N
Linear Stochastic Systems by Generalized Cell Mapping Method,’’ J. So
Vib., 124, pp. 233–248.

@6# Sun, J. Q., and Hsu, C. S., 1990, ‘‘The Generalized Cell Mapping Method
Nonlinear Random Vibration Based Upon Short Time Gaussian Approxim
tion,’’ ASME J. Appl. Mech.,57, pp. 1018–1025.

@7# Ariaratnam, S. T., and Pi, H. N., 1973, ‘‘On the First-Passage Time for En
lope Crossing for a Linear Oscillator,’’ Int. J. Control,18, pp. 89–96.

@8# Lennox, W. C., and Fraser, D. A., 1974, ‘‘On the First Passage Distribution
the Envelope of a Non-stationary Narrow-Band Stochastic Process,’’ ASM
Appl. Mech.,41, pp. 793–797.

@9# Ariaratnam, S. T., and Tam, D. S. F., 1979, ‘‘Random Vibration and Stabi
of a Linear Parametrically Excited Oscillator,’’ Z. Angew. Math. Mech.,59, pp.
79–84.

@10# Spanos, P. D., and Solomos, G. P., 1984, ‘‘Barrier Crossing due to Trans
Excitation,’’ J. Eng. Mech.,110, pp. 20–36.
MAY 2002, Vol. 69 Õ 281



’

a
,

e

e

I

n

s

stic
.,

on-

of
n.,

ck

141–

r

r
on-

of

r-

ar
@11# Roberts, J. B., 1976, ‘‘First Passage Probability for Nonlinear Oscillator,’
Eng. Mech.,102, pp. 851–866.

@12# Roberts, J. B., 1978, ‘‘First-Passage Time for Oscillator With Nonlinear R
storing Forces,’’ J. Sound Vib.,56, pp. 71–86.

@13# Roberts, J. B., 1986, ‘‘Response of an Oscillator With Nonlinear Damping
a Softening Spring to Non-White Random Excitation,’’ Probab. Eng. Mech.1,
pp. 40–48.

@14# Roberts, J. B., 1986, ‘‘First-Passage Time for Randomly Excited Nonlin
Oscillator,’’ J. Sound Vib.,109, pp. 33–50.

@15# Spanos, P. D., 1982, ‘‘Survival Probability of Non-Linear Oscillators Su
jected to Broad-Band Random Disturbance,’’ Int. J. Non-Linear Mech.,17, pp.
303–317.

@16# Zhu, W. Q., and Lei, Y., 1989, ‘‘First Passage Time for State Transition
Randomly Excited Systems,’’Proc. 47th Session of International Statistica
Institute, LIII ~Invited Papers!, Book 3, pp. 517–531.

@17# Cai, G. Q., and Lin, Y. K., 1994, ‘‘On Statistics of First-Passage Failur
ASME J. Appl. Mech.,61, pp. 93–99.

@18# Zhu, W. Q., and Yang, Y. Q., 1997, ‘‘Stochastic Averaging of Quasi-No
Integrable-Hamiltonian Systems,’’ ASME J. Appl. Mech.,64, pp. 157–164.

@19# Zhu, W. Q., Huang, Z. L., and Yang, Y. Q., 1997, ‘‘Stochastic Averaging
Quasi-Integrable Hamiltonian Systems,’’ ASME J. Appl. Mech.,64, pp. 975–
984.

@20# Zhu, W. Q., Huang, Z. L., and Suzuki, Y., 2002, ‘‘Stochastic Averaging a
Lyapunov Exponent of Quasi Partially Integrable Hamiltonian Systems,’’
J. Non-Linear Mech.,37, pp. 419–437.

@21# Zhu, W. Q., and Huang, Z. L., 1998, ‘‘Stochastic Stability of Quasi-No
Integrable-Hamiltonian Systems,’’ J. Sound Vib.,218, pp. 769–789.

@22# Zhu, W. Q., and Huang, Z. L., 1999, ‘‘Stochastic Hopf Bifurcation of Qua
282 Õ Vol. 69, MAY 2002
J.

e-

nd

ar

b-

of
l

,’’

n-

of

nd
nt.

-

i-

Non-Integrable-Hamiltonian Systems,’’ Int. J. Non-Linear Mech.,34, pp. 437–
447.

@23# Zhu, W. Q., and Huang, Z. L., 1999, ‘‘Lyapunov Exponents and Stocha
Stability of Quasi-Integrable-Hamiltonian Systems,’’ ASME J. Appl. Mech
66, pp. 211–217.

@24# Gan, C. B., and Zhu, W. Q., 2001, ‘‘First-Passage Failure of Quasi-N
Integrable-Hamiltonian Systems,’’ Int. J. Non-Linear Mech.,36~2!, pp. 209–
220.

@25# Zhu, W. Q., and Ying, Z. G., 1999, ‘‘Optimal Nonlinear Feedback Control
Quasi-Hamiltonian Systems,’’ Sci. China, Ser. A: Math., Phys., Astro
42~11!, pp. 1213–1219.

@26# Zhu, W. Q., Ying, Z. G., and Soong, T. T., 1999, ‘‘Optimal Nonlinear Feedba
Control of Structures Under Random Loading,’’Stochastic Structural Dynam-
ics, B. F. Spencer, Jr., and E. A. Johnson, eds., Balkema, Rotterdam, pp.
148.

@27# Zhu, W. Q., Ying, Z. G., Ni, Y. Q., and Ko, J. M., 2000, ‘‘Optimal Nonlinea
Stochastic Control of Hysteretic Systems,’’ J. Eng. Mech.,126, pp. 1027–
1032.

@28# Zhu, W. Q., Ying, Z. G., and Soong, T. T., 2001, ‘‘An Optimal Nonlinea
Feedback Control Strategy for Randomly Excited Structural Systems,’’ N
linear Dyn.,24, pp. 31–51.

@29# Zhu, W. Q., and Ying, Z. G., 2002, ‘‘Nonlinear Stochastic Optimal Control
Partially Observable Linear Strucutres, ’’ Eng. Struct.,24, pp. 333–342.

@30# Khasminskii, R. Z., 1968, ‘‘On the Averaging Principle for Stochastic Diffe
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Elastic Wave Propagation in
Circumferential Direction in
Anisotropic Cylindrical Curved
Plates
Ultrasonic nondestructive inspection of large-diameter pipes is important for he
monitoring of ailing infrastructure. Longitudinal stress-corrosion cracks are detec
more efficiently by inducing circumferential waves; hence, the study of elastic w
propagation in the circumferential direction in a pipe wall is essential. The current s
of knowledge lacks a complete solution of this problem. Only when the pipe mater
isotropic a solution of the wave propagation problem in the circumferential direc
exists. Ultrasonic inspections of reinforced concrete pipes and pipes retrofitted by
composites necessitate the development of a new theoretical solution for elastic
propagation in anisotropic curved plates in the circumferential direction. Mathemat
modeling of the problem to obtain dispersion curves for curved anisotropic plates lea
coupled differential equations. Unlike isotropic materials for which the Stokes-Helmh
decomposition technique simplifies the problem, in anisotropic case no such gener
composition technique works. These coupled differential equations are solved in
paper. Dispersion curves for anisotropic curved plates of different curvatures have
computed and presented. Some numerical results computed by the new techniqu
been compared with those available in the literature.@DOI: 10.1115/1.1464872#
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Introduction
Mathematical modeling of wave propagation in the axial dire

tion of a cylinder has been studied extensively. However, for w
propagation in the circumferential direction, which is essential
nondestructive testing~NDT! of large diameter pipes, literatur
shows fewer investigations. Viktorov’s work~@1#! establishes the
fundamental mathematical modeling of the problem for isotro
material properties. He has introduced the angular wave num
concept and has derived, decomposed and solved the gove
differential equations. He has considered only one curved surf
in other words, he has found the solution for convex and conc
cylindrical surfaces. In order to obtain the results for curved pla
Qu et al.@2# have added the boundary conditions for the seco
surface and solved the problem of guided wave propagatio
isotropic curved plates. Different aspects of the circumferen
direction wave propagation along one or multiple curved surfa
have been analyzed by Grace and Goodman@3#, Brekhovskikh
@4#, Cerv @5#, Liu and Qu@6,7# and Valle, Qu, and Jacobs@8#. In
all these works the material has been modeled as isotropic el
material.

Many investigators have solved elastic wave propagation p
lem in homogeneous and multilayered anisotropic solids. Ho
ever, all those works have been limited to the flat-plate case~@9#!
or for waves propagating in the axial direction of a cylinder~@10#!.
Wave propagation in the circumferential direction of an ani
tropic curved plate has not been analyzed earlier, and solved
the first time in this paper.

Unlike isotropic materials for which the Stokes-Helmholtz d
composition technique simplifies the problem, for anisotropic c

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, April
2001; final revision, November 1, 2001. Associate Editor: A. K. Mal. Discussion
the paper should be addressed to the Editor, Prof. Lewis T. Wheeler, Departme
Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and
be accepted until four months after final publication of the paper itself in the AS
JOURNAL OF APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
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no such general decomposition technique works. The differen
equations remain coupled and require a more general solu
technique.

The new technique, presented in this paper, solves coupled
of differential equations without attempting to decouple the eq
tions. Hence it removes the obstacle arising from not being abl
decouple the equations. Consequently it provides a systematic
unifying solution method, which is capable of solving a set
coupled differential equations, and can be utilized to solve a
riety of wave propagation problems.

Fundamental Equations
The formulation presented here is for the wave propagation

cylindrical curved plate in the direction of the curvature as sho
in Fig. 1. We will interchangeably call the wave carrier a ‘‘curve
plate,’’ ‘‘cylinder,’’ ‘‘pipe segment,’’ or simply ‘‘pipe’’ all meaning
the same thing. What we are interested in is analyzing the dis
sive waves in the curved plate for waves propagating from sec
T to R ~see Fig. 1!. This analysis does not include the reflect
guided waves from the plate boundary. The problem geometry
be a segment of a cylinder or a complete cylinder.

Wave propagation in circumferential direction in pipes with is
tropic material properties is usually modeled as a plane st
problem; i.e., the displacement component along the longitud
axis of the pipe is set equal to zero. For a few other types
anisotropy this situation remains valid. However, for general
isotropy the longitudinal component of displacement must be c
sidered in the mathematical modeling. The symmetry of both
ometry and material properties is required for plane-str
idealization. In absence of such symmetry a three-dimensio
mathematical modeling is necessary.

In cylindrical coordinates, strain components in terms of d
placements can be written as

,
on
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ill
E
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The stress and displacement components are shown in Fig. 2.
constitutive matrix for general anisotropy contains 21 independ
elastic constants:

Fig. 1 Waves propagating from section T to R in a curved
plate. Wave speed is proportional to radius of curvature.

Fig. 2 Stress and displacement components in cylindrical co-
ordinate system
284 Õ Vol. 69, MAY 2002
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Equations of motion for three components of displacement in
lindrical coordinates are as follows:
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1
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1

s rz

r
2r

]2uz~r ,u,t !

]t2 50. (3)

Stress components in the above equations can be substitut
terms of displacement components. Since displacement com
nents are functions of wave forms, time dependency of wa
must be established.

Wave Form
In cylindrical geometry the generation of surface waves in

circumferential direction with a plane wave front requires the c
cumferential wave speed to be a function of the radial distan
Viktorov @1# has introduced this concept and called it the angu
wave number. Similar formulation has been adapted here:

ur~r ,u,t !5Ur~r !ei ~pu2vt !

uu~r ,u,t !5Ut~r !ei ~pu2vt !

uz~r ,u,t !5Uz~r !ei ~pu2vt ! (4)

whereUr(r ), Ut(r ), andUz(r ) represent the amplitude of vibra
tion in the radial, tangential, and axial directions, respectively.i’’
is the imaginary numberA21. It should be noted here that th
phase velocity is not a constant and changes with radius.
shown in Fig. 1 the phase velocity has to be proportional to
radius to have a plane wave front. Hence, ifcb is assumed to be
the phase velocity at the outer surface with radiusb; for other
points having a radiusr the phase velocity would be

vph~r !5cbr /b. (4a)

For the flat-plate case wave numberk is defined asv/vph because
curvature does not change. However, for a curved plate the s
definition would ber dependent. Thus the angular wave numberp,
which is independent ofr is defined as

p5v/~vph~r !/r !5vb/cb . (4b)

Governing Differential Equations
Subsequent substitution of Eqs.~4!, ~1!, and ~2! into Eq. ~3!

yields the following governing differential equations:
Transactions of the ASME
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22C5,5Ur~r !p222C1,5Ut~r !p222C4,5Uz~r !p222iC1,1Ut~r !p

22iC5,5Ut~r !p22iC1,4Uz~r !p14irC 3,5Ur8~r !p

12irC 1,3Ut8~r !p12irC 5,5Ut8~r !p12irC 3,4Uz8~r !p

12irC 5,6Uz8~r !p12r 2rv2Ur~r !22C1,1Ur~r !

12C1,5Ut~r !12rC3,3Ur8~r !22rC1,5Ut8~r !22rC1,6Uz8~r !

12rC3,6Uz8~r !12r 2C3,3Ur9~r !2r 2C3,5Ut9~r !

12r 2C3,6Uz9~r !50

22C1,5Ur~r !p222C1,1Ut~r !p222C1,4Uz~r !p212iC1,1Ur~r !p

12iC5,5Ur~r !p12iC4,5Uz~r !p12irC 1,3Ur8~r !p

12irC 5,5Ur8~r !p14irC 1,5Ut8~r !p12irC 1,6Uz8~r !p

12irC 4,5Uz8~r !p12C1,5Ur~r !12r 2rv2Ut~r !

22C5,5Ut~r !12rC1,5Ur8~r !14rC3,5Ur8~r !12rC5,5Ut8

14rC5,6Uz8~r !12r 2C3,5Ur9~r !12r 2C5,5Ut9~r !

12r 2C5,6Uz9~r !50

22C4,5Ur~r !p222C1,4Ut~r !p222C4,4Uz~r !p212iC1,4Ur~r !p

22iC4,5Ut~r !p12irC 3,4Ur8~r !p12irC 5,6Ur8~r !p

12irC 1,6Ut8~r !p12irC 4,5Ut8~r !p14irC 4,6Uz8~r !p

12r 2rv2Uz~r !12rC1,6Ur8~r !12rC3,6Ur8~r !

12rC6,6Uz8~r !12r 2C3,6Ur9~r !12r 2C5,6Ut9~r !

12r 2C6,6Uz9~r !50. (5)

Boundary Conditions
In order to obtain the dispersion curves, the traction-free bou

ary conditions~zero stress values on the inner and outer surfa
of the pipe! must be satisfied. Hence, atr 5a and r 5b:

C1,3Ur~r !1 ipC3,5Ur~r !1 ipC1,3Ut~r !2C3,5Ut~r !1 ipC3,4Uz~r !

1rC3,3Ur8~r !1rC3,5Ut8~r !1rC3,6Uz8~r !50

C1,5Ur~r !1 ipC5,5Ur~r !1 ipC1,5Ut~r !2C5,5Ut~r !2 ipC4,5Uz~r !

1rC3,5Ur8~r !1rC5,5Ut8~r !1rC5,6Uz8~r !50

C1,6Ur~r !1 ipC5,6Ur~r !1 ipC1,6Ut~r !2C5,6Ut~r !1 ipC4,6Uz~r !

1rC3,6Ur8~r !1rC5,6Ut8~r !1rC6,6Uz8~r !50. (6)

Solution
It can be seen that all differential equations are functions

three displacement components and their derivatives. It shoul
Journal of Applied Mechanics
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also noted thatUr(r ), Ut(r ), andUz(r ) are functions of the ra-
dius only and they appear in all equations. Therefore, there
three coupled differential equations and six boundary conditi
that must be satisfied simultaneously.

To solve the equations, the unknown functions are expande
Fourier series~FS!. Substitution of FS expansions into the diffe
ential equations provides three algebraic equations that mus
satisfied for the entire problem domain. To satisfy the equati
for a given number of FS terms weighted residuals integrat
with a linear weight function has been utilized:

R5E
a

b

w f~r ,xi !dr50. (7)

The radius corresponding to the peak value of the linear we
function can take any value between the inner and the outer
dius, each resulting one independent equation. Hence from e
differential equation any number of equations can be obtained

On the other hand, it is known that the general solution i
linear combination of all solution functions that can be obtain
Therefore, the general solution should contain combinatorial
rameters. The number of combinatorial parameters is the sam
the number of individual solutions. These combinatorial para
eters are necessary to satisfy the boundary conditions. Satisfa
of six boundary conditions requires six parameters and six eq
tions. Therefore the necessary and sufficient number of comb
torial parameters is six and it indicates the existence of six in
pendent solutions.

Substitution of solution functions into the differential equatio
leads to three equations, each containing all of the FS parame
In other words, all FS parameters for the three amplitude fu
tions appear in every equation. Because of this coupling, the
ues of parameters obtained for FS expansion ofUr(r ), Ut(r ), and
Uz(r ) are not independent and a solution must yield all para
eters as one set of results. Since the equations are linear an
results must be combined using combinatorial parameters
their relative values must be found. Therefore one of the FS
rameters can be assumed equal to one. Then the relative value
other FS parameters can be calculated in terms of this unit va
Each set of the parameter values defines a set of dependent s
for the above amplitude functions; these are called basic sha
Since the number of equations must be equal to the numbe
unknowns a specific number of weight functions are required

The FS expansion forUr(r ) can be written as

Ur~r !5x01(
n51

m S cosS npr

L D xn1sinS npr

L D ynD (8)

which contains 2m11 parameters or coefficients,xn andyn .
With two other expressions forUt(r ) andUz(r ) the number of

unknowns increases to 6m13. Performing weighted residual
method, a set of linear equations results:
S a1,1x1 a1,2x2 ¯ a1,sxs a1,s11xs11 � a1,s16xs16

a2,1x1 a2,2x2 ¯ a2,sxs a2,s11xs11 � a2,s11xs16

� � ¯ � � � �

� � ¯ � � � �

� � ¯ � � � �

as,1x1 as,2x2 ¯ as,sxs as,s11xs11 � as,s16xs16

D 5S 0
0
�

�

�

0

D (9)
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where xs11 ,xs12 , . . . ,xs16 represent the last sine and cosi
terms of FS expansions. Assigning six independent unit vector
the last six parameters as shown in Eq.~10!,

S x1
s11 x2

s11 x3
s11 x4

s11 x5
s11 x6

s11

x1
s12 x2

s12 x3
s12 x4

s12 x5
s12 x6

s12

x1
s13 x2

s13 x3
s13 x4

s13 x5
s13 x6

s13

x1
s14 x2

s14 x3
s14 x4

s14 x5
s14 x6

s14

x1
s15 x2

s15 x3
s15 x4

s15 x5
s15 x6

s15

x1
s16 x2

s16 x3
s16 x4

s16 x5
s16 x6

s16

D
5S 1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

D (10)

yields six independent solutions. Therefore the number of eq
tions has to bes56m23. Consequently, the general solution c
be obtained as a linear combination of the above solutions:

A1S 1
1

x1
2

�

�

�

x1
s

D 1A2S x2
1

x2
2

�

�

�

x2
s

D 1A3S x3
1

x3
2

�

�

�

x3
s

D 1A4S x4
1

x4
2

�

�

�

x4
s

D 1A5S x5
1

x5
2

�

�

�

x5
s

D
1A6S x6

1

x6
2

�

�

�

x6
s

D . (11)

The superscript for FS parameters shows the solution set num
Substitution of the obtained FS parameters into stress compon
on the inner and outer surfaces of the pipe leads to an eigenv
problem. The determinant of the coefficients ofAi should be zero
for any point located on the dispersion curves.

Numerical Results
Based on the proposed mathematical modeling a Mathema

program has been developed. To ensure the validity of the m
eling and the computer program, its results are compared with
available dispersion curves for anisotropic flat plates by us
small ratios of thickness to radius, when pipe geometry
proaches flat plate geometry. Additionally, the results are co
pared with the published results for isotropic pipes~@2#!. Since the
exact input values have not been reported by Qu et al.@2#, the
comparison is done only qualitatively. The dispersion curves
also given for anisotropic pipes.

A Comparison With Available Data for Isotropic Flat
Plate. Dispersion curves for a flat plate are given in Mal a
Singh @11#, see Fig. 3. Curves for the same plate thickness
material properties, but having an outer radius of 1 m, are ge
ated by the proposed method and shown in Fig. 4.

A comparison of Figs. 3 and 4 shows a very good match
tween the two when only 20 terms are used in the FS expans
286 Õ Vol. 69, MAY 2002
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B Comparison With Available Data for Anisotropic Flat
Plate. Dispersion curves for anisotropic flat plates are availa
in the literature~@12,13#!. In this section our results are compare
with those given in Rose@13#.

For the unidirectional composite plate or pipe with a zer
degree angle between the wave propagation direction and the
direction as shown in Fig. 5, the material and the geometric sy
metry conditions are maintained; hence, the plain-strain formu
tion remains valid. Consequently the constitutive matrix reduc
to the following form:

Fig. 3 Dispersion curves for isotropic flat plate „†11‡…. Plate
thickness Ä1 mm.

Fig. 4 Dispersion curves generated by the proposed method.
Plate thickness Ä1 mm. Pipe outside radius Ä1.0 m.

Fig. 5 Tangential direction of the fibers maintains the symme-
try. Coordinate systems for flat-plate and pipe analyses are
also shown.
Transactions of the ASME
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S suu

szz

s rr

s ru

D 5S 128.2 6.9 6.9 0

6.9 14.95 7.33 0

6.9 7.33 14.95 0

0 0 0 6.73

D S euu

0
err

2eru

D . (12)

Fig. 6 Dispersion curves of a unidirectional composite plate
for waves propagating in fiber direction „x -axis direction, 0
deg …. Material properties are given in Eq. „12…, rÄ1580 kg Õm3

„†3‡….

Fig. 7 Dispersion curves for a large-diameter pipe made of an
anisotropic material. Material properties are given in Eq. „12….
Pipe wall thickness Ä1 mm. Pipe outer radius Ä1000 mm, m
Ä30.

Fig. 8 Dispersion curves for the anisotropic pipe with mÄ20.
Pipe dimensions and material properties are same as in Fig. 7,
only m is different.
Journal of Applied Mechanics
Stiffness values are given in GPa. Flat-plate results are show
Fig. 6. Results for the curved plate are shown in Figs. 7 and 8

The result of Fig. 7 is obtained using 30 terms (m530) in the
Fourier series expansion. To show the effect of the number
terms~m! on the computed results the same dispersion curves
computed form520 and shown in Fig. 8.

It is interesting to note that smaller value ofm gives broken
lines. Therefore the user can easily realize the need for a gre
number of terms in the FS expansion when the lines in the d
persion curve plot are found broken. There are some missing p
of curves in Fig. 7 that can be obtained by increasingm. However,
for m530 we get enough information for comparison with th
results given by Rose@13#.

For the same material with fibers going in the longitudinal d
rection of the pipe, the constitutive matrix changes to Eq.~13!.

S suu

szz

s rr

s ru

D 5S 14.95 6.9 7.33 0

6.9 128.2 6.9 0

7.33 6.9 14.95 0

0 0 0 3.81

D S euu

0
err

2eru

D . (13)

Obtained results for this case also match with the correspond
dispersion curves presented by Rose@13#; see Figs. 9 and 10.

For the case where fibers are oriented at 45 deg relative to
pipe axis, plane-strain assumptions are no longer valid. The c
stitutive matrix for this case is obtained by transformation of t
coordinate system as shown in Eq.~14!. See Figs. 11~a!, 11~b! and
12 for comparison. This case also shows an excellent match
tween the available data and the obtained results.

Fig. 9 Dispersion curves of unidirectional composite plate for
waves propagating perpendicular to the fiber direction „x -axis
direction, 90 deg …. Material properties are given in Eq. „13….
Plate thickness Ä1 mm, rÄ1580 kg Õm3

„†3‡….

Fig. 10 Computed dispersion curves for an anisotropic large
diameter pipe, when fiber and wave propagation directions are
perpendicular to each other. Material properties are given in
Eq. „13…. Pipe wall thickness Ä1 mm. Pipe outer radius
Ä1000 mm.
MAY 2002, Vol. 69 Õ 287
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sz,z

s r ,r

sz,r

su,r

su,z

D 5S 45.9675 32.5075 7.115 0 0 228.3125

32.5075 45.9675 7.115 0 0 228.3125

7.115 7.115 14.95 0 0 0.215

0 0 0 5.27 21.46 0

0 0 0 21.46 5.27 0

228.3125 228.3125 0.215 0 0 32.3375

D S eu,u

ez,z

er ,r

2ez,r

2eu,r

2eu,z
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Since for the curved plate, the midplane is not the plane of s
metry, the dispersion curves cannot be grouped as symmetric
antisymmetric modes. That is why all modes are shown toge
in Fig. 12 for a large-diameter pipe.

C Comparison With Available Data for Isotropic Pipe
As mentioned earlier, Qu et al.@2# have derived dispersion curve
for aluminum pipes but the material properties have not been
ported in their work. Hence, the quantitative comparison was
possible. However, curves presented here, Fig. 13, qualitati
look similar to those of Qu et al.@2#, Fig. 14. Figures 13 and 14
show the obtained dispersion curves with non-dimensionalk̄ and
v̄ wherek̄5k(b2a) and

v̄5v~b2a!Ar

m
.

Fig. 11 „a… Dispersion curves for symmetric modes for a uni-
directional composite plate for waves propagating in 45 deg to
the fiber direction. Plate thickness Ä1 mm and rÄ1580 kg Õm3

„†3‡…. „b… Dispersion curves for antisymmetric modes for a uni-
directional composite plate for waves propagating in 45 deg to
the fiber direction. Plate thickness Ä1 mm and rÄ1580 kg Õm3

„†3‡….
288 Õ Vol. 69, MAY 2002
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D Anisotropic Pipe of Small Radius of Curvature. To
show the effect of the radius of curvature on the dispersion cur
the pipe radius is varied from 1000 mm to 2.5 mm keeping t
wall thickness and material properties same as those mentione
the figure captions for Figs. 7 and 9. Dispersion curves obtai
by the 30 terms FS expansion forr 51000, 10, 5, and 2.5 mm are
shown in Figs. 15 and 16. Figure 15 shows dispersion curves
fibers going in the circumferential direction and Fig. 16 is f
fibers going in the axial direction while the waves propagate in
circumferential directions in both cases.

From Figure 15 one can see that for fibers oriented in the
cumferential direction the dispersion curves do not change sign
cantly as the outer radius~r! is reduced from 1000 mm to 10 mm
However, asr is reduced further the deviation of the dispersio
curves from the large radius case is no longer negligible. F

Fig. 12 Dispersion curves for a large diameter pipe made of an
anisotropic material. Material properties are given in Eq. „14….
Pipe wall thickness Ä1 mm. Pipe outer radius Ä1000 mm, m
Ä25.

Fig. 13 Dispersion curves for aluminum pipe obtained by the
proposed method. h „ratio of inner to outer radius …Ä0.1.
Transactions of the ASME
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fibers oriented in the axial direction~Fig. 16! the dispersion
curves remain almost unchanged forr 51000 mm down to 2.5
mm. For r 52.5 mm the dispersion curves are obtained withm
545 in FS expansion of amplitude functions. The computat
with m530 gave too many broken lines in the dispersion cur
plot for r 52.5 mm.

In summary, a comparison between Figs. 15 and 16 shows
the effect of curvature is stronger when the fibers are orien
along the circumferential direction and hence when the fibers a
have a curvature. When the fibers are oriented in the axial di
tion and hence don’t have any curvature the flat-plate approxi
tion can be extended to pipes of much lower radius.

Fig. 14 Dispersion curves for aluminum pipe obtained by Qu
et al. †2‡. Material properties are not known.
Journal of Applied Mechanics
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Dispersion curves for the 5-mm outer radius pipe with fibe
oriented along the 45 deg direction are shown in Fig. 17. T
result is obtained for the material properties given in Eq.~14!. In
the frequency range smaller than 1 MHz, some vertical lines
peared due to the numerical errors when the number~m! of FS
terms is 25. By increasingm to 35 those lines disappeared. Th
results form535 are shown on the left side of Fig. 17.

Conclusion
A solution technique based on the Fourier series expansio

the unknown quantities has been introduced to solve the ela
wave propagation problem in anisotropic cylindrical plates in
circumferential direction. Accuracy of the technique has be
verified by comparing the computed results for isotropic pip
with the published results. Since no published results are avail
for wave propagation in the circumferential direction in anis
tropic cylindrical plates, the computed dispersion curves for
isotropic curved plates could not be compared with any res
available in the literature. However, the Lamb wave dispers
curves for flat plates can be computed and those values are us
check the accuracy of the proposed technique. With the new t
nique, dispersion curves for cylindrical plates with large radius
curvature~outer radius of curvature to thickness ratio equal
1000! have been computed and compared with the flat-plate
sults for both isotropic and anisotropic materials. Computed
sults for such low curvature plates matched very well with t
flat-plate results. The effect on the dispersion curves as the cu
ture of the anisotropic plate increases has been also studied.

The solution technique used for this specific wave propaga
Fig. 15 Dispersion curves for circumferential direction wave propagation in fiber-reinforced cylindrical composite plates
when fibers are oriented in the circumferential direction, outer radius of the pipe is „a… 1000 mm, „b… 10 mm, „c… 5 mm, and „d…
2.5 mm. Pipe wall thickness and material properties are same as those in Fig. 7.
MAY 2002, Vol. 69 Õ 289



Fig. 16 Dispersion curves for circumferential direction wave propagation in fiber-reinforced composite cylindrical plates when
fibers are oriented in the axial direction, outer radius of the pipe is „a… 1000 mm, „b… 10 mm, „c… 5 mm, and „d… 2.5 mm. Pipe wall
thickness and material properties are same as those in Fig. 9.

Fig. 17 Dispersion curves for the curved plate when the fibers are oriented in
the 45 deg direction. Material properties are given in Eq. „14…. Outer radius is 5
mm. Thickness Ä1 mm. Right figure is for mÄ25, and the left figure is for m
Ä35. Frequency range for the left figure is 0 to 1 MHz and for the right figure it
is 0 to 6 MHz.
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problem is a newly developed general solution technique for s
ing a coupled partial differential equation set~@14#!. Applicability
of this technique to other wave propagation problems is curre
under investigation.
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The Effect of Debonding Angle on
the Reduction of Effective Moduli
of Particle and Fiber-Reinforced
Composites
In an effort to uncover the effect of interfacial partial debonding on the reduction
composite stiffness, a reduced moduli approach is proposed for the fictitious inclu
which are used to replace the original partially debonded inclusions. The fictitious in
sions are now perfectly bonded to the matrix and any micromechanical theory ca
called upon to estimate the moduli of the composite. Using the volume of the incl
directly beneath the interfacial cracks under the considered loading mode as a meas
damage, a set of anisotropic damage parameters is established in terms of the debo
angle, providing the reduced moduli for the fictitious inclusions. Specific considera
include debonding on the top and bottom of spheres and prolate inclusions, debondi
the lateral surface of spheres and oblate inclusions, and debonding on the top and b
of circular fibers and elliptic cylinders. The reductions of the five transversely isotro
moduli for the partially debonded particle composites and the nine orthotropic modul
the partially debonded fiber composites are examined as the debonding angle incr
The theory is also compared with some finite element results, and it suggests th
concept proposed to estimate the reduced moduli of the fictitious inclusions is a v
one. @DOI: 10.1115/1.1459068#
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1 Introduction
The effective moduli of a partially debonded composite a

known to be weaker than those of a perfectly bonded compo
but the extent of reduction depends on the debonding geom
and its determination is generally not a trivial problem. In
attempt to shed some light on the effect of partial debondi
Zhao and Weng@1# considered two kinds of debonding geom
etries: the first one involves debonding on the top and bottom
oblate inclusions and the second involves debonding on the la
surface of the prolate inclusions so that, in each case, the ov
property remains transversely isotropic. The approach was b
on the concept of a fictitious inclusion whose property was de
mined from those of the original inclusion but with the addition
assumption that the load-transfer ability of the inclusion in
debonded direction is lost. With this concept and with the help
Willis @2# and Mori-Tanaka@3# moduli for a perfectly bonded
composite containing aligned ellipsoidal inclusions, the deriv
moduli for the partially debonded composite can still be cast i
simple, explicit form. The results reflect the significant loss of
overall moduli in the debonded direction, but not in the transve
direction, at all levels of inclusion shapes and concentrations

What remained unclear was the effect of interfacial debond
angle on the reduction of the moduli. In order to answer t
question, Zheng et al.@4# recently carried out a finite elemen
investigation on the problem of a two-phase composite contain
aligned fibers, and observed a continuous reduction of the e

1On leave from Shenyang Architectural and Civil Engineering Institute, Dep
ment of Civil Engineering, Shenyang, Liaoning 110015, P.R. China.

2To whom correspondence should be addressed.
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CHANICS. Manuscript received by the ASME Applied Mechanics Division, Septe
ber 27, 2000; final revision, November 22, 2001. Associate Editor: J. W. Ju. Dis
sion on the paper should be addressed to the Editor, Prof. Lewis T. Whe
Department of Mechanical Engineering, University of Houston, Houst
TX 77204-4792, and will be accepted until four months after final publication
the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
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tive modulusE33 in the debonding direction as the debondin
anglef increases. The nature of this reduction exhibits a defl
tion point at a sufficiently largef, that is, in theE33 versusf plot,
the rate of reduction~slope! was initially small and then become
large, and later turns to small again. Moreover, thef angle at
which such a deflection occurs also tends to decrease with incr
ing fiber volume concentration. They concluded that the debo
ing angle could play a key role in affecting the overallE33.

The present study was in part motivated by this finite-elem
result, and in part by the desire to extend the concept suggest
Zhao and Weng@1# to include the debonding-angle dependence
the estimate of the effective moduli of a partially debonded co
posite. We shall again start out from the concept of fictitious
clusion, but shall not assume that the load transfer ability of
debonded inclusion in the debonding direction is completely l
while in the transverse direction it remains intact. Instead, par
lost in both directions will be taken, with a magnitude depend
upon the debonding angle and loading direction. The outcome
still be an explicit set of formulas for the effective moduli but no
with a debonding-angle dependence.

2 Properties of the Fictitious Inclusion
We shall consider both particle and fiber composites in a ra

broad sense, in that the particles may be spherical or aligned s
roidal inclusions and that fibers may be circular or elliptic cyli
ders. The schematic diagrams depicting the debonding locat
~with exaggeration on the surface separation for clarity! for these
two classes of inclusions are shown in Fig. 1~a!–~d! for particles
and Fig. 1~e!–~f ! for fibers. Figure 1~a! shows the debonding on
the top and bottom of a prolate inclusion, and when the asp
ratio a—defined as the length-to-diameter ratio—is one, it tur
into ~b!, a spherical inclusion. Figure 1~c! indicates the debonding
on the lateral surface of an oblate inclusion and when the as
ratio—the thickness-to-diameter ratio—is one, it turns into~d!, a
sphere. Note that the nature of debonding in~b! and ~d! are dif-
ferent. In Fig. 1~e!, debonding occurs on the top and bottom~the
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Fig. 1 Schematic diagrams for the interfacial partial debonding: „a… debonding on the top and bottom
of prolate inclusions, „b… debonding on the top and bottom of spherical particles, „c… debonding on the
lateral surface of oblate inclusions, „d… debonding on the lateral surface of spherical particles, „e…
debonding on the top and bottom of elliptic cylinders, and „f … debonding on the top and bottom of
circular fibers
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narrower sides! of an elliptic fiber, and when the cross-section
aspect ratioa—defined as the thickness-to-width ratio—is one
turns into the traditional circular fiber in~f !. The specific cases
studied in Zhao and Weng@1# were for debonding on the top an
bottom of Fig. 1~c! and on the lateral surface of Fig. 1~a!; as both
types of debonding were on the broad side of the spheroid it
considered sensible to assume that the load transfer ability o
inclusion was completely lost when the debonding angle was
ficiently wide. Cases~b! and ~f ! here are the types of debondin
commonly studied in literature. We note in passing that the ela
field involving one interfacial arc crack for a circular fiber in a
infinitely extended matrix has been derived by England@5# and
Toya @6# and that the result has been used by Ju@7# to construct a
damage model for a fiber-reinforced composite, but that iss
involving doubledebonding in afinite matrix as considered her
appear not to have been addressed before.

Now debonded particles or fibers of each kind are rando
placed in the matrix but with a fixed orientation, so that the co
posite as a whole is transversely isotropic in~a!–~d!, and ortho-
tropic in ~e!–~f !. Our objective is to derive a set of explicit for
mulas for the five or nine effective moduli that could provid
some insights into the effect of debonding angle and at the s
time remain potentially useful for design or application. The sy
metric axis of the spheroidal particles in~a!–~c! is taken to be
direction-1, whereas for the fibers in~e!–~f ! the debonding direc-
tion is designated as direction-3. Anglef represents one-half o
the total debonding angle so that whenf50 the composite is
perfectly bonded and whenf590 deg it is totally debonded. In
the two-phase composite the inclusions will be referred to
phase 1 and the matrix as phase 0, with the volume concentra
of the r th phase denoted bycr . For simplicity both phases will be
taken to be isotropic, with the Young’s modulusEr and Poisson’s
ratio n r . The concept to be presented, however, applies to an
tropic inclusions.

To determine the reduced moduli of the fictitious inclusion th
is to be used to replace the debonded inclusion but now beco
perfectly bonded to the matrix, we shall account for the par
loss of load-transfer ability due to partial debonding in terms
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the volume fraction of the inclusion directly between the debo
ing surfaces in accordance with the loading direction. An ani
tropic damage parameterDi will be used to denote this effect fo
loading direction-i. Out of the six figures in Fig. 1, there are thre
distinct cases:~a!, ~c!, and~e!. We now analyze these cases sep
rately.

2.1a Aligned Prolate Inclusions With Debonding on the
Top and Bottom Surfaces. For Fig. 1~a!, the Young’s modulus
of the perfectly bonded fictitious inclusion in direction-1 is calc
lated on the basis of an effective stresss11

c such that s11
e

5s11/(12D1) under a pure tensile loadings11. This leads to a
reduced Young’s modulus

E11
~1!5E1~12D1!, (1)

in the debonding direction, where the superscript 1 signifies th
refers to the perfectly bonded fictitious inclusion. The dama
parameterD1 is calculated according to

D15Vd1 /V, (2)

whereVd1 is the volume of the ‘‘damaged’’ part of the inclusio
directly between the two debonding surfaces, andV the volume of
the inclusion. After some elementary calculus one finds that

D1512S cos2 f

a2 sin2 f1cos2 f D 3/2

, (3)

in terms of the debonding anglef and aspect ratioa. When the
prolate inclusion turns into a sphere as in Fig. 1~b!, this damage
parameter is simply

D1512cos3 f. (4)

Due to symmetry the damage parameterD2 andD3 for tensile
loading in the 2 and 3 directions are identical and their value
be evaluated as

D25Vd2 /V, (5)
MAY 2002, Vol. 69 Õ 293
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whereVd2 is now the volume of the damaged part of the inclusi
associated with the direction-2 loading; it is also the top and b
tom parts ofVd1 . It follows that

D2512
cosf~3a2 sin2 f12 cos2 f!

2~a2 sin2 f1cos2 f!3/2 . (6)

When the inclusions are spherical, it turns into

D2512cosfS 11
1

2
sin2 f D . (7)
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The Young’s modulus of the fictitious inclusion in the transver
direction is taken to be

E22
~1!5E33

~1!5E1~12D2!. (8)

Following similar consideration for other loading directions, t
compliance matrix of the fictitious inclusions can be written as
the
M15

l

1

E1~12D1!
2

n1

E1
2

n1

E1
0 0 0

2
n1

E1

1

E1~12D2!
2

n1

E1~12D2!
0 0 0

2
n1

E1
2

n1

E1~12D2!

1

E1~12D2!
0 0 0

0 0 0
11n1

E1~12D2!
0 0

0 0 0 0
11n1

E1~12D1!
0

0 0 0 0 0
11n1

E1~12D1!

m
.

2.1b Aligned Oblate Inclusions With Debonding on the Lateral Surface. When debonding occurs on the lateral surface of
oblate inclusion as depicted in Fig. 1~c!, the compliance matrix of the fictitious inclusion may be written as

M15

l

1

E1~12D18!
2

n1

E1
2

n1

E1
0 0 0

2
n1

E1

1

E1~12D28!
2

n1

E1~12D28!
0 0 0

2
n1

E1
2

n1

E1~12D28!

1

E1~12D28!
0 0 0

0 0 0
11n1

E1~12D28!
0 0

0 0 0 0
11n1

E1~12D28!
0

0 0 0 0 0
11n1

E1~12D28!

m
,

-

where in terms ofVd2 , Vd1 , D2 , andD1 of the previous case, the
damage parameters are

D285Vd28 /V5~V2Vd2!/V512D2 ,

D185Vd18 /V5~V2Vd1!/V512D1 . (9)

Thus in terms of the current debonding anglef which forms a
90 deg conjugate with the previous debonding angle
D285
sinf~3a2 cos2 f12 sin2 f!

2~a2 cos2 f1sin2 f!3/2 ,

D185S sin2 f

a2 cos2 f1sin2 f D 3/2

. (10)

For spherical particles as depicted in Fig. 1~d!, these damage pa
rameters turn into
Transactions of the ASME
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D285sinfS 11
1

2
cos2 f D , D185sin3 f. (11)

2.2 Aligned Elliptic Cylinders With Debonding on the Top
and Bottom Surfaces. The anisotropic damage parameters
this case are measured by the area directly beneath the debo
portions according to the loading mode. For loading alo
direction-3, the debonding direction, direct integration of the a
for the elliptic surface yields

D35
2

p F a sinf cosf

a2 sin2 f1cos2 f
1sin21S a sinf

~a2 sin2 f1cos2 f!1/2D G .
(12)

For circular fibers (a51) it is simply

D35
2

p
~sinf cosf1f!. (13)
a

t
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For direction-2 along the thickness, it is

D25
2

p

a sinf

~a2 sin2 f1cos2 f!1/2 Fsin21S a sinf

~a2 sin2 f1cos2 f!1/2D
2

cosf

~a2 sin2 f1cos2 f!1/2G . (14)

With circular fibers it has the simple expression

D25
2

p
sinf~f2cosf!. (15)

The compliance matrix of the fictitious elliptic fiber takes th
form
M15

l

1

E1
2

n1

E1
2

n1

E1
0 0 0

2
n1

E1

1

E1~12D2!
2

n1

E1
0 0 0

2
n1

E1
2

n1

E1

1

E1~12D3!
0 0 0

0 0 0
11n1

E1~12D3!
0 0

0 0 0 0
11n1

E1~12D3!
0

0 0 0 0 0
11n1

E1~12D2!

m
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3 Effective Moduli of the Partially Debonded Compos-
ites

Once the elastic compliances of the fictitious inclusions
established, one may invoke any micromechanical theories
perfectly bonded composites to evaluate the effective moduli.
the problem with aligned ellipsoidal inclusions the simplest one
likely to be Willis’ @2# approach, which gives an identical result
the Mori-Tanaka@3# approach for the aligned case. This mod
inherently takes the distribution function of the inclusions to
identical to the inclusion shape~see Weng@8# for proof!. The
established compliancesM1 turn into the moduliL1 for the ficti-
tious inclusions withL15M1

21. The effective moduli tensor of the
debonded composite then follows as

L5~c1L1A11c0L0!~c1A11c0I !21, (16)

whereI is the fourth-order identity tensor, andA1 the strain con-
centration tensor of a single fictitious inclusion embedded in
infinitely extended matrix. In terms of Eshelby’s@9# S-tensor for
an ellipsoidal inclusion, it is given by

A15@ I 1SL0
21~L12L0!#21. (17)

The components of theS-tensor for a spheroidal inclusion and a
elliptic cylinder can be found in Mura@10#.
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We now examine the results based on the proposed appro
Numerical calculations were performed for the silicon-carbid
aluminum system, with the properties~@11,12#!:

Silicon carbide: E15490 GPa, n150.17,

Aluminum: E0568.3 GPa, n050.33. (18)

3.1a Aligned Prolate Inclusions With Debonding on the
Top and Bottom Surfaces. With spherical particles (a51) the
five transversely isotropic moduli of the composite whose par
debonding is depicted in Fig. 1~b! are shown in Fig. 2. HereE11,
E22, n12, m12, andm23 are, respectively, the longitudinal Young
modulus, transverse Young’s modulus, major Poisson’s ratio, a
shear modulus, and transverse shear modulus of the partially
bonded composite. The plots are displayed as a function of
bonding anglef at three selected particle concentrations: 0.1, 0
and 0.3. We did not go beyond 0.3 as the Willis-Mori-Tana
formulas are essentially a low concentration theory. A qu
glance over these five figures indicates thatE11, n12 andm12 are
the moduli that are sensitive to the debonding angle. Even
these three moduli there appears to have an incubation pe
before the debonding angle begins to show its effect, that is,
spherical particles as shown here, when the debonding ang
small, the reduction of the longitudinal Young’s modulus does
MAY 2002, Vol. 69 Õ 295
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Fig. 2 The influence of debonding angle on the five effective moduli of the composite whose spherical par-
ticles debonded on the top and bottom
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begin to show up until about 30 deg atc150.1 and about 15 deg
at c150.3. But further increase in the debonding angle will lead
a visible reduction. Atf560 deg, the reduction ofE11 with c1
50.1 is about 15% and withc150.3 it is about 38%. There is als
a cross over around thisf as a higher concentration of debond
particles becomes more detrimental to the strengthening ef
Similar features are also observed form12, but the crossover even
is not a feature of the major Poisson’s ration12 which exhibits a
reversed trend in terms of the particle concentration.
Vol. 69, MAY 2002
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When the prolate inclusions take another shapes, the reduc
of the five moduli are shown in Fig. 3, atc150.1. The shape-
dependence forE11 andn12 are seen to be not monotonic. Whil
there is a significant incubation period fora51, the drop of the
modulus fora510 is almost immediate. This is due to the fa
that, at thisa, the major body of the inclusion with a large deb
onding angle is directly under the cracks and it is not function
as a fully effective medium to carry the load. Even though un
the perfectly bonded condition (f50) its E11 was greater than
Transactions of the ASME
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Fig. 3 The influence of debonding angle on the five effective moduli of the composite whose prolate inclu-
sions debonded on the top and bottom
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that ofa51, it quickly lost the ground and rendered the compo
ite weak when the debonding angle increases. This is the re
for the crossover effect inE11. The existence of a deflection poin
as mentioned in the Introduction—though not evident ina51 up
to 60 deg—is now visible in every curve. In the transverse dir
tion, such asE22 and m23, the reduction of the moduli also be
comes significant asa increases, so unlike the spherical case
moduli reduction in the transverse direction is generally not n
ligible for prolate particles as the interfacial cracks will spre
quickly to the surface normal to the 2-3 directions.
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3.1b Aligned Oblate Inclusions With Debonding on the
Lateral Surface. When debonding occurs on the lateral surfa
of the spherical particles as depicted in Fig. 1~d!, the angle-
dependence of the reduction for the five moduli is displayed
Fig. 4. In this case the transverse properties—E22 and m23—are
the figures of merit. The nature of the reduction inE22 is to be
compared with that ofE11 in Fig. 2, andm23 with m12. It is found
that the incubation period—even for the low concentrationc1
50.1—is shorter in this case. The reduction in bothE22 andm23 is
almost immediate as the debonding angle increases, leading
MAY 2002, Vol. 69 Õ 297
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Fig. 4 The influence of debonding angle on the five effective moduli of the composite whose spherical
particles debonded on the lateral surface
-
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crossover. The off-axis moduliE11 andm12 in this case also show
a clear dependence onf following an incubation period, a phe
nomenon not present inE22 andm23 of Fig. 2. The crossover o
the moduli seems to occur at a fixed debonding angle for e
modulus, regardless of the particle concentration. Such an ang
smaller for the two in-plane moduli~around 45 deg!, but greater
for the two axial moduliE11 andm12 ~about 70 deg!.

The shape-dependence of the reduction with the lateral inte
cial debonding is shown in Fig. 5, forc150.1. As the inclusions
take the more oblate shape, say witha50.1, the reduction inE22
and m23 is quite drastic. Partial debonding in this case quick
spreads to the flat parts of the inclusion on the top and bott
rendering the entire inclusion almost useless. The asymptotic p
of the moduli in E22 and m23 are essentially those of a porou
ol. 69, MAY 2002
ach
le is

rfa-
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material. Due to such a sharp reduction at a smalla, there is a
crossover effect in these two moduli. While no crossover is
served forE11 andm12, significant influence byf is evident when
the inclusion is flat.

3.2 Aligned Elliptic Cylinders With Debonding on the Top
and Bottom Surfaces. With circular fibers as depicted in Fig
1~f !, the reduction of the nine orthotropic moduli as a function
debonding anglef is shown in Fig. 6. Here, as in the previou
case, Poisson’s ration i j is defined as the ratio of strain shrinkag
in the j-direction due to a tensile stress in thei-direction. Keeping
in mind that fibers are aligned in direction-1 and debonding
along direction 3, it is clear thatE11, m12, andn12 are not affected
Transactions of the ASME
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Fig. 5 The influence of debonding angle on the five effective moduli of the composite whose oblate inclusions
debonded on the lateral surface
n
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by f. But the figures of merit in this problem areE33 and m23,
and it is found that their reductions are faster than their cou
parts in the spherical case~E11 and m12 in Fig. 2!, for more
volume is affected by the interface cracks in a cylinder. BothE33
andm23 show a cross over at about 50 deg, in contrast to the
deg for spherical particles.

The shape-dependence of the moduli reduction for the fi
composite is displayed in Fig. 7, atc150.1. As expected,E11 is
still not affected byf and is virtually independent of the cros
al of Applied Mechanics
ter

60

ber

-

sectional shape of the fibers. But the two previous insensi
moduli—m12 andn12—are now exhibiting a strong dependence
the debonding angle especially when the elliptic cylinder takes
form of a thin ribbon (a50.1). The two major moduli—E33 and
m23—clearly are very sensitive to the debonding angle as
cross-sectional aspect ratio diminishes. The counterparts of t
nine moduli for a perfectly bonded composite can be found
@13#.

Finally, in order to provide some perspective on the quantitat
MAY 2002, Vol. 69 Õ 299
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Fig. 6 The influence of debonding angle on the nine effective moduli of the composite whose circular fibers
debonded on the top and bottom
a

g. 8
ment
ibit
accuracy of the proposed concept, a comparison for the cas
circular fiber is made with the finite element results of Zhe
et al.@4#. This comparison is given in Fig. 8 forE33 atc150.1 and
0.3. The finite element calculations also made use of the s
silicon carbide/aluminum system, and the fiber debonding is a
Õ Vol. 69, MAY 2002
e of
ng

me
lso

on the top and bottom as depicted in Fig. 1~f!. Their results, using
a traction-prescribed boundary condition, are reproduced in Fi
as dashed curves, and the results from the present develop
are given as solid lines. The finite element results also exh
certain incubation period and, atc150.3, develop a deflection
Transactions of the ASME
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Fig. 7 The influence of debonding angle on the nine effective moduli of the composite whose elliptic cylinders
debonded on the top and bottom
n the
nable
e

e a
point in the curve at aroundf535 deg. Comparison betwee
these two sets of curves indicates that the theory agrees well
the finite element result atc150.1, but not so well atc150.3. As
the effective-medium theory of Willis-Mori-Tanaka is accurate
low concentration, any error inc150.1 is a direct result of the
new concept proposed in Section 2. Such an error—as show
al of Applied Mechanics
with

at

n in

Fig. 8—is small, suggesting that using the volume between
interface cracks as a measure of damage parameter is a reaso
approach. The significant departure between the two at a largf
for c150.3 may be attributed to two factors:~i! the boundary-
traction approach adopted in the finite element tends to provid
lower-bound value, and~ii ! the Willis-Mori-Tanaka approach is
MAY 2002, Vol. 69 Õ 301
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Fig. 8 Comparison between the proposed theory and the finite element result
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also a lower-bound one before debonding but can turn into
upper-bound one when the debonding angle is wide~the inclu-
sions would become softer than the matrix!. As no calculation was
made using the displacement-boundary condition in finite elem
and no high-concentration effective medium theory is known
exist for the present problem, the precise cause of the discrep
at c150.3 remains somewhat difficult to ascertain.

4 Concluding Remarks
In order to account for the effect of debonding angle on

overall elastic moduli of a partially debonded composite, we h
proposed to use the volume of the inclusion directly beneath
interface cracks as a measure of damage parameter. This vo
not only depends on the the debonding anglef, but also on the
loading direction. As such, a set of anisotropic damage parame
have been constructed. This in turn provides the properties for
fictitious inclusions which are used to replace the debonded in
sions but now are perfectly bonded to the matrix with reduc
elastic moduli. Debonding on the top and bottom of prolate inc
sions, on the lateral surface of oblate inclusions, and on the
and bottom surfaces of elliptic cylinders, have been considere

With these reduced moduli for the fictitious inclusions, t
overall elastic moduli of the partially debonded composite th
can be determined using any micromechanical theories. For
plicity we have used the Willis-Mori-Tanaka theory to compu
the effective moduli. The results for the five transversely isotro
moduli of two kinds of particulate composites and the nine ort
tropic moduli for the fibrous composites are given. A comparis
with the finite element result for the fiber case suggests that
concept proposed for the determination of the reduced modu
the fictitious inclusions could be a viable one.
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Torsional Impact Response of a
Penny-Shaped Interface Crack in
Bonded Materials With a Graded
Material Interlayer
In this paper, the dynamic response of a penny-shaped interface crack in bonded di
lar homogeneous half-spaces is studied. It is assumed that the two materials are b
together with such a inhomogeneous interlayer that makes the elastic modulus
direction perpendicular to the crack surface is continuous throughout the space.
crack surfaces are assumed to be subjected to torsional impact loading. Laplace
Hankel integral transforms are applied combining with a dislocation density functio
reduce the mixed boundary value problem into a singular integral equation with a
eralized Cauchy kernel in Laplace domain. By solving the singular integral equa
numerically and using a numerical Laplace inversion technique, the dynamic stres
tensity factors are obtained. The influences of material properties and interlayer thick
on the dynamic stress intensity factor are investigated.@DOI: 10.1115/1.1459066#
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1 Introduction
Interface crack problems of composite structures have been

important topic of fracture mechanics in recent decades. There
a large number of solutions in the technical literature for isotrop
orthotropic, and anisotropic bonded materials containing interf
cracks. Some typical studies that should be mentioned are tha
asymptotic analysis of the elastic fields~Williams @1#!, the stan-
dard interface crack solutions~Erdogan @2#, Rice and Sih@3#,
Willis @4# and Qu and Bassani@5#!, the crack-tip contact mode
~Comninou @6# Achenbach et al.@7# and Rice@8#!, the elastic-
plastic analysis~Shih and Asaro@9#! and so on. Hutchinson an
Suo @10# once gave an extensive overview on the static beha
of interface cracks. On the other hand, there are also a numb
papers devoted to the dynamic fracture mechanics of inter
cracks. Sih and Chen@11# studied several dynamic responses
composite materials with interface cracks, such as antiplane s
of interface rectangular cracks in layered orthotropic dissim
materials, orthotropic layered composite debonded over a pe
shaped region subjected to sudden shear, diffraction of ti
harmonic waves by interface cracks in dissimilar media. Takei
co-workers@12# and Li and Tai@13# considered the elastodynam
response of a composite with an interface crack under antip
shear loading. Ueda and co-workers@14# reported the torsiona
impact response of a penny-shaped crack on a bimaterial in
face. Beyond these, considerable experimental works on the
namics of interface cracks~Lambros and Rosakis@15# and Singh,
Lambros, and Rosakis@16#! and numerical simulations of dy
namic interfacial crack growth~Xu and Needleman@17# and
Needleman and Rosakis@18#! were also carried out. Rosakis an
Ravichandran@19# recently made a rather comprehensive revi
on dynamic failure mechanics.

The researches mentioned above usually assumed that the
similar materials were bonded directly~bimaterials! or with a thin

1Current address: Department of Mechanical Engineering, University of D
ware, Newark, DE 19716.

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, June
1999; final revision, June 22, 2000. Editor: A. Needleman. Discussion on the p
should be addressed to the Editor, Prof. Lewis T. Wheeler, Department of Mecha
Engineering, University of Houston, Houston, TX 77204-4792, and will be accep
until four months after final publication of the paper itself in the ASME JOURNAL OF
APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
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homogeneous layer which properties different from that of bon
materials. However, recent studies have indicated that in m
cases an inhomogeneous interlayer exists between the bonde
terials~Subramanian and Crasto@20#!. This kind of interlayer may
be developed as a result of certain processing techniques~Lugsc-
heider@21# and Shiau et al.@22#! or results from intentional grad
ing of the material composition~Kurihara et al.@23# and Jager
et al. @24#!. For the static problems of fracture mechanics ab
the inhomogeneous interlayer, there have been many theore
studies~Delale and Erdogan@25#, Ozturk and Erdogan@26#, Wang
et al. @27# and Fildis and Yahsi@28#!. In their studies, two kind of
inhomogeneous interlayer models have been proposed. On
them is the exponential function model and another is a so-ca
generalized interlayer model, which is a power function. The
models have physical background and make the problem of s
oscillatory singularity~Williams @1#! overcome. However, as fo
dynamic fracture mechanic of interface cracks, there are few s
ies considered the effect of an inhomogeneous interlayer.

In this paper, we examine the torsional impact response o
penny-shaped interface crack in a layered composite. Altho
this problem is rather a theoretical problem, it also has the e
neering background, such as the sudden appearance of a p
shaped interface crack in a component under torsional load
The main difference between our present paper and litera
~Ueda, Shindo, and Astumi@14#! is that a graded material inter
layer is introduced. Our main objective is to investigate whet
the graded material interlayer is helpful in reducing the dynam
stress intensity factor of an interface crack in a bonded mate
and how the material inhomogeneity and interlayer thickness
fluence the dynamic stress intensity factor. The methods use
our paper are the Laplace and Hankel integral transforms and
singular integral equation technique.

2 Formulation of the Problem
As shown in Fig. 1, consider two dissimilar half-spac

~Material-1 and Material-3! to be bonded with an inhomogeneou
interlayer, which denoted as Material-2. The material propertie
Material-1 and Material-3 are constant and denoted asr1 ,m1 and
r3 ,m3 respectively, wherer is the mass density andm is the shear
modulus.

As we have known, there are two material parameters invol
in the dynamic torsional problems. They are the shear modulum

la-
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and the mass densityr. For the inhomogeneous interlayer, due
the mathematical complexity introduced by the inertia term, i
necessary to assume that the shear modulus and the mass d
can vary independently. Such an idealization can offer consi
able simplifications to the analysis. After compared the sev
models for expressing the variation of the shear modulus, suc
the exponential formm(z)5m1 exp(az) ~Delale and Erdogan
@25#!, and the power formm2(z)5m1(11az)k ~Wang et al.@27#!,
we found that the variations

m25m1~11az!2, (1)

r25~r11r3!/2, (2)

are mathematically tractable, and still physically representa
enough. In Eq.~1!, the parametera can be determined by th
continuity condition of the shear modulusm2(0)5m1 and
m2(h)5m3 , that isa5(Am3 /m121)/h.

Assume a penny-shaped crack of diameter 2a is located at the
interface of Material-1 and Material-2 and subjected to a torsio
impact loadingP(r ). For the present problem, in the cylindric
polar coordinates (r ,u,z), only the displacement (uu) i
5wi(r ,z,t) nonvanishes, where subscriptsi 51,2,3 refer to mate-
rials 1, 2, and 3, and wheret is the time. The nonvanishing stres
componentstuz andt ru are as follows:

~tuz! i5m i

]wi

]z
, ~t ru!5m i S ]wi

]r
2

wi

r D , i 51,2,3. (3)

The governing equation of motion gives

]2wi

]r 2 1
1

r

]wi

]r
2

wi

r 2 1
]2wi

]z2 5
r i

m i

]2wi

]t2 , i 51,3 (4)

]2w2

]r 2 1
1

r

]w2

]r
2

w2

r 2 1
]2w2

]z2 1
m28~z!

m2~z!

]w2

]z
5

r2

m2~z!

]2w2

]t2

(5)

wherem28(z) is the derivative ofm2(z) with respect toz.
The boundary conditions are given as follows:

~tuz!1~r ,02,t !5~tuz!2~r ,01,t !5P~r !H~ t !, 0<r ,a, (6)

w1~r ,02,t !5w2~r ,01,t !, r>a, (7)

where H(t) is the Heaviside unit step function. The continui
conditions of the displacement and the shear stress acros
interfaces give

~tuz!1~r ,02,t !5~tuz!2~r ,01,t !, r>a, (8)

Fig. 1 A penny-shaped crack on the interface of a graded
material interlayer and a homogeneous material
304 Õ Vol. 69, MAY 2002
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w2~r ,h2,t !5w3~r ,h1,t !, 0<r ,`, (9)

~tuz!2~r ,h2,t !5~tuz!3~r ,h1,t !, 0<r ,`. (10)

Note that the standard Laplace transform onf (t) is

f * ~p!5E
0

`

f ~ t !e2ptdt (11)

whose inversion is

f ~ t !5
1

2p i EBr
f * ~p!eptdp (12)

and Br denotes the Bromwich path of integration. Applying t
transform~11! to Eqs.~4! and~5! results in the transformed equa
tions

]2wi*

]r 2 1
1

r

]wi*

]r
2

wi*

r 2 1
]2wi*

]z2 5
r i p

2

m i
wi* , i 51,3 (13)

]2w2*

]r 2 1
1

r

]w2*

]r
2

w2*

r 2 1
]2w2*

]z2 1
m28~z!

m2~z!

]w2*

]z
5

r2p2

m2~z!
w2* .

(14)

Moreover, introducing the pair of Hankel transforms of the fi
order,

Vi~s,z,p!5E
0

`

wi* ~r ,z,p!J1~sr!rdr , (15)

wi* ~r ,z,p!5E
0

`

Vi~s,z,p!J1~sr!sds, (16)

whereJ1( ) is the Bessel function of the first kind, then applyin
Eq. ~15! to the Eqs.~13! and ~14! yields

]2Vi~s,z,p!

]z2 2Fs21
r i p

2

m i
GVi~s,z,p!50, i 51,3 (17)

]2V2~s,z,p!

]z2 1
2a

11az

]V2~s,z,p!

]z

2Fs21
r2p2

m1~11az!2GV2~s,z,p!50. (18)

Considering the displacement conditions thatw1 andw2 vanish
at uzu→`, the solutions of Eqs.~17! and~18! can be expressed a

V1~s,z,p!5A1~s,p!exp~g1z! (19)

V3~s,z,p!5A4~s,p!exp~2g3z! (20)

V2~s,z,p!5A2~s,p!~11az!21/2I bF ~11az!
s

uauG
1A3~s,p!~11az!21/2KbF ~11az!

s

uauG , (21)

where

g15As21
r1p2

m1
, g35As21

r3p2

m3
, b5A1

4
1

r2p2

m1a2

(22)

andI b( ), Kb( ) are the modified Bessel function of the first kin
and the second kind, respectively.

From Eq.~16!, we can obtain the displacements in the Lapla
domain. Subsequently, the shear stresses in the Laplace trans
domaintuz* and t ru* can be obtained from Eq.~3!. Then the un-
known functionsA1 , A2 , A3 , A4 can be determined from the
boundary and the continuity conditions.
Transactions of the ASME
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3 Derivation of the Singular Integral Equation
In Laplace domain, the boundary conditions become

~tuz* !1~r ,02,p!5~tuz* !2~r ,01,p!5
P~r !

p
, 0<r ,a, (23)

w1* ~r ,02,p!5w2* ~r ,01,p!, r>a, (24)

and the continuity conditions across the interfaces become

~tuz* !1~r ,02,p!5~tuz* !2~r ,01,p!, r>a, (25)

w2* ~r ,h2,p!5w3* ~r ,h1,p!, 0<r ,`, (26)

~tuz* !2~r ,h2,p!5~tuz* !3~r ,h1,p!, 0<r ,`. (27)

To reduce the mixed boundary conditions~23! and~24! into an
integral equation, we first define the following dislocation dens
function on the interface of Material-1 and Material-2:

g~r ,p!5
1

r

]

]r
@rw2* ~r ,01,p!2rw1* ~r ,02,p!#. (28)

From the continuity conditions and the dislocation density fu
tion, we can obtain

~tuz* !2~r ,0,p!5m2~0!E
0

a

R~u,r ,p!g~u,p!udu (29)

where

R~u,r ,p!5E
0

`

D~s,p!J1~sr!J0~su!sds (30)

and

D~s,p!5
d21~sd321d42!2d22~sd311d41!

~d112d21!~sd321d42!2~sd311d41!~d122d22!
.

(31)

The coefficientsdi j in Eq. ~31! are as follows:

d115sIbS s

uau D , d125sKbS s

uau D ,

d2152S 1

2
1b DaI bS s

uau D I b21S s

uau D sa

uau
,

d2252S 1

2
1b DaKbS s

uau D2Kb21S s

uau D sa

uau
, (32)

d315~11ah!21/2I bS ~11ah!
s

uau D ,

d325~11ah!21/2KbS ~11ah!
s

uau D ,

d4152S 1

2
1b Da~11ah!23/2I bS ~11ah!

s

uau D
1~11ah!21/2I b21S ~11ah!

s

uau D sa

uau
,

d4252S 1

2
1b Da~11ah!23/2KbS ~11ah!

s

uau D
2~11ah!21/2Kb21S ~11ah!

s

uau D sa

uau
.

Note that

l5 lim
s→`

D~s,p!52
1
2 . (33)

R(u,r ,p) can be further expressed as
Journal of Applied Mechanics
ity
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R~u,r ,p!5Rn~u,r ,p!1Rs~u,r ,p! (34)

where

Rn~u,r ,p!5E
0

`

@D~s,p!2l#J1~sr!J0~su!sds, (35)

Rs~u,r ,p!5lE
0

`

J1~sr!J0~su!sds

52
l

p F 1

u~u2r !
1

2u2r 12rM ~u,r !

u~u22r 2! G , (36)

and

M ~u,r !5H u

r
ES u

r D , u,r ,

u2

r 2 ES r

uD2
u22r 2

r 2 KS r

uD , u.r .

(37)

E( ) and K( ) are complete elliptic integrals of the second a
first kind, respectively. From the boundary condition~23!, we ob-
tain a singular integral equation with a generalized Cauchy ker

E
0

aF2
l

p

1

u2r
1R0~u,r ,p!Gg~u,p!du5

P~r !

m2~0!p
, 0,r ,a,

(38)

where

R0~u,r ,p!5uRn~u,r ,p!1
l

p

u1r 22rM ~u,r !

u22r 2 . (39)

The single-valued condition can be given from the definition
g(u,p),

E
0

a

ug~u,p!du50. (40)

4 Dynamic Stress Intensity Factor
Normalized the interval by the following transformation o

variables:

u5
a

2
~11j!, r 5

a

2
~11h!. (41)

The integral Eqs.~38! and ~40! can be rewritten as

E
21

1 F2
l

p

1

j2h
1R0~j,h,p!GG~j,p!dj5

P̄~h!

m2~0!p
, (42)

E
21

1

~11j!G~j,p!dj50, (43)

where

R0~j,h,p!5
a

2
R0Fa

2
~11j!,

a

2
~11h!,pG , (44)

G~j,p!5gFa

2
~11j!,pG , (45)

P̄~h!5PFa

2
~11h!G . (46)

Considering the singularity at the crack tip, we assume tha

G~j,p!5
Ḡ~j,p!

p

1

A12j2
. (47)
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Following the numerical method developed by Erdogan for s
gular integral equations~Erdogan @29#!, expandingḠ(j,p) in
forms of Chebeshev polynomials

Ḡ~j,p!5(
n50

`

BnTn~j!, (48)

we can obtain a system of equations,

(
i 51

n F 2l

j i2h j
1pR0~j i ,h j ,p!G Ḡ~j i ,p!

n
5

P̄~h j !

m2~0!
, (49)

(
i 51

n
~11j i !

n
Ḡ~j i ,p!50, j 51,2, . . . ,n21, (50)

wherej i , h j are the roots of Chebeshev polynomial of the fi
kind and the second kind, respectively,

j i5cosS 2i 21

2n
p D , i 51,2, . . . ,n,

h j5cosS j

n
p D , j 51,2, . . . ,n21. (51)

Solving the system of linear algebraic Eqs.~49! and ~50!, the
unknown functionḠ(j,p) can be obtained.

If the mode III stress intensity factor in Laplace domain
defined by

K III* ~p!5 lim
r→a1

A2~r 2a!~tuz* !2~r ,0,p!, (52)

then by using the properties of Chebeshev polynomials, we ob

K III* ~p!5lm2~0!Aa

2

Ḡ~1,p!

p
. (53)

The dynamic stress intensity factor in time domain can be
tained by

K III ~ t !5lm2~0!Aa

2

1

2p i EBr

Ḡ~1,p!

p
eptdp. (54)

5 Results and Discussion
Suppose that the crack surface torsional loading isP(r )

52t0r /a. In this problem, the variables arem3 /m1 , h/a, and
r3 /r1 . To investigate the influences of these parameters on
dynamic stress intensity factor, we analyzed some real compo
materials, such as Al2O3 /Ni, TiC/C, SiO2 /Ni, SiC/C, and so on,
and found that the parameterm3 /m1 may vary in a wide range bu
the parameterr3 /r1 may vary in a relatively narrow range. F
nally, we chose the following combinations for the analys
m3 /m151/12,1/3,3,12;r3 /r150.5,1.0,2.0,4.0;h/a50.2,0.5,1.0,
2.0.

Solving Eqs.~49! and ~50!, and accomplishing the Laplace in
version~54! by the numerical procedure developed by Miller a
Guy @30#, the mode III dynamic stress intensity factors in differe
cases are obtained. The results of the normalized dynamic s
intensity factorK III (t)/t0Aa as a function ofc21t/a are shown in
Figs. 2–4, wherec215Am1 /r1 is the shear wave velocity in
material-1. A general feature of the curves is observed to be
the stress intensity factors rise rapidly and reach a peak,
oscillate about their static values with decreasing magnificat
This general feature has been reported for homogeneous mat
and layered composite materials.

Figure 2 shows the variations of the normalized dynamic str
intensity factor with time for various ratios of the shear modu
m3 /m1 while r3 /r151.0 andh/a51.0. It can be seen that th
K III (t) factor tends to monotonically decrease with the increas
of m3 /m1 . The differences between the peak values of curves
the static values also decrease with increasingm3 /m1 . This ten-
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Fig. 2 The effect of the ratio of shear modulus on the normal-
ized dynamic stress intensity factor

Fig. 3 The effect of the interlayer thickness on the normalized
dynamic stress intensity factor
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dency is somewhat different from that of two dissimilar materi
bonded directly without an interlayer~Ueda, Shindo, and Astum
@14#!. In the latter problem the peak values ofK III (t) factor de-
crease with the increasing ofm3 /m1 , but the intersections exis
during the oscillating procedure.

Figures 3~a! and 3~b! display that theK III (t) factor is also af-
fected by the ratio of interlayer thickness to crack radiush/a. For
m3 /m1,1, the dynamic stress intensity factors decrease with
creasingh/a. The largerh/a is, the more the peak value goe
beyond its corresponding static value. This phenomenon is
picted in Fig. 3~a! for m3 /m151/3. Form3 /m1.1, the opposite
phenomenon can be observed from Fig. 3~b! for m3 /m153 that
the dynamic stress intensity factors increase with increasingh/a.

The effect of the mass density ratior3 /r1 on the variation of
the dynamic stress intensity factor is shown in Fig. 4. This eff
has not been reported before for layered composite materials.
observed that the peak value ofK III (t) factor increases when th
ratio r3 /r1 increases. This phenomenon can be observed fo
arbitrary m3 /m1 and different ratiosh/a, although these result
are not given here as the space of the paper is limited.

As explained in Section 2, in this paper we only use the fo
m2(z)5m1(11az)2 to obtain the solution. A different choice o
m2(z) may change the numerical values, but they should not l
to any change in the general trends of the results. We believ
can be verified in our future works by using numerical metho
such as the finite element method.

6 Conclusions
This paper presents the dynamic stress intensity factors f

penny-shaped interface crack in bonded dissimilar homogen
half-spaces sandwiching an inhomogeneous interlayer. It is
sumed that the shear modulus in the direction perpendicular to
crack surface is continuous throughout the space and the c
surfaces are subjected to torsional impact loading. A special m
for describing material inhomogeneity parameter is introduc
Laplace and Hankel transforms are applied to reduce the m
boundary value problem into a singular integral equation wit
generalized Cauchy kernel. The results reveal that the dyna
stress intensity factors are affected not only by the stiffness r
but also by the interlayer thickness and the mass density ratio.
observed that the influences of the stiffness ratio and the interl
thickness are stronger than the influences of the mass densit
tio.

Fig. 4 The effect of the ratio of mass density on the normal-
ized dynamic stress intensity factor
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Elastic-Inelastic Self-Consistent
Model for Polycrystals
Based on a well-established nonincremental interaction law for fully anisotropic
compressible elastic-inelastic behavior of polycrystals, tangent formulation-based
simplified interaction laws, of softened nature, are derived to describe the nonli
elastic-inelastic behavior of fcc polycrystals under different loading paths. Within
framework of small strain hypothesis, the elastic behavior, which is defined at gran
level, is assumed to be isotropic, uniform, and compressible neglecting the grain rota
The heterogeneous inelastic deformation is microscopically determined using the
theory. In addition, the granular elastic behavior and its heterogeneous distribution
grain to grain within a polycrystal are taken into account. Comparisons between t
two approaches show that the simplified one is more suitable to describe the o
responses of polycrystals notably under multiaxial loading paths. Nonlinear stress-s
behavior of polycrystals under complex loading, especially a cyclic one, is of partic
interest in proposed modeling. The simplified model describes fairly well the yield su
evolution after a certain inelastic prestraining and the principle cyclic features such
Bauschinger effect, additional hardening, etc.@DOI: 10.1115/1.1427693#
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1 Introduction
Since the first reported study in the area of the self-consis

approach originated by Sachs@1#, then Cox and Sompmith@2#,
and Taylor@3#, this area has been a topic of increasing interes
the field of polycrystal modeling. For small and large deformat
conditions, many research efforts have been theoretically de
oped. These concern purely elastic case~see, for example, Her
shey @4# and Kröner @5#! or viscoelastic behavior~see, for ex-
ample, Laws and McLaughlin@6# and Kouddane et al.@7#! as well
as inelastic behavior, i.e., plastic or viscoplastic~Brown @8#, Rice
@9,10#, Hutchinson@11#, Molinari et al.@12#, Weng@13#, and Leb-
ensohn and Tome´ @14,15#! or elastic-inelastic behavior of poly
crystals~Lin @16#, Kröner @17#, Budianski and Wu@18#, Hill @19#,
Hutchinson@20#, Berveiller and Zaoui@21#, Weng@22#, Iwakuma
and Nemat-Nasser@23#, Nemat-Nasser and Obata@24#, Lipinski
et al. @25,26#, Kouddane et al.@7#, Rougier et al.@27#, Molinari
et al.@28#, Schmitt et al.@29#, Abdul-Latif et al.@30#, and others!.

The polycrystal is usually viewed as an aggregate of numer
~single or polyphase crystal! grains with different orientations
with respect to the loading axes. The number, orientation,
morphology of grains play an important role on the predic
result. The case of the random crystal distribution in an aggre
of grains is considered here according to the macroscopic iso
pic behavior of the aggregate. The emphasis is placed here o
single-phase fcc polycrystals and the properties of each grain
identical with respect to the crystallographic reference syst
The granular heterogeneity comes, in general, from the dif
ences in the orientation of the grains and the single-crystal int
sic anisotropy since the morphology and spatial distribution of
grains are not taken into account.

For the nonlinear elastic-inelastic behavior of polycrystals,
developed approaches up to now give, in general, approxim
solutions. Whatever the self-consistent approach, the inela
strain in each grain is calculated based on the glide on the c
tallographic slip system~css! level. The resolved shear stressests

1To whom correspondence should be addressed.
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF

MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Jan.
2000; final revision, Apr. 30, 2001. Associate Editor: J. W. Ju. Discussion on
paper should be addressed to the Editor, Professor Lewis T. Wheeler, Departm
Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and
be accepted until four months after final publication of the paper itself in the AS
JOURNAL OF APPLIED MECHANICS.
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are also determined on all slip systems by the well-kno
Schmid’s law~@31#!. Hence, the modeling of the single crystal, fo
such approaches, is almost standard and has indisputable
ments. Since the overall behavior of polycrystals is strongly infl
enced by grain/matrix interaction law, therefore the heterogene
stress and strain fields throughout the matrix~aggregate! necessi-
tate obviously the grain interaction consideration. Moreover,
type of the interaction~hard or soft! of the grain with its matrix
gives an appropriate estimation about the accommodated pl
strain and its repartition between the grain and the surroundin
trivial way to theoretically obtain this grain interaction is the we
known self-consistent relations. Thus, the interaction law rep
sents an extremely important key factor for this type of modeli
Some contributions~for example, Kouddane et al.@7#, Weng@13#,
and Molinari et al.@28#! have developed approximate solution
taking into account partly the viscous character of the intergra
lar interactions. A recent work~@30#! was devoted to mainly de
scribe the overall mechanical cyclic behavior of polycrystals u
der complex loading paths. This represents the first simplifi
version of a self-consistent interaction law proposed by Koudd
et al. @7# in the case of incompressible elastic properties.

In this work, based on one-site nonincremental interaction
for anisotropic and compressible elastic-inelastic behavior of
inclusion embedded in infinite matrix~@12#!, tangent formulation-
based and simplified interaction laws are determined. The
tained models allow to describe the elastic-inelastic behavior
der different loading paths~monotonic and cyclic! for fcc
polycrystals. The theoretical basis of rate-dependent inela
strain is examined at the css level. Contrary to the Abdul-La
et al.’s hypothesis~@30#! which cannot fulfill the physical require
ment entirely, the granular elastic part of the strain is now
sumed to be compressible, uniform, and isotropic. Further,
overall kinematic hardening can be naturally described by the
tained interaction law of the grain with the surrounding. This
due to the existence of the granular elastic behavior in the in
action law since the intergranular accommodation has an ela
nature~@27#!. In the case of simplified law, a phenomenologic
parameter is introduced in order to reproduce the elastic-inela
behavior of polycrystals under multiaxial cyclic loadings as a p
ticular interest of this model.

In view of the importance of the fatigue rupture of polycrysta
a self-consistent model describing the plastic fatigue behavio
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polycrystals has been already proposed~Abdul-Latif and Saa-
nouni @32–34#, Saanouni and Abdul-Latif@35#, Abdul-Latif @36#,
and Abdul-Latif et al.@37#!. It was based on the self-consiste
model proposed by Cailletaud@38# as an initial model of elastic-
viscoplastic behavior of fcc metals. Note that the actual develo
elastic-inelastic model uses less number of internal variables
material coefficients in comparison with Cailletaud’s mod
~@38#!. Hence, it seems to be a judicious choice when the pre
self-consistent model will be coupled with damage as a fut
work predicting the low-cycle fatigue life of metallic polycrystal

2 Self-Consistent Modeling

2.1 GrainÕMatrix Interaction Relation. A simplified inter-
action law is examined and gives the granular stress fields du
the difference between the granular strain rate and that of
aggregate~matrix!. According to the advantage that the nonincr
mental formulation is shown to be softer grain/matrix interactio
than the incremental model, the emphasis is placed on the
version made by Kouddane et al.@7# and then by Molinari et al.
@28#. Concerning Kouddane et al.’s work~@7#!, an elastic-
viscoplastic nonincremental self-consistent model for incompre
ible polycrystals has been proposed. Motivated by a Maxwell-t
law, the interaction law for a spherical isotropic and incompre
ible inclusion with its matrix is given by

2
1

3mo ~ ṡg2Ṡ!2
1

3ho ~sg2S!5~ «̇g2Ė! (1)

where «̇g and Ė are, respectively, the total granular and over
strain rates.Ṡ andṡg are the global and granular rates of deviato
parts of Cauchy stress tensor, respectively.ho is the scalar mac-
roscopic viscous tangent modulus depending on the deforma
history, andmo is the the uniform macroscopic shear modulu
Note that the viscous relaxation is taken into account through
term (21/3ho). In a linear elastic case, the interaction law~1! can
take into account the instantaneous elastic response, i.e., whe
viscosity tends to infinity (ho→`), the total strain rate become
fully elastic Ė→Ėe . This leads to the same form of Kro¨ner’s
interaction relation for an elastic inclusion

ṡg2Ṡ523mo~ «̇e
g2Ėe!. (2)

Note that this relation~2! remains valid under a large jump of th
strain rate where the elastic response dominates.

In the case where a constant strain rate is applied, a visc
relaxation, at steady state condition, will dominate, i.e., we ob
( ṡg2Ṡ)→0 for t→`. Therefore, the interaction law~1! becomes

sg2S523ho~ «̇in
g 2Ėin!. (3)

In order to satisfy the self-consistency conditions,ho has to be
adjusted at each instant~Kouddane et al.@7#!. Numerically, this
task, for uniaxial cyclic loading conditions, is relatively reaso
able~Dingli @39#!. However, if complex biaxial loading paths ar
applied, such conditions will not be respected by the adjustm
of the scalarho, since it depends always on one strain rate dir
tion and not on two or more directions in the same time. Henc
symmetric fourth-rank tangent viscous modulus tensor can
used instead of the scalarho. In this case, the determination of a
the viscous parameters of such operator becomes a very diffi
task particularly from algorithmic point of view. In addition, th
use of nonisotropic tangent viscous modulus introduces a con
erable difficulty in the derivation of the interaction law.

A simplified solution of the grain/matrix interaction law give
by ~1! has been performed by the authors~@30#! to get

ṡg2Ṡ1b~sg2S!523mo~ «̇g2Ė!. (4)

This simple modification is shown to be enough to simul
accurately the polycrystal behavior under different cyclic load
paths when the parameterb is carefully determined~@30#!.
310 Õ Vol. 69, MAY 2002
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Recently, a generalization of the Kouddane et al.’s model~@7#!
for fully anisotropic and compressible elastic-viscoplastic beh
ior with small strain hypothesis was developed by Molinari et
@28#. Based on the tangent formulation, the local and global
haviors are also presented here by elastic-viscoplastic relation
for compressible elastic properties. In order to simplify the s
nificant difficulty of the resolution of this problem, Molinari et a
@28# proposed an approximate solution keeping the same struc
of the incompressible interaction law~Kouddane et al.@7#!, i.e.,
with elastic and viscoplastic parts. The generalized elas
viscoplastic interaction law of Molinari et al.@28# is expressed as
follows:

~Js21
1C!21:~ṡg2Ṡ!1~J8s21

1A!21:~sg2S!5~ «̇g2Ė!
(5)

whereJs andJ8s are respectively fourth rank tensors which ha
to be computed by Green function and integral methods usinA
andC ~@28#!. A is the macroscopic tangent viscoplastic modu
andC being the global stiffness tensor.

In the case where the elastic response dominates the visco

tic term (J8s21
1A)21 becomes negligible with respect to th

elastic part, and the interaction law can be written by

~Js21
1C!21:~ṡg2Ṡ!5~ «̇e

g2Ėe!. (6)

It corresponds to the solution of the elasticity problem for hete
geneous materials.

For a spherical inclusion embedded in an infinite homogen
isotropic matrix having elastic properties defined bym andl ~the
classical Lame’s constants!, the fourth-order interaction tensor i
determined~@40#! as

Ji jkl
s 5

1

15m~3l16m!
@~3l13m!d i j dkl23~3l18m!I i jkl #

(7)

with

I i jkl 5
1

2
~d ikd j l 1d i l d jk!. (8)

As a consequence, the elastic part of the interaction law ca
expressed by

2A~ṡg2Ṡ!1Btr~ṡg2Ṡ!15~ «̇e
g2Ėe! (9)

where the constantsA andB are defined as

A5
2~8m13l!

2m~14m19l!
(10)

B5
~6m1l!~3l18m!

m~448m21456ml1108l2!
(11)

For a fully viscoplastic behavior dominating at stationary st
~in the long range response!, the term (ṡg2Ṡ) is practically van-
ished. Therefore, Eq.~5! can be written approximately as

~J8s21
1A!21:~sg2S!5~ «̇in

g 2Ėin!. (12)

This equation represents a self-consistent approach devel
by Molinari et al. @12# describing the viscoplastic behavior o
polycrystals under large deformation condition.

In the case where the viscoplastic behavior of the matrix
supposed isotropic and incompressible, the tangent modulus
be approximated by

Ai jkl 52hoI i jkl . (13)

For spherical inclusion, the interaction tensorJ8s is given by

J8 i jkl
s 52

1

5ho I i jkl . (14)
Transactions of the ASME
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The viscoplastic part of the general interaction law~5! is there-
fore deduced as

2
1

3ho ~sg2S!5~ «̇in
g 2Ėin!. (15)

The general interaction law for the elastic-viscoplastic behav
of polycrystal~Eq. ~5!! is equal to the sum of the two approxima
parts~elastic: Eq.~9! and viscoplastic: Eq.~15!!. Thus, we get

2A~ṡg2Ṡ!1Btr~ṡg2Ṡ!12
1

3ho ~sg2S!5~ «̇g2Ė!. (16)

The same problem ofho adjustment, as in the incompressib
case~Eq. ~4!!, came across in order to satisfy the self-consiste
conditions especially under multiaxial loading path. Hence,
term (1/3ho) is replaced by a phenomenological parameter~a.0!
and the simplified interaction law can be written as

2A~ṡg2Ṡ!1Btr~ṡg2Ṡ!12a~sg2S!5~ «̇g2Ė!. (17)

2.2 Single-Crystal Constitutive Relations. At this level, it
is assumed that slip is the dominant deformation mechanism
other mechanisms like twinning, grain boundary sliding, etc.,
neglected. The constitutive equations of the inelastic strain
examined at the css scale in the case of fcc structure. The reso
shear stressests are determined by the twice-contracted tenso
product betweensg and the Schmid factor tensorms:

ts5sg:ms (18)

ms5
1

2
@ns

^ bs1ns
^ bs# (19)

wherebs is the unit vector in the slip direction andns is the vector
normal to the slip plane.

For each slip system, only the transgranular isotropic harden
is modeled and represented by the couple of the internal varia
(qs,Rs) describing the expansion of the elastic domain on
systems. Throughout this paper, the indexsP$1,2, . . . ,n% is as-
sociated to the system rank, withn being the maximum number o
octahedral systems in the grain~n512 for fcc!.

The elastic and inelastic parts of the granular specific free
ergy cg can be written as

cg5ce
g1c in

g . (20)

As an internal variable, the granular elastic part«e
g is assumed

to be uniform, isotropic, and compressible and its associated v
able is thermodynamically represented by a granular stress te
sg.

rce
g~«e

g!5
1

2
l~ tr «e

g!21mtr~«e
g!2 (21)

wherel andm are the classical Lame’s constants of the grain, a
r is the material density.

The granular stress tensorsg can be deduced as

sg5r
]ce

g

]«e
g 52m«e

g1l~ tr «e
g!I (22)

whereI is the second-order unit tensor.
At a constant temperature, the granular coefficients~l and m!

remain always constants, the time derivative of Eq.~22! gives

ṡg52m«̇e
g1l~ tr «̇e

g!I (23)

and

«̇e
g5

ṡg

2m
2

l

2m~2m13l!
tr~ṡg!I . (24)

According to the small strain hypothesis, the total granu
strain«g is partitioned into elastic«e

g and inelastic«in
g parts:
Journal of Applied Mechanics
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«g5«e
g1«in

g . (25)

The granular inelastic part of the state potentialrc in
g is ex-

pressed~Saanouni and Abdul-Latif@35#! as follows:

rc in
g 5

1

2 (
r 51

n

(
s51

n

HrsQ
sqrqs (26)

whereQs is the transgranular isotropic hardening modulus of
css. The hardening interaction matrixHrs is supposed to describ
dislocation-dislocation interactions~Kocks and Brown@41#, Jack-
son and Basinski@42#, and Franciosi@43#!. The dual variableRs

~state law! can be derived from~26! as follows:

Rs5r
]c in

g

]qs 5Qs(
r 51

n

Hrsq
r . (27)

The slip rate can be determined as long as the shear stres
the hardening variables are known. Hence, the evolution rates
be obtained by introducing a yield functionf s together with a
dissipation potentialFs for each slip system according to th
non associated plasticity framework.

f s5utsu2Rs2ko
s (28)

whereko
s is the initial value of the critical resolved shear stre

~friction stress!.
The transgranular inelastic dissipation potential is simila

written as initially proposed in Saanouni and Abdul-Latif@35#.

Fs5 f s1bsqsRs (29)

where bs characterizes the nonlinearity of the local isotrop
hardening.

Now, the evolution laws of the granular inelastic strain and
internal variable of the transgranular isotropic hardening are gi
by generalized normality rule:

At the granular level

«̇in
g 5(

s51

n

l̇s
]Fs

]sg 5(
s51

n

l̇s sign~ts!ms5(
s51

n

ġsms (30)

with

ġs5l̇s sign~ts! (31)

whereġs is the slip rate on the css.
At the css level, the rate of the isotropic hardening varia

evolution is expressed by

q̇s5(
r 51

n

l̇r
]Fr

]Rs 5l̇s~12bsqs!. (32)

In the framework of viscoplasticity, the value of ‘‘pseudo
multiplier’’ l̇s for each css is a power function of the distance
the yield point defined by the criterionf s:

l̇s5 K f s

KsL zs

5 K utsu2Rs2ko

Ks L zs

(33)

whereKs and zs are material constants describing the local v
cous effect of the material.

It is worth noting that the Eq.~33! together with~31! represent
generalization to hardening case of the classical power-law mi
constitutive equation frequently used in the literature.

The intrinsic dissipation at the granular level is given by

sg:«̇in
g 2(

s51

n

Rsq̇s>0. (34)

By using ~27!, ~28!, ~30!, and~31!, it is easy to show the ther
modynamical admissibility of the single-crystal model. This c
be achieved by showing that the inequality~34! is satisfied as long
as the parametersQs andko

s are positive.
MAY 2002, Vol. 69 Õ 311
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2.3 Polycrystal Constitutive Relations. After determin-
ing the granular inelastic strain rate as the sum of the contribu
from all activated slip systems, the transition from the single
polycrystal response is performed by the well-known averag
procedures depending on the granular~elastic and inelastic! rates.

The overall total strain~elastic and inelastic! rate is therefore
calculated as follows

Ė5Ėe1Ėin (35)

Ėe5(
g51

Ng

vg«̇e
g (36)

Ėin5(
g51

Ng

vg«̇in
g (37)

where vg represents the volume fraction of the same orien
grains.«̇e

g and «̇in
g are given by Eqs.~24! and ~30!, respectively.

An attempt is performed to compare two formulations:
~i! The tangent formulation-based interaction law given by E

~16!, itself based on the following macroscopic combination
Hooke’s law and tangent viscoplastic relation.

Ṡ52mĖ1l~ tr Ė!I2
mo

ho ~S2So! (38)

whereSo is the macroscopic back stress.
~ii ! The proposed simplified interaction law~Eq. ~17!! together

with the macroscopic fully elastic behavior given by

Ṡ52mĖe1l~ tr Ėe!I . (39)

Some numerical applications are conducted using both mo
in order to study and to compare their overall responses un
uniaxial loading situations.

For the tangent formulation-based model, the adjustment
cess ofho in order to fulfill the self-consistency conditions can b
performed as follows:

In strain-controlled conditions

Ė5Ė8 (40)

whereĖ8 is the imposed macroscopic total strain rate.
While, in stress-controlled conditions

Ṡ5Ṡ8 (41)

whereṠ8 represents the imposed macroscopic stress rate.
The exact satisfaction of the self-consistency condition~Eq.

~40! or Eq. ~41!! is not always evident due to the fact that th
adjustment process is performed only on the scalarho. Thus,ho

is calculated in order to minimize the relative error~Re! defined
by in strain-controlled condition:

Re5iĖ2Ė8i /iĖ8i (42)

and, in stress-controlled condition:

Re5iṠ2Ṡ8i /iṠ8i (43)

where the normixi is defined asixi5Aax:x with a52/3 for
a strain-controlled situation anda53/2 for a stress-controlled
condition.
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3 Comparison Between the Two Models
and Parametric Study

The simplified self-consistent model is tested using an agg
gate of 200 grains~@30#!. For simplicity, it is assumed that all th
grains and the slip systems have the same material prope
Consequently, all the grains have the same value of the ela
constantsl and m and all the octahedral slip systems have t
same constantsz, K, ko , Q, andb. The identified constants~Dingli
et al. @44#! are listed in Table 1.

Some numerical comparisons between the tangent formulat
based and the simplified model are carried out. The first comp
son is conducted employing monotonic tensile tests. Th
uniaxial macroscopic strain rates are used~Ė1150.1, 0.01 and
0.001/s!. It is important to note that, for the tangent formulatio
based model~Eqs.~16, 38!!, the value ofho, which satisfies the
self-consistency condition, remains almost constant for each c
trolled strain rate for any timet.0, since there is no chang
neither in the strain rate nor in its direction. Nevertheless, for
simplified model, the self-consistency conditions are system
cally satisfied. Examination of Fig. 1 shows the overall respon
of both models using the above strain rates. For a given strain
both models give practically the same overall responses show
their sensitivity to the strain rate.

The effect of an abrupt change of uniaxial loading direction
the overall polycrystal behavior is studied. One cycle of tensi
compression with strain-controlled conditionDE1151 percent is
used~Fig. 2~a!!. Obviously, both models describe appropriate
the overall stress evolution notably in the inelastic zone, i.e., ha
ening evolution. Moreover, the similarity of the responses is w
captured by these models. For the tangent formulation-ba
model, the evolution ofho is recorded and analyzed during th
uniaxial cyclic loading. Figure 2~b! reveals that its value remain
constant when a constant strain rate is applied~tensile phase! with
which the consistency condition is almost respected. Howeve
soon as a rapid change in the strain rate direction is taken p
(t510 seconds!, an extremely high jump ofho value is conse-
quently recorded. This evolution can be interpreted by the f
that, to have an instantaneous overall elastic response, i.e.Ė11

Fig. 1 Plot of comparison between tangent formulation-based
„T… and simplified „S… models showing the overall stress evolu-
tion versus the strain for uniaxial tensile test under three strain
rate values „1:0.1Õs, 2: 0.01 Õs and 3:0.001 Õs…
Transactions of the ASME
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Fig. 2 Plots showing „a… a comparison between tangent formulation-based „T… and simplified „S… models for
tension-compression loading, „b… the evolution of ho versus time during tension-compression loading test
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→Ė11
e , the term (mo/ho)(S112S11

o ) ~Eq. ~38!! has to tend to zero
by the high increase ofho value. Just after this sudden change
direction, a constant compressive strain rate is imposed by
load. The second change of direction~at t530 seconds! provokes
another considerable increasing ofho as in the tensile phase~Fig-
ure 2~b!!. Consequently, the tangent formulation-based mo
needs more calculation time in comparison with the simplifi
model due to the adjustment process of the macroscopic vis
tangent modulusho at each time step. In conclusion, for uniaxi
loading paths, the simplified self-consistent model is more s
able than the tangent formulation-based model from the calc
tion time point of view. Furthermore, it has been demonstrated
Dingli et al. @44# that the simplified model is more suitable fo
multiaxial loading paths for which the tangent formulation-bas
model cannot work.

To understand the role of the parametera on the kinematic
hardening evolution, the simplified interaction law~Eq. ~17!! is
f Applied Mechanics
of
the

del
ed
ous
l
it-
la-
by
r
ed

used as a basis of interpretation. In fact, this parameter has t
determined in such a manner that the instantaneous elastic e
and the viscoplastic relaxation at steady state are appropria
ensured. Hence, three different values ofa are chosen~a
55.1027, 5.1026, and 1024! with which two extreme and an
intermediate responses vis a` vis the overall hardening evolution
are recorded. Using a monotonic tensile load for simplicity,
overall, granular, and microscopical responses are recorded
analyzed for each value ofa ~Fig. 3!. Evolution of activated slip
systems during the straining is pointed out in Fig. 4. Recorde
the end of loading, elastic and inelastic strains at the granular l
are illustrated in Figs. 5 and 6, respectively. For a greatest valu
a (a51024), a high heterogeneity of the granular inelastic stra
is clearly recorded~Fig. 6!. When the value ofa is relatively high,
this provokes stiff inelastic interactions. According to Eq.~17!, the
term (a(sg2S)) dominates with respect to the other elastic ter
in the left-hand side of this interaction law. The instantaneo
Fig. 3 Overall stress-strain simplified model response showing its sensitivity to the phe-
nomenological parameter „a… under monotonic tensile test
MAY 2002, Vol. 69 Õ 313
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Fig. 4 Effect of the parameter „a… on the evolution of the activated slip systems during
monotonic tensile load

Fig. 5 Effect of the parameter „a… on the heterogeneity of the elastic strain „«g
e
… in 11 direction of each grain within

the used aggregate at the end of the monotonic tensile load
d law
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lar

fect
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ing
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tic
elastic effect becomes consequently negligible giving a consi
able heterogeneity of granular inelastic behavior~Fig. 6!. How-
ever, the granular elastic strain distributions are almost hom
enous ~Fig. 5! and their values are relatively small leadin
consequently to few instantaneous activated slip systems~Fig. 4!.
In the case wherea55.1027, it can be noticed that the term
(a(sg2S)) gives a certain equilibrium between the first two ela
tic terms in the left-hand side of Eq.~17!. The heterogeneity of the
instantaneous granular elastic effect giving the progressive
creasing of the activated slip systems. Therefore, the granular
coplastic relaxation at steady-state becomes heterogeneous~Figs.
5 and 6! leading relatively to smooth interactions between t
grains and their matrix. As a matter of fact, the existence of
Vol. 69, MAY 2002
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heterogeneous granular elastic behavior in the interaction
leads to a natural description of the global kinematics harden
effect. This can be interpreted by the fact that the intergranu
accommodation has an elastic nature~Rougier et al.@27#!. In con-
clusion, the phenomenological parametera has a great influence
on the hardening evolution. To appropriately describe the ef
of the hardening on strain-stress behavior of polycrystals,
the qualitative simulations were therefore conducted us
a55.1027.

4 Remarks and Conclusions
This study is based on the generalized nonincremental inte

tion law for fully anisotropic and compressible elastic-inelas
Transactions of the ASME
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Fig. 6 Effect of the parameter „a… on the heterogeneity of the inelastic strain „«g
in
… in 11 direction of each grain

within the used aggregate at the end of the monotonic tensile load
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behavior of an isotropic inclusion embedded in an isotropic ma
proposed by Molinari and co-workers@28#. Under small strain
condition, the obtained tangent formulation-based and simpli
models are numerically compared. It was found that both mod
give practically the same elastic-inelastic responses of fcc p
crystal under uniaxial loading paths. However, the tang
formulation-based model needs evidently more calculation tim
comparison with the simplified model. This is due the fact th
macroscopic viscous tangent modulusho needs to be adjusted a
each time step in order to satisfy the self-consistency condit
while this condition is systematically respected in the case of s
plified model.

It is obvious that the tangent formulation-based model is in
pable of reproducing appropriately the elastic-inelastic beha
of the polycrystal under multiaxial loading paths. This is due
impossible adjustment of the coefficientho since this latter de-
pends only on one strain rate direction and not on two or m
directions at the same time. However, the simplified model
successfully describe the polycrystal behavior under multia
loadings. From the standpoint of self-consistent approaches,
capability represents a primordial factor.

In this simplified model, a local isotropic hardening variable
modeled and represented on the system level to evaluate its
lution. The interactions between activated slip systems in the s
grain can be also taken into account. The intergranular and tr
granular kinematic hardening effects can be globally and natur
described~without introducing internal variables! by the simpli-
fied interaction law. Moreover, independent on the strain hist
the proposed phenomenological constanta in the interaction law
has a considerable role in the kinematic hardening evolution.

Under multiaxial loading conditions, the developed model hig
lights the advantages to describe the additional hardening
nomenon related to the complexity of the loading path. In fact,
activated slip systems can be multiplied as the loading path c
plexity increases. Qualitative and quantitative results concern
elastic-inelastic behaviors of the polycrystal under several c
plex loading paths were largely discussed by the authors~@44#!.
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en Grandes De´formations: Comportement Global et Evolution de la Structu
Interne,’’ Rev. Phys. Appl.,25, p. 361.

@26# Lipinski, P., Naddari, A., and Berveiller, M., 1992, ‘‘Recent Results Conce
ing the Modeling of Polycrystalline Plasticity at Large Strains,’’ Int. J. Soli
Struct.,92, p. 1873.

@27# Rougier, Y., Stola, C., and Zaoui, A., 1994, ‘‘Self-Consistent Modelling
Elastic-Viscoplastic Polycrystals,’’ C. R. Acad. Sci. Paris,319, p. 145.

@28# Molinari, A., Ahzi, S., and Kouddane, R., 1997, ‘‘On the Self-Consistent Mo
eling of Elasto-Plastic Behavior of Polycrystals,’’ Mech. Mater.,26, p. 43.

@29# Schmitt, C., Lipinski, P., and Berveiller, M., 1997, ‘‘Micromechanical Mode
ling of the Elastoplastic Behavior of Polycrystals Containing Precipitate
Application to Hypo- and Hyper-eutectoid Steels,’’ Int. J. Plast.,13, p. 183.

@30# Abdul-Latif, A., Dingli, J. Ph., and Saanouni, K., 1998, ‘‘Modeling of Com
plex Cyclic Inelasticity in Heterogeneous Polycrystalline Microstructure,’’
Mech. Mater.,30, p. 287.

@31# Schmid, E., 1924,Proc. Int. Congr. Appl. Mech, Delft, p. 342.
@32# Abdul-Latif, A., and Saanouni, K., 1994, ‘‘Damaged Anelastic Behavior
316 Õ Vol. 69, MAY 2002
.

ls

nt

ep

of

sto-

re

n-
s

of

d-

l-
—

-
J.

of

FCC Poly-Crystalline Metals With Micromechanical Approach,’’ Int. J. Dam
age Mech.,3, p. 237.

@33# Abdul-Latif, A., and Saanouni, K., 1996, ‘‘Micromechanical Modeling of Low
Cycle Fatigue Under Complex Loadings—Part II Applications,’’ Int. J. Plas
12, p. 1123.

@34# Abdul-Latif, A., and Saanouni, K., 1997, ‘‘Effect of Some Parameters on
Plastic Fatigue Behavior With Micromechanical Approach,’’ Int. J. Dama
Mech.,6, p. 433.

@35# Saanouni, K., and Abdul-Latif, A., 1996, ‘‘Micromechanical Modeling of Low
Cycle Fatigue Under Complex Loadings—Part I. Theoretical Formulatio
Int. J. Plast.,12, p. 1111.

@36# Abdul-Latif, A., 1999, ‘‘Unilateral Effect in Plastic Fatigue with Microme
chanical Approach,’’ Int. J. Damage Mech.,8, p. 316.

@37# Abdul-Latif, A., Ferney, V., and Saanouni, K., 1999, ‘‘Fatigue Damage
Waspaloy Under Complex Loading,’’ ASME J. Eng. Mater. Technol.,121, p.
278.

@38# Cailletaud, G., 1992, ‘‘A Micromechanical Approach to Inelastic Behaviour
Metals,’’ Int. J. Plast.,8, p. 55.

@39# Dingli, J. P., 1997, ‘‘Mode´lisation du Comportement Ane´lastique des Mate´ri-
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Non-Gaussian Narrow-Band
Random Fatigue
Fatigue is produced by the sum of randomly phased sine waves. Fatigue damage
this non-Gaussian, finite random process is a function of the noise bandwidth, the fa
slope, mean stress, and the rms stress. Methods are developed for predicting the cy
failure. Comparison is made with data.@DOI: 10.1115/1.1428332#
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1 Introduction
Many processes that cause fatigue are not Gaussian distrib

For example, fatigue damage accumulated by normally opera
machinery is the result of a finite number of operational cycles
quasi-random environments. Manufactures guarantees exc
most, if not all, extreme events. The as-designed operation
machinery is a random process with finite limits.

Palmgren and Miner proposed that fatigue damage is only
pendent on the peaks in a time history and that fatigue fai
occurs when the sum of the fatigue damage reaches unity~Fuchs
and Stevens@1#, pp. 190–191!. By applying their hypothesis
Crandall and Mark~@2#, p. 117! obtained an integral expressio
for the expected number of cycles to fatigue failure,NF , for a
stationary narrow band random process.

NF5F E
0

` pSp
~s!

Nf~s,Sm!
dsG21

(1)

pSp
(s) is the probability density of peaks in cyclic stress a

Nf(s,Sm) is the expected number of cycles to failure of a mate
during sinusoidal cycling at stress amplitudes. The mean stress is
Sm .

Equation~1! has been applied to stationary Gaussian rand
processes by Wirsching@3#, Sobczyk and Spencer, Jr.@4#, Bishop
and Sherrat@5#, Lin @6#, Crandall and Mark@2#, Powell @7#, and
Miles @8#. This paper develops methods to predict fatigue dam
produced by non-Gaussian stationary narrow-band random
cesses consisting of the sum of finite amplitude randomly pha
sine waves. This is finite random narrow-band pink noise. T
single sine wave and the Gaussian process are the limit cases
results allow the prediction of the fatigue as a function of t
number of sine waves~bandwidth, or equivalently, randomnes!
as a parameter.

Application of Eq.~1! requires~1! a fatigue model, or data, fo
the number of cycles to failure with constant amplitude cycli
and, ~2! the probability density of peaks during random cyclin
Section 2 presents models for fatigue of materials including m
stress. The probability distribution of the peaks in the finite ra
dom noise time history is developed in Section 3. The Section
determines fatigue life in closed form and by numerical integ
tion. Applications and comparisons with data are given in Secti
5 and 6.

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Janu
13, 2000; final revision, November 13, 2000. Associate Editor: A. Needleman.
cussion on the paper should be addressed to the Editor, Prof. Lewis T. Wh
Department of Mechanical Engineering, University of Houston, Houston, TX 772
4792, and will be accepted until four months after final publication of the paper it
in the ASME JOURNAL OF APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
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2 Fatigue Models
Two widely used fatigue models for constant amplitude cycli

are ~1! the exponential fatigue law and~2! the equivalent stress
model. The exponential fatigue law postulates that the stress c
amplitude above the mean stress is a straight line when plotte
a log-log scale against cycles to failure:NfSa

b5C ~Basquin@9#,
Crandall and Mark@2# p. 113, and Bannantine,@10#!. 1/b is the
slope of the fatigue curve when plotted as log~stress amplitude!
versus log~cycles to failure!. The dimensionless parameterb is a
positive real number. Further, Goodman and Soderberg postu
that stress amplitude for fatigue failure is proportional to the d
ference between the material yield stress and the mean s
~Fuchs and Stephens@1#, p. 72!. The exponential fatigue mode
with mean stress effect thus is

Sa5~12Sm /Sy!C1/bNf
21/b . (2)

Sa is the oscillating stress amplitude andSm is the mean stress.Sy
is the stress that causes yield or failure. For fully reversed cyc
Sm50. See Fig. 1. Solving Eq.~2! for the number of cycles to
fatigue failure (Nf) gives the form required for insertion in Eq
~1!.

Nf5C~12Sm/Sy!bSa
2b (3)

In the limit asb50, failure occurs at theCth cycle regardless of
the stress amplitude. In the limitb5`, the failure stress is inde
pendent of the number of cycles.

The equivalent stress fatigue model~MIL-HDBK-5G, 1994,
Section 9.3.4.9! gives a relationship between cycles to failure a
cyclic stress in terms of four parametersA1 ,A2 ,A3 ,A4 :log10N
5A11A2 log10@(12R)A3Sa2A4#. The oscillating stress ampli
tude is

Sa5~A41102A1 /A2Nf
1/A2!/~12R!A3. (4)

The stress ratioR is the ratio of the minimum stress to the max
mum stress during one cycle.

R5~Sm2Sa!/~Sm1Sa! (5)

Equations~4! and ~5! can be solved for cycles to failure.

Nf510A1@2A3Sa
A3~Sm1Sa!12A32A4#A2, Sa.Slim (6)

This is the form required for insertion in Eq.~1!.
Equation~6! has an endurance limit stress below which no

tigue damage occurs. The oscillating stress amplitude (Slim) at the
endurance limit is found by settingNf5` in Eq. ~6! which is
equivalent to solving 2A3Sa

A3(Sm1Sa)12A35A4 for the mean or
oscillating stress at the endurance limit with the conditionsSa
.0 andSa1Sm.0. For zero mean stress the endurance limit
Slim5A4/2A3. Both the equivalent stress model~Eqs.~4!, ~6!! and
the exponential model~Eqs.~2!, ~3!! can be solved for mean stres
as a function of peak stress and number of cycles to failure.
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Sm5H Sy~12SaC21/bN1/b!, exponential model ~7a!

~2Sa!2A3 /~12A3!@102A1 /A2Nf
1/A21A4#1/~12A3!2Sa ,

equivalent stress ~7b!

Tensile mean stress reduces fatigue life; compressive mean s
increase fatigue life. The exponential and equivalent stress fat
models are identical if there is no endurance limit or mean st
Sm5A450 so thatR521, b52A2 , andC510A12A2A3.

Fatigue models are semi-empirical fits to constant-amplit
fatigue data. For aluminum Al 2024-T3 with a notch factorKt
51.5, A157.5, A2522.13, A350.66, A4523.7 ksi ~MIL-
HDBK-5G @11#, p. 3-113! in units of ksi (1 ksi51000 lb/sq in.
56.895 MPa).A4 has units of stress. With stress in mega Pasc
these are A157.512.13 log10(6.895)59.286 and A4

523.7* 6.8955163.4 MPa. The units ofA1 are such that
102A1 /A2 has units of stress.A2 andA3 are dimensionless.

If fatigue life is known at two points,Nf 1 ,Sa1 ;Nf 2 ,Sa2 , then
the fitted parametersb and C in the exponential fatigue law ar
b52 log10@Nf 2 /Nf 1#/ log10@Sa2 /Sa1#, C5Nf 1Sa1

b . b'5 to 20
for high cycle fatigue of most metals~Manson@12# and Bannan-
tine @10#! andC'Sy

b whereSy is the yield or ultimate stress as ca
be seen by settingNf51 and Sm50 in Eq. ~3!. For aluminum
alloy Al 2024-T3 withKt51.5, fitting the equivalent stress mod

Fig. 1 Time history of a narrow-band random process with
mean stress „Sm… and the associated probability density of the
peaks. Process shown is the sum of two sine waves.

Fig. 2 Fatigue curves for 2024-T3 Al K tÄ1.5 with no mean
stress and sinusoidal cycling
318 Õ Vol. 69, MAY 2002
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at Nf553103 and Nf5106 gives b54.911 andC51.545E 12
(ksi)4.91 @2.030 E16 (MPa)4.911#. These curves are shown i
Fig. 2.

3 Probability Density of Peaks in Finite Narrow Band
Random Noise

The spectral components of a narrow band process are ass
to fall within narrow frequency band, typically one-third-octav
band or less wide. Each time the mean value~axis! is crossed with
a positive slope, a single peak is generated before the ax
recrossed. Positive peaks only occur above the mean value.
peaks occur at nearly constant rate~@6#! as shown in Fig. 1 for a
narrow-band process consisting of the sum of two equal amplit
sine waves.

The elemental narrow-band process is a constant ampli
sinusoidal stress time history.

s~ t !5a cos~vt1f!, 0<t<T, a>0, 0<f,2p. (8)

The probability that the amplitude~a! of stress cycle peak falls in
the range betweens ands1ds is zero unless that range include
the amplitudea. Thus the probability density of the amplitude of
constant amplitude sine wave is a Dirac delta function.

pSp
~s!5d@s~ t !2a# (9)

Substituting this expression into Eq.~1! reproduces the fatigue
law for constant amplitude sinusoidal cycling.

Consider finite narrow-band noise that is the sum ofM equal
amplitude (am5a,m51,M ), randomly phased sine waves who
frequencies fall in a relatively narrow bandvm'v, m51, M.

s~ t !5 (
m51

M

amcos~vmt1fm!, 0<t<T,

am>0, 0<fm,2p. (10)

The amplitudes,am , are positive constants. The circular fre
quency of each sine wave,vm , is a positive, nonzero intege
multiple of 2p/T whereT is the sampling time interval. The num
ber of sine waves in the series,M, is a measure of the bandwidt
or randomness of the noise.

The phasesfm in Eq. ~10! are independent random variable
that are uniformly distributed over the range 0<fm,2p.

pfm
~f!5H 1/~2p!, if 0<f,2p

0, if 0.f or f.2p
(11)

The maximum value of the oscillating components(t), Eq. ~10!,
is the sum of the amplitudes of the sine waves~recall am>0!.

Smax5 (
m51

M

am (12a)

5Ma, for am5a, m51,2,..M . (12b)

The root-mean-square~rms! of the sum of mutually independen
sine waves over the ensemble of random independent sine w
is the square root of the sum of the mean squares of the term
Transactions of the ASME
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Fig. 3 Probability density of amplitude for sum of randomly phased sine waves „Table 2 …

Table 1 Fourier coefficients B i of M-equal-amplitude sine probability distribution. Case 4 of
Table 2.

M 2 3 4 5 6 8

Smax

Srms

2 2.45 2.83 3.16 3.46 4

B1 1.03613 1.47952 1.54854 1.56185 1.53894 1.46782
B2 20.25911 0.10399 0.33872 0.62573 0.84299 1.14488
B3 0.50665 0.13080 20.2551E21 20.2748E21 0.9322E21 0.30870
B4 20.22002 20.34356 20.6865E21 0.1071E21 20.1879E22 0.2405E21
B5 0.36795 20.4612E21 0.11990 0.02888E21 20.4861E22 20.6822E24
B6 20.19353 20.7622E21 20.5270E21 20.3711E21 20.1235E21 20.4310E23
B7 0.30192 0.19239 20.1186E21 20.4610E21 0.8122E22 20.8269E23
B8 20.17112 0.2985E21 20.3011E21 20.4037E22 0.2378E21 20.1955E22
B9 0.26396 0.5330E21 0.4651E21 20.3387E22 0.4599E22 20.5061E23
B10 20.15644 20.13365 0.2257E21 20.8987E22 20.5762E23 0.4020E22
B11 0.23347 20.2219E21 20.7055E22 0.1019E21 20.1168E22 0.2896E22
B12 20.14555 20.4076E21 20.1767E21 0.1525E21 20.2870E22 0.3765E23
B13 0.21531 0.10286 0.2601E21 0.1600E22 0.1294E22 20.3401E24
B14 20.13510 0.1801E21 0.1312E21 0.1589E22 0.5600E22 20.5775E24
B15 0.19753 0.3304E21 20.4767E22 0.4262E22 0.1160E22 20.1051E23

„a… Computed with 20 terms in each sum. B i„M…Ä2p2i (kÄ0
` g ik †J 0„pÕMAi 2¿k 2

…‡

M

gikÄ5
1Õ8, iÄkÄ0;

1Õ4, iÌ0,kÄ0;

„1Õ2…†„À1…kÀ1‡Õ„k p…

2, iÄ0;kÌ0,

†„À1…kÀ1‡Õ„k p…

2, iÌ0,kÌ0
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Table 2 Probability densities for peaks in finite narrow band random noise with M equal
amplitude spectral components, Eq. „10… „†13‡…. aÄamplitude of spectral component. M
Änumber of spectral components.

1 One Sine Wave,MÄ1. a521/2Srms. pSp
(s)5d@s(t)2a#

*a2e
a1epSp

(s)ds51 for e.0.

2 Two Sine Waves,MÄ2. a5Srms,

pSp
~s!5H 2

pA~2a!22s2
, 0<s<2a

0, s.2a or s,0.

*2a2e
2a pSp

(d)ds'(2/p)(e/a)1/2 for e/a!1.

3 Three Sine waves,MÄ3. a5(2/3)1/2Srms. Envelope distribution in terms of the complete elliptic
integralK, discussed in the Appendix.

pSp
~s!55

4s

p2

1

A@4a22~s2a!2#~s1a!2
KSA 16sa3

@4a22~s2a!2#~s1a!2D , 0<s<a,

4s

p2

1

A16sa3
KSA@4a22~s2a!2#~s1a!2

16sa3 D , a<s<3a,

0, s.3a or s,0.

*a2e
a1epSp

(s)ds'(2/p2)(e/a)(31 ln(16(a/e)3)) for e/a!1.

4 M Sine Waves,MÄ2, 3, 4, 5... .a5(2/M )1/2Srms.

pSp
~s!5H 1

Ma(i50

`

Bi~M!sin~~ips!/~Ma!!, 0<s<Ma,

0, s.Ma or s,0.

where Table 1 gives values ofBi . See Blevins@20# for nonequal amplitude case. An alternate expression
a Cramer power series valid fors,Ma,

pSp
~s!5

s

Srms
2 e2s2/2Srms

2 S 12
1

2M S 12
s2

Srms
2 1

s4

8Srms
4 D 1

1

12M 2 S 12
6s2

Srms
2 1

15s4

4Srms
4 2

7s6

12Srms
6 1

3s8

128Srms
8 D

2
11

8M3 S 12
2s2

Srms
2 1

3s4

4Srms
4 2

s6

12Srms
6 1

s8

384Srms
8 D D 1O~1/M 4!.

Both series converges most rapidly forM.2.

5 Infinite Sine Waves,MÄ`, the Rayleigh distribution~@2#!,

pSp
~s!5

s

Srms
2 e2s2/~2Srms

2
!, 0<s,`.
g

e

ility
de

ar
l-
rve

ro
ed

ro-
ches
e

Srms
2 5

1

T E0

2pF (
m51

M

am cos~vmt/T1fm!G 2

dt5
1

2 (
m51

M

am
2

(13a)

5
1
2 Ma2, for am5a, m51,2,..M (13b)

Note the rms and the maximum defined by Eqs.~12! and~13! do
not include the mean~constant! stress. The maximum oscillatin
stress isSmax5Ma5(2M)1/2Srms is all M amplitudes are equal.

The maximum-to-rms ratio, which is a measure of randomn
increases with the number of component sine waves in Eq.~10!.

Smax

Srms
521/2(

m51

M

am Y S (
m51

M

am
2 D 1/2

, (14a)

5~2M !1/2, for a15a25am5a, m51,2,..M . (14b)

SinceM is finite the probability ofS exceeding the sum of the
amplitudes~Eq. ~12!! is zero. For example forM54 process with
MAY 2002
ss,

equal amplitudes, there is no chance the ratioS/Srms will exceed
2.828. See Fig. 3. Table 2 provides a summary the probab
density of peaks in finite narrow-band noise with equal amplitu
spectral components. There are simple expressions forM51, 2, 3,
and `. The M51, 2, and 3 probability densities have singul
points atS/Srms521/2, 2 and 3, respectively, but like all probabi
ity density functions, the area under the probability density cu
is unity.

The probability density of peaks for the process of~Eq. ~10!!
for arbitrary integerM is given in Case 4 of Table 2 by two
equivalent series:~1! a Fourier series over the range of nonze
probabilities, and~2! a Cramer power series which is adapt
from Blevins@13# but with corrections and additional terms. AsM
approaches infinity, the central limit theorem implies that the p
cess becomes Gaussian and the distribution of peaks approa
the Rayleigh distribution~@2#!. This can be seen in Table 2, Cas
4b, in Cramer series by lettingM approach infinity and in Case 3
of Table 3 by settingg(11b/2,̀ )5G(11b/2).
Transactions of the ASME
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4 Cycles to Failure
The expected number of cycles to failure of a narrow ba

random process is found by substituting the peak probability d
sity of the peaks~Table 2! and the sinusoidal cycling fatigue fail
ure model~Eqs.~3! or ~6!! into Eq. ~1! and integrating.

Substituting Eq.~3! into Eq. ~1! gives the following equation
for cycles to failure for the exponential fatigue law:

Table 3 Solutions for cycles to failure with exponential fa-
tigue, Eq. „15…

Sine Waves,M Cycles to Failure,NF

1
CS12

Sm

Sy
Db

Srms
2b22b/2, or equivalently,

CS 12
Sm

Sy
D b

Sa
2b

2 ~a! CS 12
Sm

Sy
D b

Srms
2bp1/222bG~11b/2!/G~1/21b/2!

3,..M ~a,b!

CS 12
Sm

Sy
D b

Srms
2b22b/2FgS 21b

2
,M D

3S 12
1

2M
1

1

12M22
11

8M3D G21

` ~a,c! CS 12
Sm

Sy
D b

Srms
2b22b/2/G~11b/2!

~a!See Appendix for definition and evaluation ofg(a,x) andG(a).
~b!Cramer series, Case 4~b! of Table 2 used. Increasing number of terms in ser
apparently does not substantially increase accuracy.
~c!Crandall and Mark@2#.
f
o

3

n

Journal of Applied Mechanics
nd
en-

NF5CS 12
Sm

Sy
D bF E

0

Smax

sbpSp
~s!dsG21

. (15)

The integration is made over the range of nonzero probabilit
Table 3 lists exact solutions to Eq.~15! using the exact probability
densities of amplitude given in Table 2~Gradshteyn, Ryzhik, and
Jeffrey@14#!. The random cycles to failure is proportional toSrms

2b .
The Cramer power series for probability is used for the gene
case. These solutions are in terms of two special mathema
functions, the gamma functionG(x) and the partial gamma func
tion g(x,a), that are discussed in the Appendix.

Equation~1! is numerically integrated to obtain solutions fo
other fatigue laws or probability densities. Using the Fourier
ries probability density representation~Table 2, Case 4b! and the
exponential fatigue law and Simpson’s’s numerical integrati
this is

NF'CS 12
Sm

Sy
D b

Srms
2bF ~2M !b/2

K

3(
k51

K

(
i 51

I S k

K D b

Bi~M !sinS ipk

K D G21

. (16)

The stress range has been divided intoK intervals withds5Ds
5Smax/K.

With the equivalent stress fatigue model, numerical integrat
is carried out over the stress amplitude range between the en
ance stress amplitude~Slim—see Eq.~6! with Nf5`! and the
maximum stressSmax ~Eq. ~12!! by dividing this range is divided
into K stress intervals of sizeDs5(Smax2Slim)/K. Simpson’s rule
of numerical integration is applied. With narrow-band finite ra
dom noise and the equivalent stress model~Eq. ~6!! the result is

es
NF5F 1

Ma ESlim

Ma

(
i 50

` S Bi~M !sinS ips

MaDY10A1@2A3sA3~Sm1s!12A32A4#A2DdsG21

(17a)

'F Ma2Slim

10A1KMa (
k50

K21

(
i 50

I
Bi~M !sin~ ip~Slim1kDs!/~Ma!!

@2A3~Slim1kDs!A3~Sm1Slim1kDs!12A32A4#A2G21

. (17b)
ial
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eigh

to
Good numerical accuracy requiresK520 or more integration in-
tervals andI approximately 10 to 15 forM53,4,5 . . . . Notea
5(2Srms/M )1/2.

The exact probability densities for theM52 andM53 cases
~Cases 2 and 3 of Table 2! give better accuracy than their serie
approximation~Case 4 of Table 2!. The numerical integration o
Eq. ~1! across singularities in these distributions can be acc
plished by creating small stress intervale wide about the singu-
larities ats52a and s5a in the M52 andM53 distributions,
respectively, and integrating the probability densities across
singularities while holdingNf5constant, as indicated in Table 2
In general, numerical evaluation using Fourier series represe
tion of probability density, Eqs.~16! and ~17!, gives better accu-
racy than using the general Cramer series solution, Case
Table 3.

5 Randomness and Fatigue Life
We can define a sinusoidal process which will generate

same average fatigue damage per cycle as a narrow band ra
process by setting the number of cycles to failure of a rand
s

m-

the
.
nta-

of

the
dom

om

process~Eq. ~1!! equal to that of a sinusoidal process~Eq. ~3! or
Eq. ~6!! and solving for the sine amplitude. For the exponent
fatigue law and equal-amplitude random sinusoidal terms in
process, the equally damaging sinusoidal amplitude is

Sauequal2damage5F E
0

`

sbpSa
~s!dsG1/b

, (18)

The right-hand side is only a function of the slopeb of the fatigue
curve and the bandwidthM. The ratio of the equally damaging
sinusoidal amplitude to the rms stress forM51 ~sinusoidal time
history!, M52, M55, M520, andM5`, Eq. ~36! are given
Table 4. Numerical integration of Eq.~18! was used forM53 in
this table. ForM51 or a very steeply dropping fatigue curve,b
,3, the equivalent amplitude is 21/2 times the rms; it is larger for
more componentsM and flatter fatigue curves.

Following Crandall and Mark@2#, the damage per vibration
cycle is defined as the rms stress times the probability densit
the stress amplitude, divided by the number of cycles to failure
that stress amplitude. The most damaging stress with the Rayl
distribution and the exponential fatigue law is (11b)1/2Srms.
Stress amplitudes up to twice this value contribute significantly
MAY 2002, Vol. 69 Õ 321



Table 4 Ratio of equally damaging sinusoidal amplitude stress to random RMS stress as function of random bandwidth „M… and
fatigue slope „b …

b

Sa /Srms2random

M

1 2 3 5 10 20 `

2 1.4142 1.4142 1.4185 1.4143 1.4142 1.4142 1.4142
3 1.4142 1.5030 1.5214 1.5349 1.5451 1.5500 1.5550
4 1.4142 1.5651 1.6073 1.6383 1.6605 1.6712 1.6818
6 1.4142 1.6475 1.7380 1.8078 1.8583 1.8823 1.9064
8 1.4142 1.7007 1.8308 1.9419 2.0248 2.0642 2.1039
10 1.4142 1.7384 1.8999 2.0504 2.1689 2.2251 2.2826
15 1.4142 1.7981 2.0148 2.2477 2.4624 2.5637 2.6730
20 1.4142 1.8337 2.0862 2.3805 2.6929 2.8378 3.0096
30 1.4142 1.8751 2.1719 2.5491 3.3039 3.2039 3.5842
50 1.4142 1.9144 2.2561 2.7240 3.4565 4.1482 4.5116
n

e

e of

om
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et
the overall damage accumulation as shown in Fig. 4. So for
flatter fatigue curves or broader probability densities, the m
damaging stress is pushed towards the rare, high amplitude, s
cycles.

As noted by Wolfe@15#, the random vibration amplitudes pro
duced by standard electromechanical shakers are not Rayleigh
tributed beyond three to four times the rms. Figure 5 shows
results of fatigue testing a 321 austenitic steel tube with a fitt
on a shaker~Pozefsky@16#!. Two sets of test were made:~1! with
sinusoidal input, and~2! using narrow band random noise as inp
to the shaker. The sinusoidal data was fitted with an expone

Fig. 4 Fractional „Eq. „21…… and cumulative damage with Ray-
leigh distribution. Curves have been normalized to a maximum
of unity. Material is Al 7075-T6, K tÄ2, bÄ6.15.

Fig. 5 Sinusoidal and random fatigue data for austenitic stain-
less steel 321 in comparison with exponential fatigue law fits
and predictions. Random fit is identical to MÄ5 prediction.
322 Õ Vol. 69, MAY 2002
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fatigue law givingSa5151* Nf
20.131, ksi. dividing the stress by

21/2 gives the sinusoidal result in terms of rmsSrms2sine

5107* Nf
20.131, ksi rms. Fitting the random test results with th

same exponent gaveSrms2random579.9* NF
20.131, ksi rms. The

magnitude corresponds to a sine-peak-to random rms valu
151.3/7951.91. Interpolating in Table 4 this givesM'5, rather
thanM5` which would give the Rayleigh result.

A second comparison of fatigue data taken with both rand
and sinusoidal cycling is given for annealed titanium Ti-6Al-4
Schneider’s @17# fit to his random fatigue data isNF

51014.6* Srms
25.99 whereas the sinusoidal data of MIL-HDBK-5G

~@11# p. 5-68! givesNf51019.18Sa
27.55. This impliesb57.55. By

equating cycles to failure, the ratio of the sinusoidal peak stres
the random rms stress is found as follows:

Cycles to Failure 104 105 106 107

Sa /Srms 1.74 1.88 2.04 2.21

Comparing this table with Table 4 usingb'8 suggests that a
finite random noise withM54 to 15 is an appropriate model fo
this random process. It also suggests that the Rayleigh distribu
is conservative for computation of random fatigue and that ‘
sigma’’ criteria~@3#!, Sequiv/Srms53, is overly conservative for all
but the flattest fatigue curves.

6 Example
Application is made for the aluminum alloy Al 2024-T3 she

with a notchKt51.5 at room temperature~@11#, p. 3-113—also

Fig. 6 Effect of increasing randomness of fatigue of Al
2024-T3 with K tÄ1.5 and no mean stress. N is number of ran-
domly phased sine waves in the process.
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see Section 2!. The finite random fatigue curves for zero me
stress are shown in Fig. 6 for sinusoidal oscillation~M51,
Smax/Srms521/2), random oscillations with two spectral compo
nents~M51, Smax/Srms521/2), six spectral components (M56,
Smax/Srms53.46), and the Rayleigh distribution which is achiev
in the limit of infinite spectral components (Smax/Srms5`). Fa-
tigue life decreases as random bandwidth of the process~M! in-
creases. Figure 7 shows that a tensile mean stress decrease
dom fatigue life.

7 Conclusions
Analysis has been made to determine the fatigue life of m

rials for stationary finite narrow-band random noise consisting
the sum of a finite number of randomly phased sine waves.
following are the conclusions of the analysis.

1 Fatigue damage during this non-Gaussian, finite, pink no
is a function of the noise bandwidth, that is, the number of co
ponent sine waves in the sum, the fatigue slope, mean stress
the rms stress.

2 A method of computing cycle to failure for a finite narro
band noise consisting of the sum of randomly phased sine w
was developed.

3 The fatigue damage for a given rms stress increases with
random band width of the process. The results fall between
limit processes, the single sine wave, and the Rayleigh distr
tion.

4 Comparison with data suggest that extreme amplitudes
normally operating machinery are not Rayleigh distributed a
that finite random pink noise can provide a more representa
and less conservative model than the Rayleigh distribution or
3-sigma criterion.

Nomenclature

A1 ,..A4 5 parameters in equivalent amplitude stress model,
Eq. ~4!

a 5 amplitude of sinusoidal stress oscillation
am 5 amplitude ofmth sinusoidal stress oscillation
Bi 5 coefficient in expansion for probability density of

amplitude, Table 2, Case 4
b 5 inverse of slope of exponential fatigue model on

log-log plot
C 5 exponential fatigue model parameter, Eq.~3!

Jo(x) 5 Bessel function of first kind and zero order~see
Appendix!

I, i, K, k 5 counting integers

Fig. 7 Effect of mean stress on MÄ6 finite random noise in-
duced fatigue of Al 2024-T3 with K tÄ1.5. Note RMS stress re-
fers to oscillating component only.
Journal of Applied Mechanics
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K(x) 5 complete elliptic integral of first kind~see Appen-
dix!

Kt 5 fatigue stress notch factor
ln(x) 5 natural logarithm

M 5 integer number of sinusoidal components in proce
m 5 integer index of sinusoidal component

NF 5 expected number of cycles to failure for random
stress cycle

Nf 5 expected number of cycles to failure for sinusoida
stress cycle

pf(f) 5 probability density of phase
psp(s) 5 probability density of stress amplitudes

R 5 ratio of maximum to minimum stress over one
cycle

S, s 5 stress
Sa 5 amplitude of cyclic stress

Slim 5 stress amplitude below which no fatigue damage
occurs

Sm 5 mean stress
Smax 5 maximum value of oscillating stress
Srms 5 root mean square stress

Sy 5 yield stress
t 5 time

d(x) 5 Dirac delta function
G(x) 5 gamma function~see Appendix!

g(a,x) 5 partial gamma function~see Appendix!
f 5 phase angle
v 5 circular frequency

Appendix

Evaluation of Special Functions. The gamma functionG(x)
and the incomplete gamma functiong(a,x) are defined by the
following expressions~Abramowitz and Stegun@18#, pp. 255,
260!:

G~a!5E
0

`

e2tta21dt

g~a,x!5E
0

x

e2tta21dt5G~a!2G~a,x!

where G~a,x!5E
x

`

e2tta21dt.

There are relatively simple expressions available for evaluatio
the gamma function~Abramowitz and Stegun@18#, p. 255!.

G~x!5H '~2p!1/2xx21/2e2x~111/~12x!1 . . . !, x.1

~n21!!, integer x5n51,2,3 . . .
.

The incomplete gamma function is related to the area of the up
tail of the statistical chi squared distributionQ ~Abramowitz and
Stegun@18#, pp. 940–941!.

g~a,x!5G~a!* ~12Q~2xu2a!!

Tables of the chi-squared distribution are available in statist
and mathematical literature~@17#!, for example.

These functions are available in software. For example in Ma
ematica@19#, G(a)5Gamma@a# andg(a,x)5Gamma@a,0,x#. In
EXCEL 2000 ~@20#! spreadsheet they are expressed in terms
related functions, G(a)5EXP~GAMMALN( a)) and g(a,x)
5EXP~GAMMALN( a))* (12CHIDIST(2* x,2* a)).

The Bessel Function of zero orderJo(x) has a series forms. The
complete elliptic integral of first kindK(x) has approximate ex-
pression~Abramowitz and Stegun@18#, pp. 360, 591!.

Jo~x!5(
k50

`
~2

1
4 x2!k

k!G~k11!
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K~k!5E
0

1

@~12u2!~12k2u2!#21/2du, 0,k,1;

'~a01a1k1
21a2k1

4!1~b01b1k1
21b2k1

4!ln~1/k1
2!.

k15(12k2)1/2 and a051.38629, a150.11197, a250.07252,
b050.5, b150.12134,b250.02887. These functions are tab
lated and available in software. In Mathematica they areJo(x)
5BesselJ@0,x#, K(x)5Elliptic K@x2#. In EXCEL, Jo(x)
5BESSELJ@x,0#.
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Open-Loop Nonlinear Vibration
Control of Shallow Arches via
Perturbation Approach
An open-loop nonlinear control strategy applied to a hinged-hinged shallow arch,
jected to a longitudinal end-displacement with frequency twice the frequency of the
ond mode (principal parametric resonance), is developed. The control action—a t
verse point force at the midspan—is typical of many single-input control systems
control authority onto part of the system dynamics is high whereas the control auth
onto some other part of the system dynamics is zero within the linear regime. How
although the action of the controller is orthogonal, in a linear sense, to the extern
excited first antisymmetric mode, beneficial effects are exerted through nonlinear act
action due to the system structural nonlinearities. The employed mechanism gene
the effective nonlinear controller action is a one-half subharmonic resonance (co
frequency being twice the frequency of the excited mode). The appropriate form o
control signal and associated phase is suggested by the dynamics at reduced o
determined by a multiple-scales perturbation analysis directly applied to the integ
partial-differential equations of motion and boundary conditions. For optimal con
phase and gain—the latter obtained via a combined analytical and numerical appr
with minimization of a suitable cost functional—the parametric resonance is canc
and the response of the system is reduced by orders of magnitude near resonanc
robustness of the proposed control methodology with respect to phase and freq
variations is also demonstrated.@DOI: 10.1115/1.1459069#
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Introduction
Shallow arches are common structural members widely u

either in civil engineering~e.g., bridges! or in mechanical and
aerospace engineering as subelements of more complex struc
More recently, they are being investigated also as componen
nanostructures. External resonant excitations may be source
undesirable flexural vibrations which may be either catastrop
~due to coupling with torsional modes as, e.g., in the collapse
the Tacoma Narrow Bridge! or may significantly reduce the se
vice life due to fatigue. An insidious dynamic instability in the
systems is the parametric resonance which can be excited by
gitudinal end-displacements or loads above a threshold level~@1#!
and can cause violent and complex vibrations~@2#!.

To cope with these large-amplitude vibrations, an open-lo
control strategy is developed for a hinged-hinged shallow a
excited by a longitudinal end-displacement which is parame
cally resonant with the first antisymmetric mode. The control
put is a transverse force at the midspan~Fig. 1!.

The task of mitigating the effects of resonant disturbances s
as parametric excitations has been tackled in a number of diffe
ways ranging from direct disturbance rejection via classical c
trol theory techniques to the use of vibration absorbers attache
the main system as dedicated substructures. For example, a
ber of works have addressed both theoretically and experimen
the problem of controlling transverse oscillations in distribute
parameter systems by parametric-type control actions~@3,4#! or by
coupling autoparametrically the system to an electronic circ
thereby exploiting the saturation phenomenon due to a 2:1 inte

1To whom all correspondence should be addressed.
Contributed by the Applied Mechanics Division of The American Society

Mechanical Engineers for publication in the ASME Journal of Applied Mechan
Manuscript received by the ASME Applied Mechanics Division, Oct. 18, 2000; fi
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Engineering, University of Houston, Houston, TX 77204-4792, and will be accep
until four months after final publication of the paper itself in the ASME JOURNAL OF
APPLIED MECHANICS.
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resonance mechanism~@5#!. Yabuno et al.~@6#! showed that a
parametric resonance in a cantilever beam can be suppresse
attaching a pendulum absorber to the beam tip. Using a m
theoretical framework, Maschke et al.~@7#! are currently develop-
ing a port-controlled Hamiltonian formulation for the dynamics
nonlinear distributed-parameter systems to represent the en
flows through the boundaries of these systems aimed at exten
some control schemes proposed for nonlinear finite-dimensio
systems~@8#!.

When excitations and actuations enter a system at the s
point and in the same way, direct cancellation of the disturban
resulting in no net energy transfer to the system, is possible
systems such as the one under consideration, wherein the a
tion and excitation are noncollocated, direct cancellation of
system disturbance is not possible. Furthermore, the linear m
projection of the control force onto the antisymmetric modes
zero entailing that the system is linearly uncontrollable with t
given control input. However, due to the system structural non
earities, the nonlinear controller action may be exploited to can
the external principal parametric resonance. Therefore, the s
actuator, optimally collocated to control symmetric modes, m
be still employed for controlling antisymmetric modes. One of t
objectives of this paper is, in fact, to show how an intellige
exploitation of nonlinear phenomena can greatly expand on
capabilities to control a distributed-parameter system.

A direct perturbation expansion of the system dynamics fac
tates understanding of the mechanism by which the full nonlin
actuator input may be used to suppress the resonant part o
excitation and further reduce the residual steady-state oscillati
The key mechanism here used is a subharmonic resonanc
order one-half arising from the quadratic nonlinearities~due to
initial curvature!.

This work is not the first to examine the effects of the intera
tion of parametric resonances with subharmonic resonance
order one-half although for single-degree-of-freedom syste
only ~@9#!. In a previous work by the same authors~@10#!, similar
concepts were employed to address noncollocated disturba
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via nonlinear actuator action in a pendulum-type crane archi
ture. It is worth pointing out that the use of a perturbation te
nique, namely the method of multiple scales, is here aimed
designing the type of control inputs rather than simply at obta
ing closed-form approximate responses of the system to exte
disturbances.

The control strategy is referred to as ‘‘open loop’’ because n
ther the system states nor a measured output are employe
direct feedback. Nevertheless, the approach tacitly assumes d
availability of the disturbance levels and relative phases. In p
tice, these values might be directly measured or estimated thro
use of an augmented state observer although this may intro
significant complexity. Also, determination of the resona
excitation character could be extracted from base-excitation m
surements by means of phase-locked-loop electronics~@11#!.
However, the control methodology is shown to be robust w
respect to limited phase and frequency variations.

Equations of Motion and Problem Formulation
Nonlinear vibrations of shallow elastic arches around the ini

configurationĉ are governed, in dimensional form, by the follow
ing integral-partial-differential equation~@12#!:

m
]2ŵ

] t̂2
1EI

]4ŵ

] x̂4
2

EA

l

d2ĉ

dx̂2E
0

l]ŵ

] x̂

dĉ

dx̂
dx̂2

EA

l
û~ l , t̂ !

]2ŵ

] x̂2

2
EA

l

]2ŵ

] x̂2 E
0

l]ŵ

] x̂

dĉ

dx̂
dx̂2

EA

2l

d2ĉ

dx̂2E
0

lS ]ŵ

] x̂
D 2

dx̂

2
EA

2l

]2ŵ

] x̂2 E
0

lS ]ŵ

] x̂
D 2

dx̂

52 ĉ
]ŵ

] t̂
1Ûc~ t̂ !dS x̂2

l

2D1
EA

l
û~ l , t̂ !

d2ĉ

dx̂2
(1)

wherem is the mass per unit length;l is the span of the arch;A
and I denote the area and moment of inertia of the cross sec
respectively;ĉ is the coefficient of linear viscous damping;E is
Young’s modulus;û( l , t̂ ) andÛc( t̂ ) represent the prescribed en
displacement~external boundary disturbance! and the control
force at the midspan, respectively; andd denotes the Dirac delta
function ~see Fig. 1 for the definitions ofĉ, x̂, andŵ). Using the
following nondimensional variables and parameters:x5 x̂/ l , c
5ĉ/r , w5ŵ/r , t5 t̂AEI/ml4 (r is the radius of gyration of the
cross section!, Eq. ~1! is transformed into its simplest nondimen
sional form as

Fig. 1 Shallow arch geometry with the disturbance and the
control input
326 Õ Vol. 69, MAY 2002
ec-
h-
at

in-
rnal

ei-
d in
irect
ac-
ugh
uce
t-
ea-

ith

ial
-

ion,

-

-

]2w

]t2
1

]4w

]x4
2

d2c

dx2E
0

1]w

]x

dc

dx
dx

2
]2w

]x2 E
0

1]w

]x

dc

dx
dx2

1

2

d2c

dx2E
0

1S ]w

]x D 2

dx

2
1

2

]2w

]x2 E
0

1S ]w

]x D 2

dx

52en2c
]w

]t
1en3Uc~ t !dS x2

1

2D
1en1u~1,t !S ]2w

]x2
1

d2c

dx2 D (2)

where en2c5 ĉl 2/AmEI,en3Uc5Ûcl
4/(rEI ), and en1u(1,t)

5û( l , t̂ ) l /r 2, with e denoting a small nondimensional numb
used as a bookkeeping device.

For hinged-hinged arches, the boundary conditions are

w50 and
]2w

]x2
50 at x50 and x51. (3)

The linear unforced undamped problem is obtained from
~2! by dropping the damping term, the disturbance, the con
force, and the nonlinear terms; that is,

]2w

]t2
1Lw5

]2w

]t2
1

]4w

]x4
2

d2c

dx2E
0

1]w

]x

dc

dx
dx50 (4)

with boundary conditions~3!. In Eq. ~4!, L denotes the linear
stiffness operator.

Because the linear unforced undamped problem is self-adjo
the eigenfunctionsfm(x) are mutually orthogonal and they ar
normalized as follows:*0

1fmfndx5^fmfn&5dmn , ^fmLfn&
5vn

2dmn where dmn is the Kronecker delta. For a simply
supported shallow arch with initial shapec(x)5b sinpx, the
eigenmodes are readily obtained in the form of the trigonome
series

fn~x!5A2 sin npx, n51,2, . . . (5)

and the associated natural frequencies are given byv1

5p2A11b2/2 andvn5n2p2, n52,3,. . . . A few bimodal two-
to-one and one-to-one internal resonances may be possib
hinged-hinged shallow arches.

In the next section, we develop an open-loop control strateg
reduce the nonlinear resonant vibrations arising from
boundary-excited principal parametric resonance of the sec
mode when this mode is away from the mentioned internal re
nances.

Open-Loop Control Of The Principal Parametric Reso-
nance Of The Second Mode

In this section, we construct the response of the system
principal parametric resonance of the second mode when no
ternal resonances engage this mode with any other mode an
system is subjected to a control force introduced to suppress
principal parametric resonance and further minimize the ove
steady-state vibrations. The boundary disturbance is sinuso
namely,u(1,t)5uB cosVt with V'2v2 .

The ordering of the excitation and damping demands thatn1
5n351 andn252. This ordering promotes the excitation to fir
order to activate the principal parametric resonance. Further,
control input is introduced also at first order so as to balance
possibly inhibit the external principal parametric resonance.
the other hand, the damping force is demoted to third order wh
Transactions of the ASME
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there appear the secondary-resonant terms produced by the c
force and the resonant effects of the structural nonlinearities yi
ing the frequency correction.

We assume the control signal as a pure tone; that is,Uc(t)
5Uc exp(i(Vct1cc))1cc where cc denotes the complex conju
gate of the preceding term. The objective is to design a con
term at first order that is capable of producing resonant term
second order counteracting the effects of the principal param
resonance which are proportional toĀ exp(iv2t). Here, A indi-
cates the complex-valued amplitude of the arch response a
natural frequency of the second mode (v2) and the overbar de
notes its complex conjugate. Hence, to create nonlinear contr
terms at second-order proportional toĀ exp(iv2t), the control fre-
quency needs to satisfy the relation6Vc6v25v2 . Conse-
quently, we chooseVc'2v2 . In addition, it is required that the
resulting nonlinear controller action have nonzero projection o
the mode to be controlled~i.e., the first antisymmetric mode!. The
designed control input is thus expected to produce resonant t
via a one-half subharmonic resonance.

The method of multiple scales is employed to determine
third–order uniform expansion of the solutions of~2! and~3!. As
mentioned, the resonant dynamics arising from the disturba
and control input will appear at second order. However, to cap
the nonlinear frequency correction, we seek a third-order exp
sion. Consequently, one needs to use the method of reconstit
~@13#!. To obtain consistent reconstituted modulation equatio
the equations of motion need to be cast as a system of first-o
equations in time~i.e., state-space formulation!, first, and, then,
they can be treated with the method of multiple scales. Theref
we first rewrite Eq.~2! as a system of two first-order equations
time by adding the equationẇ5v and puttingv̇ instead ofẅ in
the equation of motion. Moreover, we directly attack the equati
of motion and boundary conditions instead of treating fini
degree-of-freedom discretized versions. In fact, it has been ex
sively shown that treatment of a discretized set of distribut
parameter systems with quadratic and cubic nonlinearities
lead to erroneous quantitative and, in some cases, qualitativ
sults~@14,15#!. Thus, we overcome the problem of order reducti
and the associated problems as spillover effects which are cri
when designing control laws for such systems.

We seek a third-order uniform expansion in the form

w~x,t !5(
k51

3

ekwk~x,T0 ,T1 ,T2!1���

(6)

v~x,t !5(
k51

3

ekvk~x,T0 ,T1 ,T2!1���

whereTk5ekt are the time scales. Then, the first derivative w
respect to time is defined as]/]t5D01eD11e2D21��� where
Dn5]/]Tn . To express the nearness of the principal parame
resonance, we introduce the detuning parameters such thatV
52v21es. We assume at this stage that the excitation and c
trol signals are phase-locked and one-to-one; that is,Vc5V ~this
assumption will be later relaxed!.

Substituting~6! into the system of first-order~in time! equa-
tions of motion and boundary conditions~3!, using the indepen-
dence of the time scales, and equating coefficients of like pow
of e yields

Order e:

D0w12v150 (7)

D0v11Lw15
1

2
Uce

i (VT01cc)dS x2
1

2D
1

1

2

d2c

dx2
uBeiVT01cc (8)
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Order e2:

D0w22v252D1w1 (9)

D0v21Lw252D1v11
]2w1

]x2 E
0

1]w1

]x

dc

dx
dx

1
1

2

d2c

dx2E
0

1S ]w1

]x D 2

dx1
1

2

]2w1

]x2
~uBeiVT01cc!

(10)

Order e3:

D0w32v352D2w12D1w2 (11)

D0v31Lw352D2v12D1v21
]2w1

]x2 E
0

1]w2

]x

dc

dx
dx

1
]2w2

]x2 E
0

1]w1

]x

dc

dx
dx1

d2c

dx2E
0

1]w1

]x

]w2

]x
dx

1
1

2

]2w1

]x2 E
0

1S ]w1

]x D 2

dx22mv1

1
1

2

]2w2

]x2
~uBeiVT01cc! (12)

The boundary conditions at all orders are given by~3!.
Because the second mode is directly excited by the princ

parametric resonance of the disturbance and indirectly by the
harmonic resonance of the control input; moreover, because t
are no internal resonances involving this mode, we assume
solution at ordere as

w15A~T1 ,T2!eiv2T0f2~x!1Uc~x!ei (VT01cc)

1B~x!eiVT01cc (13)

where the functionsUc(x) andB(x) are solutions of the following
boundary value problems:

LUc24v2
2Uc5

1

2
UcdS x2

1

2D (14)

LB24v2
2B5

1

2
uB

d2c

dx2
. (15)

The functionUc can be expressed as an infinite series of
eigenfunctions in the form

Uc~x!5
1

2
Uc(

k50

`
f2k11~1/2!

v2k11
2 24v2

2
f2k11~x!

5
Uc

p4 F 2

b22126
sin px1(

k51

`
sin~~2k11!~p/2!!

~2k11!4264

3sin~2k11!pxG . (16)

On the other hand, the functionB can be readily obtained as

B~x!52
uB

p2~b22126!
b sin px. (17)

Substituting~13! andv15D0w1 into the second-order problem
Eqs.~9! and ~10!, we obtain

D0w22v252~D1A!eiv2T0f2~x!1cc (18)
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D0v21Lw252 iv2~D1A!eiv2T0f2~x!1Āei (v2T01sT1)f29S ^B8c8&1
1

2
uB1eicc^Uc8c8& D

1Aei (3v2T01sT1)f29S ^B8c8&1
1

2
uB1eicc^Uc8c8& D1ei (4v2T012sT112cc)S 1

2
c9^Uc8Uc8&1U c9^Uc8c8& D

1ei (4v2T012sT11cc)S U c9^B8c8&1B9^Uc8c8&1c9^Uc8B8&1
1

2
uBU c9D

1ei (4v2T012sT1)S 1

2
c9^B8B8&1B9^B8c8&1

1

2
uBB9D

1
1

2
A2e2iv2T0c9^f28f28&1

1

2
AĀc9^f28f28&1eicc~U c9^B8c8&1B9^U c8c8&1c9^U c8B8&!1U c9^U c8c8&

1
1

2
c9^U c8U c8&1B9^B8c8&1

1

2
c9^B8B8&1

1

2
uBB91cc (19)
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where the prime indicates differentiation with respect tox. Be-
cause the associated homogeneous problem admits nontrivia
lutions, the resulting inhomogeneous problem, Eqs.~18!, ~19!, and
~3!, possesses solutions only if solvability conditions are satisfi
The solvability conditions of Eqs.~18!, ~19!, and~3! demand that
the right-hand side of Eqs.~18! and ~19! be orthogonal to every
solution of the associated adjoint homogeneous problem.
transposes of the solutions of the adjoint homogeneous prob
are (ivk ,1)fk(x)exp(2ivkT0). Hence, imposing that the right
hand side of Eqs.~18! and~19! be orthogonal to these adjoints, w
obtain the following solvability condition:

2iv2D1A5ĀeisT1~K11eiccK2! (20)

where theexternal parametric excitation coefficientand thesub-
harmonic control gainare given, respectively, by

K15^f29f2&S ^B8c8&1
1

2
uBD5

252p2

b22126
uB (21)

and

K25^f29f2&^Uc8c8&52
4b

b22126
Uc . (22)

Substituting~20! into ~18! and~19!, we seek the solutions of th
resulting equations along with~3! in the form

w25@x1~x!1eiccx2~x!#Āei (v2T01sT1)1x3~x!A2e2iv2T0

1x4~x!AĀ1@x5~x!1eiccx6~x!#Aei (3v2T01sT1)

1@x7~x!1eiccx8~x!1e2iccx9~x!#ei (4v2T012sT1)1x10~x!

1eiccx11~x!1cc (23)

v25@h1~x!1eicch2~x!#Āei (v2T01sT1)1h3~x!A2e2iv2T0

1h4~x!AĀ1@h5~x!1eicch6~x!#Aei (3v2T01sT1)

1@h7~x!1eicch8~x!1e2icch9~x!#ei (4v2T012sT1)1h10~x!

1eicch11~x!1cc. (24)

The second-order displacement and velocity fields depend on
shape functionsx j and h j . The functionsx j are solutions of a
number of boundary value problems, Eqs.~40!–~49! with bound-
ary conditions~50!, reported in the Appendix. The functions go
erning the system response at first and second-order are sho
Fig. 2 for the valuesb516.5,uB51, andUc528.936. Using the
solutions at second order, Eqs.~23! and ~24!, and substituting
them into the third-order problem, Eqs.~11! and~12!, we impose
the solvability condition governing at this order the dependenc
A on the scaleT2 ; that is,
328 Õ Vol. 69, MAY 2002
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2iv2~D2A1mA!5aA2Ā1ssA (25)

where theeffective nonlinearity coefficientis given by

a5^f2f29&F2^c8x48&1^c8x38&1
3

2
^f28f28&G

58p4Fb2S 2

b212
1

1

b22126
D 23G . (26)

On the other hand, the coefficient of the linear frequency shif
given by

ss5
16Uc

2

~b212!
F b2

p4~b22126!2
2

p2

2
S1

(`)G
1

500p2b2uB
2216b~b221!UcuB

p2~b212!~b22126!2
1

~63p2uB2Ucb!2

4p4~b22126!2

(27)

where use of the phase conditioncc52np was made~this con-
dition will be discussed in the next section!.

Employing the method of reconstitution by substituting~20!
and~25! into Ȧ5eD1A1e2D2A1 . . . , andsettinge51, we ob-
tain the normal form governing the modulation of the amplitu
and phase as

2iv2~Ȧ1mA!5~K11eiccK2!eistĀ1ssA1aA2Ā. (28)

The deflection of the arch, to second order, is given by the s
of ~13! and~23! with the complex-valued amplitudeA being gov-
erned by the reconstituted modulation Eq.~28!.

Control Input Design. Our objective is the reduction of the
overall parametrically excited vibrations. Therefore, to optim
the nonlinear control action, we choose the following cost fun
tional:

J5
max

0<t<Tc
H E

0

1

w~x,t;am!2dxJ (29)

where Tc is the period of oscillation andam is the maximum
stable value of the real part of the complex-valued amplitudeA at
the disturbance frequency detunings. This cost is calculated
based on steady-state rather than transient behavior. Hence,
flects the cost predicted over long periods of operation wh
transient effects are negligible. The constraint for the optimizat
problem is given by the reconstituted modulation Eq.~28!. The
domain where minimization ofJ is sought is spanned byUc and
cc . It is clear that if we seek conditions for minimizingam , then
Transactions of the ASME
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we can more efficiently minimizeJ within the design paramete
subset where the minimum ofam is attained. The form of the
effective parametric excitation coefficient~sum of the external
parametric and subharmonic control coefficients! suggests that we
have the ability to affect this coefficient through the control ga
and phase. Then, the objective is to lower this coefficient be
the activation threshold of the parametric resonance. In this w
we prevent the principal parametric resonance from being a
vated and the only stable solution becomes the trivial solution

It is clear that the magnitude of the overall effective parame
resonance coefficient—K11K2 exp(icc)—is minimum with re-
spect to changes in the control phase whenK2 exp(icc) lies in a
complex-vector direction opposite toK1 . Inspecting Eqs.~21! and
~22!, we note thatK1 and K2 have always opposite sign; henc
the control phase condition is easily obtained ascc52np, n
50,1,. . . . Using this condition, we can transform the comple
valued modulation Eq.~28! into the real-valued modulation equa
tions for the amplitude and phase. To this end, we assume
following polar transformationA51/2a exp(ib)exp(2iss/2t) and
obtain the phaseg5(s1ss)t22b in order to render the modu
lation equations autonomous. Substituting the polar transfor
tion into ~28! and using the control phase condition~i.e., cc
52np) yields

ȧ52ma1
1

2

Ke

v2
a sin g (30)

aġ5aS s1
ss

v2
D1

a

4v2
a31

Ke

v2
a cosg, (31)

whereKe5K11K2 .
The frequency-response equation for the steady-state ampl

is given by

s52S ss

v2
1

a

4v2
a2D6AKe

2

v2
2

24m2 (32)
echanics
in
ow
ay,
cti-
.
ric

,

x-
-
the
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whereas the phase is given by tang57m(Ke
2/4v2

22m2)2(1/2).
We gain more insight into the effects of the control scheme

preliminarily investigating the system uncontrolled dynamics e
cited by the principal parametric resonance. In this case,
frequency-response equation can be obtained from~32! by putting
Uc50 into ss and Ke ~hence,Ke5K1). The amplitudes of the
nontrivial uncontrolled responses are given by

a52F a

v2
S 2s2

ss,uc

v2
6AK1

2

v2
2

24m2D G 1/2

. (33)

Seeking conditions for the existence of real solutions fora, we
conclude that there are three regions in the plane of disturba
amplitude and detuning as shown in Fig. 3~whereb516.5 and
m50.05). Namely, ~i! in region I (uB,uB,cr ; s or s.

2ss,uc /v21(K1
2/v2

224m2)1/2), there are no solutions;~ii ! in
region II (2ss,uc /v22(K1

2/v2
224m2)1/2,s,2ss,uc /v2

1(K1
2/v2

224m2)1/2), there is only one real solution;~iii ! in region
III ( s,2ss,uc /v22(K1

2/v2
224m2)1/2), there are two real solu-

tions. We note that subregion I8 ~i.e., uB,uB,cr), embedded in
region I, is such that the nonactivation of the parametric resona
therein is independent of the frequency detuning. The activa
threshold is obtained from~33! imposing vanishing of the argu
ment of the inner square root which yieldsuB,cr52mub2

2126u/63.
Computation of the effective nonlinearity coefficient, whenb

516.5, leads toa5660.008. The linear frequency shift isss,uc

56.959931022. In Fig. 4, we show the frequency-response cur
of the uncontrolled case whenuB51 andm50.05. Clearly, for the
considered sag level, the second mode of the arch is of the
ening type. PointS1 (S2) corresponds to a supercritical~subcriti-
cal! pitchfork bifurcation.

In the presence of control input, the activation threshold for
parametric resonance is obtained from~32! letting Ke

254m2v2
2 .
MAY 2002, Vol. 69 Õ 329
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Fig. 3 Regions of activation Õnonactivation of the principal parametric resonance in
the plane of the disturbance frequency detuning and gain when bÄ16.5 and mÄ0.05
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Substituting the expressions~21! and~22! for K1 andK2 into Ke
for fixed disturbance level and damping, we determine the ra
of control gain where the parametric resonance is not activate
Uc

(1),Uc,Uc
(2) where Uc

(1,2)563p2/b(uB7uB,cr). Within this
range~lightly shaded region in Fig. 5!, there is a locus of control
gains where the effective parametric coefficient becomes z
that is,Uc

(3)563p2uB /b. It is worth emphasizing that requiring
the control gain to be within the cancellation region in Fig.
entails enforcing the system to be in subregion I8 ~Fig. 3! where
the parametric resonance is annihilated for any freque
detuning.

It is interesting to investigate the sensitivity of the develop
control strategy to variations in the relative phase and freque
detuning. We first investigate the effect of the phase variatio
with perfect frequency tuning~i.e., V5Vc). To this end, the
analysis is simplified by neglecting third-order contributio
which are not expected to influence significantly the resona
activation threshold. The region of resonance cancellation is
tained as

K1
21K2

212K1K2coscc<4m2v2
2. (34)

Fig. 4 Frequency-response curve of the uncontrolled arch
when bÄ16.5, mÄ0.05, and u BÄ1. Solid „dashed … line indicates
stable „unstable … solutions.
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Substituting the expressions forK1 and K2 into ~34!, we obtain
the cancellation regions in the plane of disturbance and con
gains for different phase anglescc . Evidently, on account of~34!,
the regions are independent of the sign ofcc . Further, it can be
shown that the cancellation regions are physically meaning
whenccP(2p/2,p/2). Figure 5 shows clearly thatcc52np is
the optimal phase angle because the associated region is
terminating indicating that, in principle, cancellation is achieva
for any disturbance level. A variation ofcc by 6 deg renders the
region terminating thereby entailing that past a disturbance thr
old, cancellation cannot be achieved. However, this occurs
rather high values of disturbances. On the other hand, for low
medium excitation amplitudes, small changes in phase angle
not practically vary the cancellation region. Nevertheless, Fig
also shows that significant increases in phase angle variation
expected, degrade the control performance until it becomes i
fective whencc5p/2.

Results And Discussion
Within the outlined regions of resonance cancellation~Fig. 5!,

the optimal gains are determined via the presented optimiza
scheme. Therefore, for the given nondimensional sagb516.5,
damping coefficientm50.05, and disturbance leveluB51, we
computed the cost whenUc varies in the rangeUc

(1)528.936 to
Uc

(2)546.432 where the parametric resonance is cancelled
determine, accordingly, the optimal control gain as the va
where the cost is minimum. Clearly, in this case, the only sta
solution for the amplitude is the trivial solution. Accordingly, th
solution for the displacement field at steady state can be expre
as

w~x,t !52 cosVt@B~x!1Uc~x!#12$cos~2Vt !@x7~x!1x8~x!

1x9~x!#1x10~x!1x11~x!%. (35)

Thus, using~35!, we computedw(x,t) when Uc is equal to
Uc

(1) , Uc
(2) , andUc

(3) . Here, we note that the convergence of t
first and second-order shape functions expressed as infi
series is very fast. In fact, numerical tests conducted w
MATHEMATICA, showed that, for the given sag level, three/fou
terms are sufficient for convergence. Using five terms, we
Transactions of the ASME
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Fig. 5 Regions „shaded … of nonactivation of the principal parametric resonance in the plane of the distur-
bance and control gains for different control phase angles when bÄ16.5 and mÄ0.05
y

h

a

a

tained S1
(5)51.634131025 and ~i! K1517.006, K25213.058,

and ss527.644131023 when Uc528.936; ~ii ! K152K2

517.006, and ss521.92631022 when Uc563p2uB /b
537.684; ~iii ! K1517.006, K25220.954, and ss522.543
31022 when Uc546.432. Computation of the cost according
Eq. ~29! shows that it is minimum whenUc5Uc

(1)528.936.
Hence, we assume this control gain as the optimal control ga

It is interesting to compare the optimally controlled case w
the uncontrolled case when the frequency detuning iss5210
anduB51, b516.5, andm50.05. First, we compare the stead
state responses. Then, we compare the transient responses
presence of initial conditions within the basin of attraction of t
uncontrolled parametrically resonant response.

The steady-state deflection for the controlled case is given
~35!. On the other hand, the steady-state uncontrolled displ
ment field, to second order, is expressed as

w~x,t !5a cosF1

2
~Vt2g!Gf2~x!12 cosVtB~x!

1a cosF1

2
~Vt1g!Gx1~x!12 cos~2Vt !x7~x!

1
1

2
a2@cos~Vt2g!x3~x!1x4~x!#

1ax5~x!cosF1

2
~3Vt2g!G12x10~x! (36)

wherex10 is given by~61! insertingUc50 in it.
We computed the stable steady-state response amplitude

phase whens5210 and uB51 and found a51.579 and
g5213.42 deg. The period of oscillation isT50.182 and the
cost isJ52.890. In Fig. 6, we show the uncontrolled steady-st
deflections contrasted with the optimally controlled deflectio
~magnified ten times in the scale of the uncontrolled deflectio!
f Applied Mechanics
to

in.
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-
in the
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ns

Fig. 6 Uncontrolled „thin line … and optimally controlled „thick
line … dynamic deflections at seven discrete times equally
spaced within a period of oscillation when bÄ16.5, mÄ0.05,
u BÄ1, sÄÀ10, and UcÄ28.936
MAY 2002, Vol. 69 Õ 331
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Fig. 7 Time histories of the uncontrolled and optimally controlled deflections „ccÄ0 and UcÄ28.936… at
xÄ1Õ4 when u BÄ1, sÄÀ10, bÄ16.5, mÄ0.05, p „0…Ä1.5, and q „0…ÄÀ0.95
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at seven discrete times equally spaced in a period of the un
trolled oscillations~twice the period of the controlled oscilla
tions!. The result is that the overall optimally controlled deflecti
at steady state is two orders of magnitude smaller than that o
uncontrolled case and the relative decrease of the cost is 97.

Finally, to contrast the behavior of the uncontrolled respo
with the optimally controlled response in the transient regime,
cast the modulation equations and the displacement field
Cartesian form by using the transformationA51/2/(p
2 iq)exp(is/2t). Using this transformation, the modulation equ
tions become

ṗ52mp1
1

2 S Ke

v2
2s2

ss

v2
Dq2

1

8

a

v2
~p21q2!q (37)

q̇52mq1
1

2 S Ke

v2
1s1

ss

v2
D p1

1

8

a

v2
~p21q2!p. (38)

The displacement field, to second order, is also expressed in t
of Cartesian components as

w~x,t !5S p cos
V

2
t1q sin

V

2
t Df2~x!12 cosVt~B~x!1Uc~x!!

1S p cos
V

2
t2q sin

V

2
t D ~x1~x!1x2~x!!

1S p cos
3V

2
t1q sin

3V

2
t D ~x5~x!1x6~x!!

12 cos~2Vt !~x7~x!1x8~x!1x9~x!!
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rms

1
1

2
@~p22q2!cosVt12pq sin Vt#x3~x!

1
1

2
~p21q2!x4~x!12~x10~x!1x11~x!!. (39)

We integrated Eqs.~37! and~38! using a variable stepsize fifth
order Runge-Kutta scheme whenp(0)51.5 andq(0)520.95 for
the optimally controlled and uncontrolled cases. Using Eq.~39!,
we computed the time histories of the deflections atx51/4 in
whose neighborhood the maximum vibration amplitude is attai
and show the results in Fig. 7. We note that, after the transient
out, the response in the controlled case is two orders of magni
smaller than that in the uncontrolled case. Evidently, as expec
the decay rate of the transients in the controlled case is no
fected by the control strategy.

Last, to show the robustness of the control strategy with resp
to variations in frequency detuning, we performed some num
cal tests. To this end, we introduced the control frequency de
ing asVc52v21esc and carried out the perturbation expansi
up to second order. We integrated the obtained nonautonom
modulation equations in Cartesian form using the same par
eters chosen thus far with different values of frequency detun
defined asDs5s2sc . We found that resonance cancellation
achieved for a wide range of positive and negative frequency
tunings~i.e., excitation frequency lower or greater than the cont
frequency! with differences with respect to the perfectly tune
case in the transient regime only. A small range of positive det
ings ~approximately 9.7 to 10! was found where cancellation can
Fig. 8 Time histories of the controlled deflections „second-order solution … at xÄ1Õ4 in the detuned case
when „a… DsÄsÀscÄÀ9.55 and „b… DsÄ8.95 and ccÄ0, UcÄ28.936, sÄÀ10, bÄ16.5, mÄ0.05, u BÄ1,
p „0…Ä1.5, and q „0…ÄÀ0.95
Transactions of the ASME
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not be achieved resulting in unbounded growth of the respons
the investigated second-order solution. However, past this ra
cancellation is recovered again. Figure 8 shows the respo
of the system in two detuned cases when~a! Ds529.55 with
a frequency variation of about 13.8% and~b! Ds58.95 with a
frequency variation of about 13%. While in the negative
detuned case, no appreciable differences are noted, in
positively detuned case~prior the onset of instability atDs
'9.7), the presence of a large-amplitude excursion in the in
phase of the motion and modulation in the response are obse
although the response decays with the same rate as in the
fectly tuned case.

Conclusions
In this work we have demonstrated the effectiveness of a n

linear control strategy to cancel the parametrically forced osc
tions of a shallow arch and further minimize the residual nonre
nant oscillations. In particular, the control strategy inhib
activation of the principal parametric resonance using a point
tuator at the midspan of the arch. The control algorithm is op
loop because state parameters are not used for feedback. Th
ficulty arises because the disturbance input and actuator are
physically collocated and the control action is linearly orthogo
to the excited mode~first antisymmetric mode!. The key idea is to
rely on part of the nonlinear controller action which is not o
thogonal to the mode and further has resonant effects onto it

We show that a perturbation analysis can be used to dev
intuition as to the proper form of the control input. In this paper
one-half subharmonically resonant control law is used for
pressing the parametric resonance by enforcing the effective p
metric resonance coefficient to be below the activation thresh
This condition yields the control input in phase with the distu
bance in the optimal case. On the other hand, the optimal
value that minimizes the resulting steady-state vibrations, acc
ing to a chosen cost functional, is also determined.

The technique is shown to reduce the overall vibrations by
ders of magnitude with respect to the uncontrolled case. The
bustness of the proposed control methodology with respec
phase and frequency variations has also been demonstrated
plication of perturbation techniques to problems of this ty
seems to provide a unified approach that may be applicable
broad class of weakly nonlinear distributed-parameter syst
with either noncollocated inputs or linearly uncontrollable mod
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Appendix

Boundary Value Problems And Solutions.

Lx j2v2
2x j50, j 51,2 (40)

Lx324v2
2x35

1

2
c9^f28f28& (41)

Lx45
1

2
c9^f28f28& (42)

Lx529v2
2x55f29F ^B8c8&1

1

2
uBG (43)

Lx629v2
2x65f29^Uc8c8& (44)

Lx7216v2
2x75B9^B8c8&1

1

2
c9^B8B8&1

1

2
uBB9 (45)
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Lx8216v2
2x85U c9^B8c8&1B9^Uc8c8&1c9^Uc8B8&1

1

2
uBU c9

(46)

Lx9216v2
2x95U c9^Uc8c8&1

1

2
c9^Uc8Uc8& (47)

Lx105B9^B8c8&1
1

2
c9^B8B8&1

1

2
uBB91U c9^Uc8c8&

1
1

2
c9^Uc8Uc8& (48)

Lx115B9^Uc8c8&1U c9^B8c8&1c9^Uc8B8& (49)

subject to the boundary conditions

x i50 and x i950 at x50 and x51. (50)

The functionsh j , in turn, are given by

h j5 iv2x j2 i
K j

2v2
f2 , j 51,2 (51)

h352iv2x3 , h j53iv2x j , j 55,6 (52)

h j54iv2x j , j 57,8,9, h105h1150 (53)

Solving ~40! and ~50! and using~51!, we obtain

x j5djf2~x!, h j5 i Fv2dj2
K j

2v2
Gf2~x!, j 51,2. (54)

To remove the indeterminacy associated with the arbitrary c
stantsdj , we impose that the functionsx1 andh1 andx2 andh2
are orthogonal to the adjoint (iv2 ,1)f2(x). The result is

x j5
K j

4v2
2

f2~x!, h j52 iv2x j , j 51,2. (55)

Solving the remaining boundary value problems~41!–~49! with
boundary conditions~50!, we obtain the following shape func
tions:

x352
4b

b22126
sinpx, x452

4b

b212
sinpx (56)

x552
63uB

32p2~b22126!
f2 , x65

bUc

32p4~b22126!
f2 ,

(57)

x752
uB

2b~b21252!

2p4~b22126!2~b22510!
sin px (58)

x85
UcuB

p6~b22126!
H 4~b2163!

~b22126!~b22510!
sin px

163(
k51

` F s2k11~2k11!2

@~2k11!42256#@~2k11!4264#
G

3sin~2k11!pxJ (59)

x952
2bUc

2

p4~b22510!
F 2

p4~b22126!2
1

p2

2
S1

(`)Gsin px

2
bUc

2

p8~b22126!
(
k51

` H s2k11~2k11!2

@~2k11!42256#@~2k11!4264#
J

3sin~2k11!px (60)
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x1052F 2bUc
2

p4~b212!
S 2

p4~b22126!2
1

p2

2
S1

(`)D
2

buB
2~b21252!

2p4~b212!~b22126!2Gsin px

2
bUc

2

p8~b22126!
(
k51

` F s2k11

~2k11!2@~2k11!4264#
G

3sin~2k11!px (61)

x115
b2UcuB

p6~b22126!
H 6

~b22126!~b212!
sin px

1
1

2 (
k51

` F s2k11

~2k11!2@~2k11!4264#
Gsin~2k11!pxJ

(62)

where

S1
(`)5

1

2p6 F 4

~b22126!2
1(

k51

`
s2k11

2 ~2k11!2

@~2k11!4264#2G (63)

ands2k115sin@(2k11)p/2#.
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What is the General Form of the
Explicit Equations of Motion for
Constrained Mechanical
Systems?
This paper presents the general form of the explicit equations of motion for mecha
systems. The systems may have holonomic and/or nonholonomic constraints, a
constraint forces may or may not satisfy D’Alembert’s principle at each instant of t
The explicit equations lead to new fundamental principles of analytical mechanics.
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Introduction

Since its inception more than 200 years ago, analytical mech
ics has been continually drawn to the determination of the eq
tions of motion for constrained mechanical systems. Follow
the fundamental work of Lagrange@1# who bequeathed to us th
so-called Lagrange multipliers in the process of determining th
equations, numerous scientists and mathematicians have
tempted this central problem of analytical dynamics. A comp
hensive reference list would run into several hundreds; hence
shall provide here, by way of a thumbnail historical review of t
subject, only some of the significant milestones and discove
In 1829, Gauss@2# introduced a general principle for handlin
constrained motion, which is commonly referred to today
Gauss’s Principle; Gibbs@3# and Appell @4# independently ob-
tained the so-called Gibbs-Appell equations of motion using
concept of~felicitously chosen! quasi-coordinates; Poincare@5#,
using group theoretic methods, generalized Lagrange’s equa
to include general quasi-coordinates; and Dirac@6#, in a series of
papers provided an algorithm to give the Lagrange multipliers
constrained, singular Hamiltonian systems. Udwadia and Ka
@7# gave the explicit equations of motion for constrained mecha
cal systems using generalized inverses of matrices, a concep
was independently discovered by Moore@8# and Penrose@9#. The
use of this powerful concept, which was further developed fr
the late 1950s to the 1980s, allows the generalized-inverse e
tions ~Udwadia and Kalaba@7#! to go beyond, in a sense, thos
provided earlier; for, they are valid for sets of constraints t
could be nonlinear in the generalized velocities, and that could
functionally dependent. Thus the problem of obtaining the eq
tions of motion for constrained mechanical systems has a his
that is indeed as long as that of analytical dynamics itself.

Yet, all these efforts have been solely targeted towards obt
ing the equations of motion for holonomically and nonholonom
cally constrained systems thatall obey D’Alembert’s principle of
virtual work at each instant of time. This principle, though intr
duced by D’Alembert, was precisely stated for the first time
Lagrange. The principle in effect makesan assumptionabout the
nature of the forces of constraint that act on a mechanical sys

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received and accepted by the ASME Applied Mechanics
vision, April 18, 2000. Associate Editor: L. T. Wheeler. Discussion on the pa
should be addressed to the Editor, Professor Lewis T. Wheeler, Department o
chanical Engineering, University of Houston, Houston, TX 77204-4792, and wil
accepted until four months after final publication of the paper itself in the AS
JOURNAL OF APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
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It assumes that at each instant of time,t, during the motion of the
mechanical system, the constraint forces dono work under virtual
displacements.

This seemingly sweeping assumption is indeed a tribute to
genius of Lagrange, because:~1! it gives exactly the right amoun
of additional information regarding the nature of the constra
forces in a general constrained mechanical system so that
equations of motion areuniquelydetermined, and are thus in con
formity with practical observation;~2! in the mathematical mod-
eling of a mechanical system, it obviates the need for the mec
nician to investigate each specific mechanical system at hand
to determine the nature of the constraint forces prevalent; and~3!
it yields equations of motion for constrained systems that seem
work well ~or at least sufficiently well! in numerous practical
situations.

However, there are many mechanical systems that are comm
place in Nature where D’Alembert’s principle is not valid, such
when sliding friction becomes important. Such situations have
far been considered to lie beyond the compass of the Lagran
formulation of mechanics. As stated by Goldstein@10#, ‘‘This @to-
tal work done by forces of constraint under virtual displaceme
equal to zero# is no longer true if sliding friction is present, an
we must exclude such systems from our@Lagrangian# formula-
tion.’’ And Pars@11# ~p. 14! in his treatise on analytical dynamic
writes, ‘‘There are in fact systems for which the principle enun
ated @D’Alembert’s Principle# . . . does not hold. But such sys
tems will not be considered in this book.’’

Constraint forces thatdo work under virtual displacements ar
called nonideal constraint forces, and such constraints themse
are often referred to as being nonideal. While it is possible
times, to handle problems with holonomic, nonideal constra
~like sliding friction! by using a Newtonian approach, to date w
do not have a general formulation for obtaining the equations
motion for systems where we have nonholonomic, nonideal c
straints, i.e., nonholonomic constraints where the constraint fo
do work under virtual displacements. The aim of this paper is
include such systems within the Lagrangian formulation of m
chanics, and further to develop the general form of the expl
equations of motion for constrained systems that may or may
obey D’Alembert’s principle at each instant of time. The approa
we follow here is based on linear algebra, and it is different fro
that of Refs.@12#, @13#, and@14#. It leads us to the general struc
ture of the equation of motion for constrained systems, and
minates in the statement of two fundamental principles of anal
cal dynamics.

Formulation of the Problem of Constrained Motion
Consider an ‘‘unconstrained’’ mechanical system described

the Lagrange equations
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M ~q,t !q̈5Q~q,q̇,t !, q~0!5q0 , q̇~0!5q̇0 (1)

where q(t) is the n-vector ~i.e., n by 1 vector! of generalized
coordinates,M is ann by n symmetric, positive-definite matrix,Q
is the ‘‘known’’ n-vector of impressed~also, called ‘‘given’’!
forces, and the dots refer to differentiation with respect to tim
By unconstrained, we mean that the components of then-vector
q̇0 can be arbitrarily specified. By ‘‘known,’’ we mean that th
n-vectorQ is a known function of its arguments. The acceleratio
a, of the unconstrained system at any timet is then given by the
relationa(q,q̇,t)5M 21(q,t)Q(q,q̇,t).

We next subject the system to a set ofm5h1s consistent,
equality constraints of the form

w~q,t !50 (2)

and

c~q,q̇,t !50, (3)

wherew is anh-vector andc an s-vector. Furthermore, we sha
assume that the initial conditionsq0 and q̇0 satisfy these con-
straint equations at timet50, i.e., w(q0,0)50, ẇ(q0 ,q̇0,0)50,
andc(q0 ,q̇0,0)50.

Assuming that Eqs.~2! and ~3! are sufficiently smooth,1 we
differentiate Eq.~2! twice with respect to time, and Eq.~3! once
with respect to time, to obtain an equation of the form

A~q,q̇,t !q̈5b~q,q̇,t !, (4)

where the matrixA is m by n, andb is the m-vector that results
from carrying out the differentiations. We place no restrictions
the rank of the matrixA.

This set of constraint equations includes, among others,
usual holonomic, nonholonomic, scleronomic, rheonomic, ca
static, and acatastatic varieties of constraints; combination
such constraints may also be permitted in Eq.~4!. Furthermore,
the functions in~3! could be nonlinear inq̇, and them constraint
equations need not be independent of one another.

It is important to note that Eq.~4!, together with the initial
conditions, is equivalent to Eqs.~2! and ~3!.

The equation of motion of the constrained mechanical sys
can then be expressed as

M ~q,t !q̈5Q~q,q̇,t !1Qc~q,q̇,t !, q~0!5q0 , q̇~0!5q̇0
(5)

where the additional ‘‘constraint force’’n-vector, Qc(q,q̇,t),
arises by virtue of the constraints that are imposed on the un
strained system, which we have described by Eq.~1!. Since the
n-vector Q is known, our aim is to determine ageneralexplicit
form for Qc at any timet.

We shall see below that in any constrained mechanical sys
the total constraint forcen-vector,Qc, at each instant of timet,
can be thought of as made up of two components:Qc5Qi

c

1Qni
c . The first component corresponds to the force of constra

Qi
c , that would act were all the constraints ideal at that instant

time; the second component,Qni
c , arises because of the nonide

nature of the constraints. This latter component issituation spe-
cific and needs to be specified by the mechanician entrusted
modeling the mechanical system. However, we shall show
this component too must always occur in the explicit equation
motion in a specific form.

In what follows, for brevity, we shall suppress the arguments
the various quantities, unless necessary for purposes of clari
tion.

1We assume throughout this paper that the presence of constraints does not c
the rank of the matrixM. This is almost always true in mechanical systems.
336 Õ Vol. 69, MAY 2002
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The General Form of the Explicit Equation of Motion
for any Constrained Mechanical Systems

We begin by stating our general result in the following thre
part statement.

~1! The general ‘‘explicit’’ equation of motion at timet for any
constrained mechanical system,whether or not the constrain
forces satisfy D’Alembert’s Principle at that time t, is given by

Mq̈5Q1Qc5Q1Qi
c1Qni

c

5Q1M1/2B1~b2AM21Q!1M1/2~ I 2B1B!z

(6)

where the matrixB5AM21/2, B1 is the generalized inverse2 of
the matrixB, andz(q(t),q̇(t),t) is some suitablen-vector.~When
z is C1, Eq. ~6! yields a unique solution.! The matrixA is defined
in relation ~4!, as is them-vector b. The n-vector Q is the im-
pressed force. By ‘‘explicit’’ we mean here that the accelerat
n-vector,q̈, on the left-hand side of Eq.~6! is explicitly expressed
in terms of quantities that are functions ofq, q̇, and t on the
right-hand side.

Alternately stated, the total constraint forcen-vector,Qc, at any
instant of timet is made up of the sum of two componentsQi

c and
Qni

c that can be explicitly written as

Qi
c5M1/2B1~b2AM21Q!, (7)

and,

Qni
c 5M1/2~ I 2B1B!z. (8)

~2! To mathematically model agiven constrained mechanica
system adequately, the mechanician mustspecify the vector
z(q,q̇,t) in the third member on the right-hand side of Eq.~6! at
each instant of time. This may be done by inspection of the s
cific system at hand, by analogy with other systems that
mechanician may have dealt with in the past, by experimenta
with the specific system or similar systems, or otherwise.

~3! However, no matter how the mechanician comes up with
prescription of then-vector z for adequately modeling agiven
constrained mechanical system under consideration, specifica
of this n-vector at each timet uniquely determinesQni

c , and hence
the accelerationn-vector,q̈(t), of the constrained system. Such
prescription ofz(t) is equivalentto prescribing the work done by
all the constraint forces under virtual displacements at that timt,
in the following sense.
~a! When the vectorz(t) is prescribed, it can always be express
as

z~ t !5M 21/2~q,t !C~q,q̇,t ! (9)

since, M is a positive definite matrix. The total work done,W
ªvTQc, by all the forces of constraint under~nonzero! virtual
displacementsv at time t, is then given by

W~ t !ªv~ t !TQc5v~ t !TC~q,q̇,t !. (10)

~b! When, for a given specific constrained mechanical system,
work done,W, at time t by the forces of constraint under virtua
displacementsv is prescribed through specification of then-vector
C(q,q̇,t) such that

W~ t !5v~ t !TC~q,q̇,t !, (11)

this determines the equation of motion of the constrained sys
uniquelyat time t. This equation of motion is obtained by settin
z(t)5M 21/2(q,t)C(q,q̇,t), in Eq. ~6!. The work done,W(t),
may be positive, zero, or negative, at the instant of timet. h

hange2Some of the basic properties of the Moore-Penrose generalized inverse th
used throughout this paper may be found in Chapter 2 of Ref.@15#.
Transactions of the ASME
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We note from Eq.~9! above, that prescribingz to be the zero
n-vector at any timet, is equivalent to specifyingC50 at that
specific timet, and then by~10!, the constraint forces dono work
under virtual displacements and therefore they sat
D’Alembert’s principle at that instant of timet. In what follows
we shall also show that when the constraints do no work un
virtual displacements at timet, because of Eq.~10!, then-vectorC
must belong to the range space ofAT; the third member on the
right in Eq.~6! then becomes zero at that time. Further, if throug
out the motion of the constrained system the work done by
constraint forces under virtual displacements is zero, then the t
member on the right-hand side in Eq.~6! disappears for all time.
The equation of motion~6! then becomes

Mq̈5Q1Qc5Q1Qi
c5Q1M1/2B1~b2AM21Q!, (12)

which is identical to that obtained by Udwadia and Kalaba@7# for
systems that obey D’Alembert’s principle. Equation~12! is
equivalent to the Gibbs-Appell equations~see Ref.@15#!. We then
see that the componentQi

c in Eq. ~7! therefore gives the constrain
force at timet that would be generated were all the constrain
ideal at that time. And Qni

c explicitly gives the contribution to the
total constraint force,Qc, made by the nonideal nature of th
constraints.

Were the acceleration,a5M 21Q, of the unconstrained system
at time t to be inserted into the equation of constraint~4!, this
equation would not, in general, be satisfied at that time. The ex
to which the constraint~Eq. ~4!! would not be satisfied by this
acceleration,a, of the unconstrained system at timet would then
be given by

e5b2Aa5b2AM21Q. (13)

The force of constraint can now be rewritten as

Qc5Qi
c1Qni

c 5M1/2B1e1M1/2~ I 2B1B!z. (14)

Also, the effect of this constraint force in altering the accelerat
of the unconstrained system can be explicitly determined. For,
deviation, Dq̈, at time t of the acceleration of the constraine
system from that of the unconstrained system becomes, by
~6!,

Dq̈5q̈2a5M 21/2B1e1M 21/2~ I 2B1B!z. (15)

Equations~14! and~15! lead us to a new fundamental princip
of Lagrangian mechanics which we now state in two equival
forms.

1 A constrained mechanical system evolves in such a w
that, at each instant of time, the deviation,Dq̈, of its accel-
eration from what it would have been at that instant h
there been no constraints on it, is given by a sum of t
components: the first component is proportional to the
tent, e, to which the unconstrained acceleration does
satisfy the constraints at that instant of time, the matrix
proportionality being the matrixM 21/2B1; the second is
proportional to ann-vector z that needs, in general, to b
specified at each instant of time, the matrix of proportio
ality being M 21/2(I 2B1B), where B5AM21/2. The
specification ofz at any time,t, is dependent on the natur
of the forces of constraint that are generated. Its specifi
tion for a given system at hand is tantamount to the sp
fication of the total work done under virtual displacemen
by all the forces of constraint at that time. Such a spec
cation of the work done at each instant of time unique
determines the equation of motion of the constrained s
tem.

2 At each instant of timet, the force of constraint acting on
constrained mechanical system is made up of two com
nents: the first component is proportional to the extent,e, to
which the unconstrained acceleration of the system does
satisfy the constraints at that instant of time, and the ma
Journal of Applied Mechanics
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of proportionality isM1/2B1; the second is proportional to
an n-vector z that, in general, needs specification at ea
instant of time, the matrix of proportionality beingM1/2(I
2B1B), whereB5AM21/2. This vectorz is specific to a
given mechanical system and needs to be prescribed by
mechanician who is modeling the system. Whether or
the constraints are ideal, the first component is alwa
present and constitutes the constraint force at the instan
time t that would have been generated were all the c
straints ideal at that time. The second component depe
on the nature of the constraint forces generated in the s
cific mechanical system that is being modeled; it preva
only when the total work done by the constraint forces u
der virtual displacements differs from zero.

Proof of the General Form of the Equations of Motion
for Constrained Systems

We begin by considering the ‘‘scaled accelerations’’ defined
the relations

q̈s5M1/2q̈; (16)

as5M 21/2Q5M1/2a; (17)

and,

q̈s
c5M 21/2Qc5M1/2q̈c. (18)

By Eq. ~5!, we then have

q̈s5as1q̈s
c . (19)

Furthermore, Eq.~4! can be expressed as

Bq̈s5b, (20)

where

B5AM21/2. (21)

Consider the matricesT5B1B and N5(I 2B1B), where the
matrix B1 is the Moore-Penrose~MP! inverse of the matrixB.
The matrixT is an orthogonal projection operator since (B1B)T

5B1B, and T25(B1B)(B1B)5B1B5T. Also, N is an or-
thogonal projection operator since (I 2B1B)T5I 2(B1B)T5I
2B1B, and N25N. SinceRn5R(BT) % N(B), any n-vector w
has a unique orthogonal decompositionw5B1Bw1(I
2B1B)w; and so also ourn-vector q̈s . This yields the identity

q̈s5B1Bq̈s1~ I 2B1B!q̈s . (22)

Using relation~20! in the first member on the right, and relatio
~19! in the second member, we obtain

q̈s5as1B1~b2Bas!1~ I 2B1B!q̈s
c . (23)

Comparison of Eq.~19! with Eq. ~23! then yields

B1Bq̈s
c5B1~b2Bas! (24)

which can be solved forq̈s
c to yield

q̈s
c5B1BB1~b2Bas!1$I 2~B1B!1~B1B!%z

5B1~b2Bas!1~ I 2B1B!z (25)

for somen-vectorz.
Equation~18!, then gives

Qc5M1/2B1~b2Aa!1M1/2~ I 2B1B!z (26)

and the general equation of motion of the constrained system
Eq. ~5!, becomes

Mq̈5Q1Qc5Q1M1/2B1~b2Aa!1M1/2~ I 2B1B!z (27)

wherez is somen-vector. q.e.d.
To obtain the unique equation of motion for aspecificmechani-

cal system, the mechanician needs to prescribe the ve
z(q(t),q̇(t),t) at each instant of time. Specification of the vect
MAY 2002, Vol. 69 Õ 337
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z(t) yields explicitly and uniquely the componentQni
c of the con-

straint force,Qc, at each instant of timet. In fact, given an
n-vector z at a specific timet, we can form then-vector C
5M1/2z at timet. The vectorC cannow be interpretedas provid-
ing the work done,W5vTC, by the constraint forcen-vectorQc

under virtual displacementsv at time t.
We now show thatQni

c can also be uniquely determined at ea
instant of timet by specifying the work done by the constrai
force n-vector, Qc, under virtual displacements at that tim
Proof: A virtual displacement is any nonzeron-vector v such
that Av50 ~see Ref.@15#!. Using Eq.~21! this relation can also
be written asAv5(AM21/2)M1/2v5B(M1/2v)5Bm50, where
we have denoted then-vectorM1/2v by m. Thus a virtual displace-
ment can also be considered as any~nonzero! n-vectorm such that
Bm50. Using Eq.~27!, the work done by the force of constrain
under all virtual displacementsv is then given by

WªvTQc5vT~Qi
c1Qni

c !

5vTM1/2B1~b2Aa!1vTM1/2~ I 2B1B!z

5mTB1~b2Aa!1mT~ I 2B1B!z. (28)

The first member in the last expression on the right of equa
~28! is zero sinceBm50 impliesmTB150. Hence the componen
Qi

c of the total force of constraint, Qc, does no work under virtua
displacements. Equation~28! then becomes

WªvTQc5vTQni
c 5mTz5vT~M1/2z!. (29)

Let W(t) to be prescribed at timet by the mechanician through
a specification of then-vector C(q,q̇,t) so that WªvTQc

5vTC. Then by Eq.~29!, we have

vT~M1/2z!5vTC. (30)

Sincev is such thatAv50, this requires that

z5M 21/2~C1ATw!5M 21/2C1BTw (31)

wherew is any arbitrarym-vector. Using this expression forz in
Eq. ~27! we obtain theunique equation of motion of the con
strained system to be

Mq̈5Q1Qc5Q1Qi
c1Qni

c 5Q1M1/2B1~b2Aa!

1M1/2~ I 2B1B!M 21/2C, (32)

since (I 2B1B)BT5$B(I 2B1B)%T50.
We now see that Eq.~6! is identical to Eq. ~32! with z

5M 21/2C! The component ofz in the range space ofBT—the
second member on the right in Eq.~31!—does not affectQni

c , and
therefore the equation of motion of the constrained system.

Though then-vector C(t) specifies the work done,WªvTQc

5vTQni
c 5vTC, by the constraint force under all virtual displac

mentsv at time t, Eq. ~32! states that, in general,Qni
c ÞC. At

instants of time t when W5(vTM1/2)(M 21/2C(q,q̇,t))50,
M 21/2C belongs to the range space ofBT, and hence by Eq.~32!,
Qni

c 50 since (I 2B1B)BT50. If further,W50 for all time, then
the force of constraint satisfies D’Alembert’s principle, a
Qni

c (t)[0; the equation of motion for the constrained system th
reduces to that given in~12!. At instants of timet whenM 21/2C
belongs to the null space ofB, Qni

c 5C. In general, then-vector
M 21/2C can have components in both the null space ofB and the
range space ofBT. We note that at each instant of time, it is on
the component ofM 21/2C in the null space ofB that contributes to
Qni

c , and hence to the equation of motion of the constrained s
tem.

Conclusions
The equations of motion for constrained systems obtained

date have all been based upon D’Alembert’s principle of virt
338 Õ Vol. 69, MAY 2002
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work. So far, no general equations of motion have been disc
ered within the Lagrangian formalism in situations where this c
tral principle of analytical dynamics is not applicable.

This paper provides the general explicit form of the equation
motion for any holonomically and/or nonholonomically con
strained mechanical system. The equation is

Mq̈5Q1M1/2B1~b2AM21Q!1M1/2~ I 2B1B!z. (33)

The n-vector Q is the given force, them by n matrix A and the
m-vector b are defined in Eq.~4!, B5AM21/2, and B1 is the
generalized inverse ofB. The equation applies to all constraine
mechanical systems whether or not they satisfy D’Alembert’s p
ciple. The second member on the right in Eq.~33! explicitly gives
the force of constraint,Qi

c thatwould have beengenerated at time
t were all the constraint forces ideal, and thus sati
D’Alembert’s principle. The third member on the right in Eq.~33!
explicitly gives the contribution,Qni

c , to the total force of con-
straint because of the presence of nonideal constraints.

To obtain the equation of motion for a given, specific, mecha
cal system, the mechanician needs to provide then-vector
z(q,q̇,t) suitably at each instant of time, thereby uniquely spe
fying the third member on the right in Eq.~33!. The provision of
this vectorz(t) depends on the judgement and discernment of
mechanician and may be determined by experiment, experie
intuition, inspection, or otherwise. However, no matter how t
vector is arrived at, the total work done,W(t)ªvT(t)Qc(t), by
the force of constraint under virtual displacementsv(t) at any
instant of timet is always given byvT(t)C(t), where then-vector
C(t)5M1/2(q,t)z(q,q̇,t). This work, W(t), may, in general, be
positive, zero, or negative.

We show that to model agivenconstrained mechanical syste
adequately one needs, in general, to providemore thanjust the
equations of constraint~Eqs. ~2! and ~3!!, be they holonomic or
nonholonomic. While at each instant of time the componentQi

c of
the total constraint forcen-vector,Qc, is determined solely from
the kinematical description of the constraints~Eqs.~2! and~3!!, to
determine the componentQni

c one always needs to rely on the
mechanician’s discernment and judgement. However, as show
the equation above, this component~see also Eq.~8!! mustappear
in a specific formin the explicit equation of motion of the con
strained system. When the mechanical system satis
D’Alembert’s principle at every instant of time,Qni

c (t)[0, and
the third member on the right in~33! becomes zero. Then ou
general equation yields the known equation of motion~@15#! for
constrained systems that satisfy D’Alembert’s principle.

It is perhaps noteworthy that though the equations of motion
even very simple mechanical systems are often highly nonlin
the general form of the equation of motion obtained here relies
techniques from linear algebra. The fundamental principles
analytical dynamics obtained in this paper may have been imp
sible to state in such a simple form without the concept of
generalized inverse of a matrix, a concept first invented by P
rose@9#.

The equation of motion obtained in this paper appears to be
simplest and most general so far discovered for mechanical
tems within the framework of classical mechanics.
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Exact Analysis of Dynamic Sliding
Indentation at any Constant
Speed on an Orthotropic or
Transversely Isotropic Half-Space
A plane-strain study of steady sliding by a smooth rigid indentor at any constant spe
a class of orthotropic or transversely isotropic half-spaces is performed. Exact solu
for the full displacement fields are constructed, and applied to the case of the ge
parabolic indentor. The closed-form results obtained confirm previous observations
physically acceptable solutions arise for sliding speeds below the Rayleigh speed,
single critical transonic speed, and for all supersonic speeds. Continuity of contact
traction is lost for the latter two cases. Calculations for five representative mate
indicate that contact zone width achieves minimum values at high, but not critical,
sonic sliding speeds. A key feature of the analysis is the factorization that gives, d
anisotropy, solution expressions that are rather simple in form. In particular, a com
function of the Rayleigh-type emerges that leads to a simple exact formula for the
leigh speed itself.@DOI: 10.1115/1.1464874#
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Introduction

Studies of rapid sliding contact by rigid indentors allow insig
into the operation of mechanisms, and has been modeled,
@1–4#, as a dynamic process involving linear isotropic elastic s
ids. More recently, Georgiadis and Barber@5# and Brock and
Georgiadis@6# have shown for, respectively, smooth and friction
contact, that physically acceptable solutions may not exist for s
ing speeds in various portions of the sub, tran, and supers
ranges. Similar behavior is seen for sliding on hyperelastic iso
pic solids under prestress~@7#!. That study treats, in the manner o
@8,9#, sliding contact as the superposition of infinitesimal def
mations upon the possibly finite deformations due to prestr
Thus, the anisotropy induced by the prestress influences solu
behavior.

The present article complements efforts such as@1–7# by treat-
ing initially unstressed solids that are either orthotropic or tra
versely isotropic in their rest states. A plane-strain analysis
steady sliding is performed, the rigid indentor is smooth, and
sliding speed can be any constant value. In keeping with stan
definitions~@6,10#!, the subsonic range refers to speeds below
shear wave speed, the transonic range denotes speeds betwe
shear and dilatational wave speeds, and the supersonic rang
fers to speeds that exceed the dilatational wave speed. An
bounded half-space is treated. The results will, therefore, be m
applicable when the sliding duration is brief enough and the
dented body large enough to neglect the effects of other bou
aries.

Exact solutions are obtained, and key steps in the analysis
the factorization of certain functions in the integral transfo
space that give, despite anisotropy, simple expressions for
quantities. One factorization, in particular, produces a function
the Rayleigh type, and allows a compact exact formula for

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, April 1
2001; final revision, November 6, 2001. Associate Editor: A. K. Mal. Discussion
the paper should be addressed to the Editor, Prof. Lewis T. Wheeler, Departme
Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and
be accepted until four months after final publication of the paper itself in the AS
JOURNAL OF APPLIED MECHANICS.
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Rayleigh speed along the material surface. The analysis begin
the next section with the basic equations for the material.

Basic Equations
Consider a half-space, defined in terms of Cartesian coordin

~x, y, z! as the regiony.0. The half-space material is of a class
linear homogeneous anisotropic solids whose nontrivial govern
equations in plane strain in the absence of body forces are

c11ux,xx1c44ux,yy1~c131c44!uy,xy5rüx (1a)

c44uy,xx1c33uy,yy1~c131c44!ux,xy5rüy (1b)

and are augmented by the associated stress-strain formulas

sx5c11ux,x1c13uy,y (2a)

sy5c33uy,y1c13ux,x (2b)

sxy5c44~ux,y1uy,x!. (2c)

These equations hold for both orthotropic and transversely iso
pic materials, where thex andy-axes are axes of material symm
try. The (ux ,uy) are the~x, y!-components of displacement, whil
~�! and ( ),s denote differentiation by time and a variables, respec-
tively. The constants (c11,c13,c33,c44) are a subset of the elastic
ties cik( i ,k51,2, . . . ,6) that appear in the generalized Hooke
law ~@11#!, andr is the mass density. Equation~1! is a special case
of a more general form that involves four constants that can
linearly related to various subsets ofcik ~@12#!. Discussions of
relations between crystal structure and the elasticities can
found in @13,14#. In the present case, the isotropic limit can
extracted by settingc115c335l12m, c135l, c445m, where
~l,m! are the Lame’ constants.

The half-space is at rest when a smooth rigid indentor of in
nite length and invariant profile in thez-direction is pressed into
the half-space surfacey50 with compressive force~per unit of
length! N. The indentor is simultaneously translated in the posit
x-direction with a constant speedv. Eventually, a dynamic plane
strain state of steady sliding is reached, as depicted schemati
in Fig. 1. As indicated there, it is convenient to translate the
ordinates~x, y, z! with the indentor, so that the boundary cond
tions alongy50 take the form

,
on
nt of
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E

02 by ASME Transactions of the ASME
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sxy50; (3a)

sy50~x¹L !, (3b)

uy5V~x!~xPL !. (3c)

In Fig. 1, x5L6 locates the leading and trailing edges of t
indentor contact zone. The symbolL is used to represent both th
contact zone itself, and its widthL5L12L2 . The functionV(x)
is the normal motion imposed by the indentor in the contact zo
The constantsL6 are a priori unknown.

Because the process is one of steady sliding in plane st
field quantities depend only on~x, y!, and~�! in the inertial frame
can be replaced by the operator2v( ) ,x . For convenience, there
fore, the dimensionless quantities

a5
c33

c44
, b5

c11

c44
, g511ab2m2, m511

c13

c44
, c5

v
v r
(4)

are introduced, where~a, b, g, m! follow from @15#, and the speed

v r5Ac44

r
(5)

is, in the isotropic limit, the classical rotational wave speed~@10#!.
Equations~1! and ~2! become

~b2c2!ux,xx1ux,yy1muy,xy50 (6a)

uy,xx1~a2c2!uy,yy1mux,xy50 (6b)

and

1

c44
sx5bux,x1~m21!uy,y (7a)

1

c44
sy5~m21!ux,x1auy,y (7b)

1

c44
sxy5ux,y1uy,x . (7c)

For purposes of illustration, we consider, after@15,16#, the
constraints

2Aab<g<11ab ~1,b,a! (8a)

a1b<g<11ab ~1,a,b! (8b)

2a<g<11a2 ~1,b5a!. (8c)

As will be seen, condition~8! guarantees that the rotational an
dilatational wave speeds associated with thex-axis of material
symmetry arise as distinct, real-valued branch points in the c
plex c-plane. The class of materials governed by~8! includes
beryl, cobalt, ice, magnesium, and titanium, as well as the iso

Fig. 1 Schematic of sliding rigid indentation
Journal of Applied Mechanics
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pic limit. Because displacements in steady motion can be de
mined only to within an arbitrary rigid-body motion, bounda
condition ~3c! can be replaced by

uy,x5
dV~x!

dx
~xPL ! (9)

alongy50. In addition, displacements and their gradients sho
vanish whenAx21y2→`, y.0 and be nonsingular and continu
ous almost everywhere. This latter requirement, as well as
assumption, implicit in Fig. 1 and~3a–c! and ~9!, that multiple
contact zones~@4#! do not in fact arise, can be justified in part b
requiring that (V,dV/dx,d2V/dx2) be finite and continuous for
xPL. Then, the resultant ofsy on the contact zone should be th
specified compressive force2N, and the contact zone paramete
L6 must be determined as part of the solution. Finally, two u
lateral constraints~@5#! must be satisfied:~a! contact zone norma
stress is nontensile, and~b! indentor and half-space surfaces d
not interpenetrate.

Solution Candidates
Following a standard~@17#! procedure for two-dimensiona

mixed boundary value problems in classical elasticity, the solut
to this problem is obtained by first considering Eqs.~6!–~8! and
the boundedness/continuity conditions, but with~3a,b! and~9! re-
placed by the unmixed conditions

sxy50, sy5s~x! (10)

for y50, wheres(x) represents the contact zone normal tractio
it must vanish identically forxPL, and should be continuous a
x5L6 . The solution to this simpler problem will provide cand
dates for the sliding contact solution if as(x) can be found such
that ~9! is also satisfied.

Solutions to~6!–~8! and ~10! are found by integral transform
techniques, and expressions for (ux,x ,uy,x) for all y.0 are given
in the Appendix. For the subsonic sliding case (0,v,v r) use of
~A13b! and ~A18! in ~9! gives the equation

A~b1a!

pc44R «L

s~ t !dt

t2x
5

dV~x!

dx
~xPL !. (11)

Here « denotes Cauchy principal value integration,~A, a, B, b, R!
are defined by~A4! and~A7! and, as in the Appendix, the symbo
L affixed to an integral signifies integration over the real inter
(L2 ,L1). The relative simplicity of the left-hand side, whe
compared with~A13b! itself, follows from the observation mad
in the Appendix, that settingy50 allows an explicit cancellation
of terms proportional tob-a.

Equation ~11! is a standard Cauchy integral equation~@17#!
whose solution is

s~x!5
2c44R

pA~b1a!
Ax2L2

L12x «L

dV~ t !

dt
AL12t

t2L2

dt

t2x
~xPL !.

(12)

The result is appropriately bounded atL2 , but boundedness a
x→L1 occurs only when

E
L

dV~ t !

dt

dt

At2L2AL12t
50. (13)

This requirement serves as one equation for determiningL6 . The
other arises from the requirement that2N be the resultant ofsy
on the contact zone:

E
L

s~x!dx52N. (14)

Substitution of~12! into ~14! and the use of standard tables~@18#!
gives the more explicit form
MAY 2002, Vol. 69 Õ 341
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c44R

A~b1a! EL

dV~ t !

dt
AL12t

t2L2
dt5N. (15)

For sliding in the transonic (v r,v,Abv r) speed range, the resu
~A14b! and ~9! give the Cauchy singular integral equation

A

c44C
F ~c2Ab82aB8T!s~x!1~c2aA1b8B8T!

1

p «L

s~ t !dt

t2x G
5

dV~x!

dx
~xPL ! (16)

where~A4!, ~A5!, and~A15b! hold and, again, the cancellation o
terms that occurs wheny50 has been exploited. Following@17#,
the solution to~16! is

s~x!5
c44AK

AAa22b2
I S dV

dx
;xD ~xPL ! (17)

where the operatorI and eigenvaluey are defined as

I ~g;x!5g~x!cospy1
1

p S L12x

x2L2
D y

sinpv
«L

g~ t !

3S t2L2

L12t D
y dt

t2x
~xPL ! (18a)

y5
1

p
tan21

b8

a

aa2T2c2A2

ab2T2c2A22
1

2 S 2
1

2
,y,0D . (18b)

The counterparts to the auxiliary conditions~13! and ~15! are

E
L

dV~ t !

dt S t2L2

L12t D
y dt

t2L1
50 (19a)

c44AK

AAa22b2 E
L

dV~ t !

dt S t2L2

L12t D
y

dt5N. (19b)

Finally, for sliding speeds in the supersonic (v.Abv r) range,~9!
and ~A16b! lead directly to the results

s~x!5
c44R8

A8~b81a8!

dV~x!

dx
~xPL ! (20a)

c44R8

A8~b81a8!
@V~L1!2V~L2!#5N (20b)

where (A8,a8,b8,R8) are defined by~A15b! and ~A17! and, in
this case, boundedness atx5L6 is controlled more directly by the
form of V(x). The translational part of any rigid-body motio
cancels out in~20b!.

Equations~12!, ~17!, and~20a!, along with their auxiliary con-
ditions, constitute in light of~A13!, ~A14!, and ~A16!, respec-
tively, the solution candidates for the sliding indentation proble
The actual solutions are those that satisfy in addition the unilat
constraints~a! and ~b!.

Problem Solution: Subsonic Case
To illustrate the solution identification process for subsonic

,v,v r) sliding speeds, the generic parabolic indentor charac
ized by the function

V~x!5V01V1x1
1

2
V2x2 (21)

is considered, where theVk are real constants. Substitution of~21!
into ~12!, ~13!, and ~15! gives, upon the use of standard tabl
~@18#!,

s~x!52
c44V2R

A~a1b!
AL12xAx2L2 ~xPL ! (22)
342 Õ Vol. 69, MAY 2002
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whereL6 can be obtained from the formulas

2V11V2~L11L2!50 (23a)

pc44V2RL2

8A~a1b!
5N. (23b)

In view of ~10!, unilateral constraint~a! requires thats(x)<0
which, in light of ~22!, means thatV2R.0. Study of ~A7! and
~A9! in the Appendix shows thatR,0(0,c,cR) and R.0(cR
,c,1), wherecRv r is the Rayleigh speed associated with t
x-direction. The former case implies thatV2,0, i.e., the sliding
indentor is concave upward~Fig. 1!, while the latter requires tha
V2.0, i.e., the indentor is concave downward. Although t
former situation seems more plausible, imposition of unilate
constraint~b! provides closure.

It is noted that~22! is both bounded and continuous~vanishes!
at the contact zone edgesx5L6 . Study of~A13! shows that this,
in turn, guarantees continuity of (ux,x ,uy,x) there. However, tak-
ing the derivative of~A13b! and lettingy50 gives, in view of
~23b!, an integration that can be performed with standard tab
~@18#!:

uy,xx5V2F12
1

2 SAx2L1

x2L2
1Ax2L2

x2L1
D G ~x¹L !. (24)

This is approximately the half-space surface curvature outside
contact zone. ForV2,0, ~24! behaves as (2`,x→L6), which
suggests the schematic Fig. 2~a! for the deformed surface. Fo
V2.0, however,~24! behaves as (̀,x→L6), which suggests
interpenetration—and violation of constraint~b!—unless the arti-
fice depicted in Fig. 2~b! is adopted. This essentially requires th
the indentor dimensions be defined by the contact zone param
L6 .

In summary, then, subsonic rapid sliding can exist only bel
the Rayleigh speed associated with thex-direction, i.e., 0,v
,cRv r . This behavior is analogous to that for the isotropic ca
~@5#!.

Problem Solution: Transonic Case
For transonic (v r,v,Abv r) sliding speeds, the form~21! is

again used to illustrate the solution identification process. In
instance,~17!–~19! and standard tables~@18#! give the bounded
and continuous formula

s~x!52
c44V2AK

AAa22b2
~L12x!11y~x2L2!2y ~xPL !. (25)

Clearly, constraint~a! can be satisfied only ifV2.0. Thus, it
would appear that constraint~b! cannot be satisfied for transoni
sliding unless the situation depicted in Fig. 2~b! is allowed.

Fig. 2 „a… Surface deformation schematic for subcritical slid-
ing; „b… surface deformation schematic for physically unac-
ceptable sliding.
Transactions of the ASME
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However, ~18b! shows thaty50 when c5c* (1,c* ,Ab),
where

c* 5Aab2~m21!2

a1m21
(26)

and ~8! guarantees a real value. Then~17!–~19! reduce to the
degenerate case

s~x!5c44Aa

b

ab2~m21!2

Am211bAm211a

dV~x!

dx
~xPL !.

(27)

For ~21! it can be shown thatdV/dx in ~27! is replaced byV2(x
2L2), and both unilateral constraints can be satisfied forV2
,0. The auxiliary conditions

V11V2L250, (28a)

2
c44V2

2
Aa

b

ab2~m21!2

Am211bAm211a
L25N (28b)

define the parametersL6 . Unlike their subsonic counterpart
~23a,b!, these conditions do not guarantee continuity ofs(x) at
the leading edgex5L1 of the contact zone. Indeed, a finite di
continuity occurs there. The surface deformation schematic in
3 shows that trailing edgex5L2 is also the point of zero indento
slope, i.e., point of maximum normal displacement under the
dentor.

This limit result is also consistent with isotropic work~@5#!;
there, a value that would correspond toc* 5& at which transonic
sliding could occur was derived. In the isotropic limita5b51
1m, and~26! reduces to the same value.

Problem Solution: Supersonic Sliding
For supersonic (v.Abv r) sliding speeds, combining~20! and

~21! and then imposing both unilateral constraints gives

s~x!5
c44R8V2

A8~a81b8!
~x2L2! ~xPL ! (29)

whereV2,0 andL6 are determined from

V11V2L250, (30a)

2
c44R8V2L2

2A8~a81b8!
5N (30b)

Equation ~29! shows that, as in the transonic casev5c* v r(1
,c* ,Ab), the contact zone traction loses continuity at the le
ing edge. Again, Fig. 3 depicts the surface deformation, and~30!
locates the trailing edge at the point of maximum normal surf
displacement under the indentor.

Comments
Table 1 lists relevant properties for the five materials identifi

earlier as being representative of the orthotropic/transversely
tropic class defined by~8!. It is seen that, despite differences

Fig. 3 Surface deformation schematic for supersonic sliding
and for the single allowable transonic speed
Journal of Applied Mechanics
-
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the parameters (a,b,m,c44), the Rayleigh speeds are, as fractio
cR of the corresponding rotational speed, similar in value.

To illustrate the effects of sliding speed and material proper
on the contact zone generated, consider the special caseV150 in
~21!: For subcritical (0,c,cR) sliding, ~23! yields the expres-
sions

L656
L

2
, (31a)

AuV2u
N

L52A2A~a1b!

pc44uRu
(31b)

for the contact zone edge locationsL6 with respect to the trans
lating indentor, and the zone widthL. Calculations of~31b! for
various subcritical values ofc are given in Table 2. The entrie
show that, for a given parabolic indentor profile and compress
load, the zone width decreases with sliding speed for all five m
terials at low speeds, but becomes unbounded as the critical~Ray-
leigh! speed is approached.

In summary, then, this article has presented exact solutions
steady dynamic sliding at any constant speed by a smooth r
indentor on a class of orthotropic/transversely isotropic ha
spaces. As in corresponding isotropic elastic analyses for lin
isothermal~@5#!, linear thermoelastic~@6#!, and hyperelastic iso-
thermal~@7#! materials, physically acceptable solutions have be
found to exist for sliding speeds below the Rayleigh value. In
transonic range, only one allowable sliding speed exists, and
tact zone traction is lost at the leading edge. Physically accept
solutions exist for all supersonic sliding speeds but, again,
contact zone is discontinuous at the leading edge.

The solution procedure makes use of mixed boundary va
problem solution techniques from classical elasticity~@17#!, and
variations of Cauchy singular integral equation solutions e
ployed in @6,7,19#. In addition, convenient factorizations in inte
gral transform space, after@16#, allow a simplification of solution
forms, despite the problem anisotropy. In particular, a comp
exact formula for the Rayleigh speed associated with the mate
symmetry axis aligned with the surface emerges.

Solution results demonstrate that, for a given indentor pro
and compression force, contact zone widths achieve minim
values at high but sub-Rayleigh values of the sliding speed. W
insight into the problem of wear/high-speed mechanism opera
is possible from such a result, the effects of friction and tempe
ture have been neglected here. This work, therefore, along
results such as@6,7#, is currently being used as the basis for stu
ies that include both effects.

Table 1 Properties of orthotropic Õtransversely isotropic
materials

a b m c44 ~GPa! cR

beryl 3.62 4.11 2.01 68.6 0.956
cobalt 4.74 4.07 2.37 75.5 0.962
ice 4.57 4.26 2.64 3.17 0.959
magnesium 3.74 3.61 2.3 16.4 0.943
titanium 3.88 3.47 2.48 46.7 0.936

Table 2 Contact zone width parameter AzV2z
N L „1ÕGPa1Õ2

… ver-

sus dimensionless crack speed

c50.001 c50.1 c50.3 c50.5 c50.7 c50.9

beryl 0.2206 0.1716 0.16 0.1712 0.1989 0.338
cobalt 0.1954 0.138 0.142 0.1518 0.175 0.286
ice 0.9817 0.6857 0.7084 0.755 0.8739 1.484
magnsium 0.4395 0.3199 0.3297 0.354 0.4155 0.78
titanium 0.2577 0.1895 0.1953 0.2104 0.2479 0.502
MAY 2002, Vol. 69 Õ 343
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Appendix
Consider the bilateral Laplace transform~@20#! and its inverse

F̂5E
2`

`

F~x!e2pxdx, F~x!5
1

2p i E F̂epxdp (A1a,b)

where p is imaginary, and integration in~A1b! is along a Bro-
mwich contour in thep-plane. Application of~A1a! to ~6! in view
of ~7!, ~10! and the boundedness/continuity conditions gives
coupled set of linear ordinary differential equations iny that can
be solved to give

pûx5Cae2ayApA2p1
c

mb
Cb

A2p

Ap
e2byApA2p (A2a)

pûy5
f

maa
Ca

A2p

Ap
e2ayApA2p1Cbe2byApA2p (A2b)

where the dimensionless coefficients are given by the formula

Ca5
mB2b

D
Q

ŝ

c44
, Cb5

mab

D
P

A2p

Ap

ŝ

c44
(A3a)

D5aP22bB2Q2 (A3b)

in view of the definitions

P5c1mB2, Q5m1c, f5aa22A2, c5ab22B2

(A4a)

Aa~a,b!5
1

&
AT6AT224A2B25

1

2
~AT12AB6AT22AB!

(A4b)

Aa~a1b!5A~A1B!22m2 (A4c)

T5A21B22m2, A5AaAb2c2, B5A12c2. (A4d)

Introduction of the branch cuts Im(p)50, Re(p),0 and Im(p)
50, Re(p).0 for (Ap,A2p), respectively, guarantees that the
real parts are non-negative in their cut planes. Therefore, for~a, b!
real and positive, boundedness of~A2! for y.0 is assured.

Introduction of the branch cuts Im(c)50, uRe(c)u.Ab and
Im(c)50, uRe(c)u.1 for the quantities~A, B!, respectively, guar-
antees, similarly, that they have non-negative real parts in a
complexc-plane. The quantities~a, b! share the branch cuts of~A,
B!, respectively, but the restrictions~8! guarantee that~a, b! also
exhibit branch points defined by

~a21!2c25g~11a!22a~11b!6 i2mAaAg2a2b.
(A5)

These also define roots ofb22a2 and, indeed, the denominato
term D in ~A3b! vanishes whenb5a. Even thoughc takes on
only positive real values here, this apparently singular beha
does not in any event effect (ûx ,ûy): Whenb5a the exponential
terms in ~A2! are identical and, by using~A4! and the related
formulas

aa2c52B2f, aab5AB, f1c1m250 (A6)

it can be shown that the resulting numerator terms in~A2! also
vanish whenb5a. This behavior can be made more explicit, a
the expressions~A2! simplified, by allowinga1b to be continu-
ous across branch cuts associated with~A5!, even though (a,b,b
2a) remain multivalued there. Then,~A4! and ~A6! can be used
to show that

D5ABc~b2a!R, R5c2A1BC, C5~m21!22A2.
(A7)

The quantityR has only the branch cuts of~A, B! along the
Re(c)-axis. In view of~A7!, ~A2! can be written as
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pûx5
aŝ

c44
F mAQ

f~b2a!R
e2ayApA2p2

P

B~b2a!R
e2byApA2pG

(A8a)

pûy5
Aŝ

ac44

A2p

Ap
F Q

~b2a!R
e2ayApA2p1

mP

c~b2a!R
e2byApA2pG .

(A8b)

In light of previous remarks, the coefficients of the exponen
terms in~A8! exhibit the branch cuts of~A, B!, and are not sin-
gular whenb5a. Indeed, because the exponential terms also
come identical~unity! wheny50, evaluation of~A8! on the half-
space surface leads to an explicit cancellation of ter
proportional tob2a.

In particular,R is analytic in thec-plane cut along Im(c)50,
uRe(c)u.1, and exhibits the real rootsc56cR(0,cR,1). Ratio-
nalization of the relationR50 gives a cubic equation inc2 that
corresponds exactly to one obtained for the roots of a transver
isotropic Rayleigh function~@15#!. That, is,cRv r is the Rayleigh
speed parallel to thex-axis of material symmetry for the class o
solids treated here, andR is itself the essential factor of the Ray
leigh function. The form ofR is, however, simpler in form than
standard functions, whether for isotropic~@10#! or anisotropic
~@15#! materials. As an alternative to the cubic equation solution
general approach~@21#! yields cR in a form that is analytical to
within a simple quadrature:

cR5Aab2~m21!2

Aab~11Aa!
GR ,

GR5
1

p E
1

Ab

tan21
CAt221

t2AaAb2t2

dt

t
. (A9)

Here~8! guarantees that the coefficient ofGR is real and positive.
A similar approach~@22#! has also yielded a Rayleigh speed, b
two more complicated quadratures arise due to use of a Rayl
function without factorization.

In the isotropic limit, the branch points~A5! collapse into the
origin as isolated real roots, so that a factorization process ba
on ~A7! does not have the advantage of extracting complex bra
points. However, the simplification indicated by~A8! could still
prove convenient.

In light of ~A1a!,

ŝ5E
L
s~ t !e2ptdt (A10)

where the symbolL affixed to the integral operator signifies th
integration is over the real interval (L2 ,L1). The left-hand sides
of ~A8! are the transforms of first derivatives with respect tox
which, in view of the rigid-body motion superposition noted in th
body of this article, are sufficient for purposes of a problem so
tion. When 0,v,v r , ~4! gives 0,c,1. This ensures that~A, a,
B, b! are all real and positive. Thus, (v r ,Abv r) are the rotational
and dilatational speeds associated with the material symmetry
aligned with the half-space surface, and 0,c,1 corresponds to
subsonic sliding. Like~A2!, ~A8! is bounded for~A, a, B, b! real
and positive, so that substitution into~A1b! along with~A10! and
interchanging the order of the~t, p!-integrations reduces the inver
sion process to the generic integrals

1

2p i E S 1,
A2p

Ap
D ep~x2t !2kApA2pdp ~k5ay,by!. (A11)

The integrands are both analytic for Re(p)50, so that the Bro-
mwich contour can be the entire Im(p)-axis. Performing the inte-
gration yields, with the help of standard tables~@18#!,

1

p

~k,x2t !

~x2t !21k2 . (A12)
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The results

c44ux,x5
Ay

pa~b2a!R E
L
s~ t ! FQ

c

mB2

~ t2x!21a2y2

2
P

~ t2x!21b2y2Gdt (A13a)

c44uy,x5
A

pa~b2a!R E
L

s~ t !~ t2x!F Q

~ t2x!21a2y2

1
P

c

m

~ t2x!21b2y2Gdt (A13b)

follow for y.0. As implied above, although the situationb5a
does not arise forc real, the expressions~A13! are finite in any
case, and the factorb-a is cancelled from~A13! wheny50.

For 1,c,Ab ~transonic sliding! the parameters~A, a! remain
positive real, but~B, b! are now imaginary. Therefore, the proce
used for~A13! must now consider the behavior in the compl
c-plane noted above in order that~A8! remains bounded fory
.0. Application of~A1b! then yields

c44ux,x5
b8B8Q

pc E
L
Fc2aa22B2C

a~a22b2!K
Ay

1
B8

a

aa2C2c2A2

a~a22b2!K
~ t2x!G ms~ t !dt

~ t2x!21a2y2

1PFc2aa22B2C

a~a22b2!K

A

pB8 EL

s~ t !dt

t2x2b8y

1
c2A22aa2C

a~a22b2!K
s~x1b8y!G (A14a)

c44uy,x5
b8Q

p E
L
Faa2C2c2A2

a~a22b2!K
ay

1AB8
B2C2c2aa2

a~a22b2!K
~ t2x!G s~ t !dt

~ t2x!21a2y2

1
mP

aac Fc2aa22B2C

a~a22b2!K

A

p E
L

s~ t !dt

t2x2b8y

1
c2A22aa2C

a~a22b2!K
B8s~x2b8y!G (A14b)

for y.0. Here~A4! is augmented by the definitions

K5c4A22B2C2 (A15a)

B85Ac221, A2ab85AAT224A2B22T. (A15b)

It is understood that the nonintegral terms in~A14! appear only
when x1b8yPL, and the integrals that are grouped with the
terms must then be viewed in the Cauchy principal value se
As in the case of~A13!, a cancellation of terms occurs in~A14!
wheny50.

For c.Ab ~supersonic sliding!, ~A,aB,b! are now all imaginary,
and application of~A1b! to ~A8! gives

c44ux,x5
2mB8Q

~b82a8!cR8
s~x1a8y!2

a8P

B8~b82a8!R8
s~x1b8y!

(A16a)

c44uy,x5
A8Q

a~b82a8!R8
s~x1a8y!1

mA8P

a~b82a8!cR8
s~x1b8y!

(A16b)
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for y.0. Here the first and second terms, respectively, in b
~A16a,b! vanish unlessx1a8yPL andx1b8yPL. This behavior
indicates that the half-space surface is undisturbed unlessxPL.
Moreover, depending on the form ofs, these terms, and the non
integral terms in~A15!, could exhibit lines of discontinuityx
1a8y5L6 or x1b8y5L6 that radiate from the moving contac
zone edges. In~A16!, the additional definitions

A85AaAc22b, A2aa85A2T2AT224A2B2,

R85c2A81B8C (A17)

arise.
It can be shown that~A13! and ~A14! are continuous atc51,

and that~A14! and~A16! are continuous whenc5Ab. A key step
in the demonstration is the use of the standard~@23#! result

k

~ t2x!21k2 →pd~ t2x! ~k→01 ! (A18)

whered is the Dirac function.
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Moment Lyapunov Exponents
of a Two-Dimensional
Viscoelastic System Under
Bounded Noise Excitation
The moment Lyapunov exponents of a two-dimensional viscoelastic system under bounded
noise excitation are studied in this paper. An example of this system is the transverse
vibration of a viscoelastic column under the excitation of stochastic axial compressive
load. The stochastic parametric excitation is modeled as a bounded noise process, which
is a realistic model of stochastic fluctuation in engineering applications. The moment
Lyapunov exponent of the system is given by the eigenvalue of an eigenvalue problem. The
method of regular perturbation is applied to obtain weak noise expansions of the moment
Lyapunov exponent, Lyapunov exponent, and stability index in terms of the small fluctua-
tion parameter. The results obtained are compared with those for which the effect of
viscoelasticity is not considered. �DOI: 10.1115/1.1445143�
1 Introduction
The study of the dynamics of many engineering structures un-

der random loadings, such as those arising from earthquakes,
wind, and ocean waves, which can be described satisfactorily only
in probabilistic terms, leads to a dynamic system of the form

ẍ� t ��f�x� t �, ẋ� t �,�� t ��, (1)

where �(t) denotes a vector of stochastic processes characterizing
the randomness of the loadings. It is of practical importance to
investigate the dynamical stability of system �1� under the sto-
chastic excitations �(t). For engineering applications, the stochas-
tic excitation has been modeled as a Gaussian white noise process,
a real noise process, or a bounded noise process.

A white noise process is a weakly stationary process that is
delta-correlated and mean zero. Its power spectral density is con-
stant over the entire frequency range, which is obviously an ide-
alization. A white noise process is frequently adopted as a model
for noise because of the availability of mathematical theory, such
as Itô calculus, in dealing with white noise processes.

A real noise �(t) is often characterized by an Ornstein-
Uhlenbeck process and is given by

d�� t ����0�� t �dt��0�dW� t �, (2)

where W(t) is a standard Wiener process. It is well known that
�(t) is a normally distributed random variable, which is not
bounded and may take arbitrarily large values with small prob-
abilities, and hence may not be a realistic model of noise in many
engineering application.

A bounded noise �(t) is a more realistic and versatile model of
stochastic fluctuation in engineering applications and is normally
represented as

�� t ��cos�	0t��0W� t ��
� , (3)
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in which 
 is a uniformly distributed random number in �0,2��.
The inclusion of the phase angle 
 in Eq. �3� makes �(t) a sta-
tionary process.

Equation �3� may be written as

�� t ��cos Z� t �,
dZ� t ��	0dt��0�dW� t �, (4)

where the initial condition of Z(t) is Z(0)�
 . The correlation
function of �(t) is given by

E��� t����� t ���R����
1

2
cos 	0� exp� �

�0
2

2
��� � ,

and the spectral density function of �(t) is

S�
���
��

��

R���ei
�d�

��0
2� 1

4�
�	0�
2��0

4 �
1

4�
�	0�
2��0

4� .

It may be noted that the mean-square value of the bounded noise
process �(t) is fixed at E��2(t)��1/2. The spectral density func-
tion can be made to approximate the well-known Dryden and von
Karman spectra of wind turbulence by suitable choice of the pa-
rameters 	0 , �0 , and �0 . In the limit as �0 approaches infinite,
the bounded noise becomes a white noise of constant spectral
density. However, since the mean-square value is fixed at 1/2, this
constant spectral density level reduces to zero in the limit. On the
other hand, in the limit as �0 approaches zero, the bounded noise
becomes a deterministic sinusoidal function.

The bounded noise process �4� was first employed by Stra-
tonovich �1� and has since been applied in certain engineering
applications by Dimentberg �2�, Wedig �3�, Lin and Cai �4�, and
Ariaratnam �5�.

The sample or almost-sure stability of the trivial solution of
system �1� is determined by the Lyapunov exponent, which char-
acterizes the average exponential rate of growth of the solutions of
system �1� for t large, defined as

�x� t �� lim
t→�

1

t
log �x� t �� , (5)
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where �x(t)� denotes the Euclidean vector norm. The trivial solu-
tion of system �1� is stable with probability one �w.p.1� if the top
Lyapunov exponent is negative, whereas it is unstable w.p.1 if the
top Lyapunov exponent is positive.

On the other hand, the stability of the pth moment of the trivial
solution of system �1�, E� �x(t)�p� , is determined by the moment
Lyapunov exponent

�x� t ��p �� lim
t→�

1

t
log E� �x� t ��p� , (6)

where E�•� denotes expected value. If �x(t)(p)�0, then
E� �x(t)�p�→0 as t→� . The pth moment Lyapunov exponent
�x(t)(p) is a convex analytic function in p with �x(t)(0)�0 and
�x(t)� (0) is equal to the the top Lyapunov exponent �x(t) . The non
trivial zero �x(t) of �x(t)(p), i.e. �x(t)(�x(t))�0, is called the sta-
bility index.

However, suppose the top Lyapunov exponent �x(t) is negative,
implying that system �1� is sample stable, the pth moment typi-
cally grows exponentially for large enough p, implying that the
pth moment of system �1� is unstable. According to the theory of
large deviation, although the solution of the system �x(t)�→0 as
t→� w.p.1 at an exponential rate �x(t) , there is a small probabil-
ity that �x(t)� is large, which makes the expected value
E� �x(t)�p� of this rare event large for large enough values of p,
leading to pth moment instability.

Hence, to have a complete picture of the dynamical stability of
system �1�, it is important to study both the sample and moment
stability and to determine both the top Lyapunov exponent and the
pth moment Lyapunov exponent.

A systematic study of moment Lyapunov exponents is pre-
sented in reference �6� for linear Itô systems and in reference �7�
for linear stochastic systems under real noise excitations. A sys-
tematic presentation of the theory of random dynamical systems
and a comprehensive list of references are presented in �8�.

Although the moment Lyapunov exponents are important in the
study of dynamic stability of randomly perturbed systems, the
actual evaluations of the moment Lyapunov exponents are very
difficult. Only a few results on the moment Lyapunov exponents
have been published. Using the analytic property of the moment
Lyapunov exponents, Arnold et al. �9� obtained weak noise expan-
sions of the moment Lyapunov exponents of a two-dimensional
system in terms of � p, where � is a small parameter, under both
white noise and real noise excitations. Khasminskii and Mosh-
chuk �10� obtained an asymptotic expansion of the moment
Lyapunov exponent of a two-dimensional system under white
noise parametric excitation in terms of the small fluctuation pa-
rameter �, from which the stability index was obtained. Sri Nama-
chchivaya and Vedula �11� obtained general asymptotic approxi-
mation for the moment Lyapunov exponent and the Lyapunov
exponent for a four-dimensional system with one critical mode
and another asymptotically stable mode driven by a small-
intensity stochastic process.

In recent studies ��12� and �13��, Xie applied a procedure simi-
lar to that employed in Khasminskii and Moshchuk �10� to obtain
weak noise expansions of the moment Lyapunov exponent, the
Lyapunov exponent, and the stability index of a two-dimensional
system exhibiting pitch-fork bifurcation under both real noise and
bounded noise excitations in terms of the small fluctuation param-
eter.

There are many viscoelastic systems in engineering applica-
tions. The dynamic stability of viscoelastic systems has been in-
vestigated by many authors. Ariaratnam �14� studied the almost-
sure stability of a single-degree-of-freedom linear viscoelastic
system subjected to random fluctuation in the stiffness parameter
by evaluating the top Lyapunov exponent and the rotation number
using the method of stochastic averaging for integro-differential
equations due to Larinov �15�. Ariaratnam �5� determined the top
Journal of Applied Mechanics
Lyapunov exponent of a linear viscoelastic system parametrically
forced by a bounded noise excitation by the use of the averaging
method for integro-differential equation ��15��. Potapov �16� stud-
ied the almost-sure stability of a viscoelastic column under the
excitation of a random wide-band stationary process using
Lyapunov’s direct method. Potapov �17� considered the numerical
evaluation of Lyapunov exponents of linear integro-differential
equations, describing the behavior of stochastic viscoelastic sys-
tems.

However, there are no publications available on the evaluation
of moment Lyapunov exponents of viscoelastic systems. This pa-
per is the first to deal with the determination of small noise ex-
pansion of the moment Lyapunov exponent of a two-dimensional
viscoelastic system under bounded noise excitation, which is a
realistic model of noise in engineering applications.

2 Formulation

2.1 Equation of Motion. Consider the transverse vibration
of a viscoelastic column under the excitation of a stochastic axial
compressive load P(�). The equation of motion is the partial
differential equation

m
�2v
��2 �c

�v
��

�EI�1�R�
�4v
�x4 �P���

�2v
�x2 �0, (7)

where v(x ,�) is the transverse deflection of the column, x the
axial coordinate, � the time parameter, m the mass per unit length
of the column, c the damping constant, EI the flexural rigidity of
the column, R the material relaxation operator given by

Rv��
0

�

R���s �v�s �ds , R������0e���0�, (8)

in which �0 is a constant characterizing a measure of the material
relaxation, �0 a constant representing the material relaxation rate,
��0 a small parameter. If the column is simply supported, the
transverse deflection may be taken as

v�x ,���q���sin
�x

L
, (9)

where L is the length of the column. Substituting Eq. �9� into �7�
yields the equation of motion for q(�)

d2q���

d�2 �2�2c0

dq���

d�
�
0

2�1�R�p����q����0,

or

d2q���

d�2 �2�2c0

dq���

d�
�
0

2�1�p0���0�����q���

���0
0
2�

0

�

e���0���s �q�s �ds�0, (10)

where

2�2c0�
c

m
, 
0

2�
EI

m � �

L � 2

,

p����
1

EI � L

� � 2

P����p0���0����,

in which ���� is a stochastic process of mean zero. In this study,
�(�)�cos z(�) is a bounded noise process, in which

dz����	0d���0�dW���, (11)

or
MAY 2002, Vol. 69 Õ 347



z����	0���0W����
 , (12)

where W(�) is a standard Wiener process in time �, and 
 is a
random phase angle required to make the bounded noise ���� sta-
tionary.

Equation �10� can be simplified by removing the damping term.

Letting q(�)�x(�)e��2c0� and substituting into Eq. �10� results in

d2x���

d�2 �
2�1��� cos z����x������̃0�
0

�

e���̃0���s �x�s �ds

�0, (13)

where


2�
0
2� 1�p0�

�4c0
2


0
2 � , ��

�0


2 , �̃0��0��2c0 ,

�̃0��0
0
2.

By applying the time scaling t�
� , Eq. �13� can be further
simplified to yield

d2x� t �

dt2 ��1��� cos �� t ��x� t �����
0

t

e���� t�s �x�s �ds�0,

(14)

where �(t) is a random process given by

d�� t ��	dt���dW� t �, (15)

in which W(t) is a standard Wiener process in time t, and

��
�0
0

2


3 , ��
�0��2c0



, 	�

	0



, ��

�0

�

.

From the definitions of the Lyapunov exponents and the mo-
ment Lyapunov exponents, it can be easily shown that the
Lyapunov exponents and moment Lyapunov exponents of systems
�10�, �13�, and �14� are related as follows:

�q������2c0��x������2c0�
�x� t � ,
(16)

�q����p ����2c0p��x����p ����2c0p�
�x� t ��p �.

Without loss of generality, the moment Lyapunov exponent of
system �14� is studied in the remaining of this paper.

2.2 Eigenvalue Problem for the Moment Lyapunov Expo-
nent. The approach employed in this section was first applied by
Wedig �18� to derive the eigenvalue problem for the moment
Lyapunov exponent of a two-dimensional linear Itô stochastic sys-
tem.

Letting

x3� t ���
0

t

e���� t�s �x�s �ds , (17)

the two-dimensional viscoelastic system �14� and �15� may be
considered as a four-dimensional system as follows:

d� x1

x2

x3

�
	 �� x2

��1��� cos �� t ��x1���x3

x1���x3

	
	 dt�� 0

0
0
�
	 dW .

(18)

Apply the transformation

x1�a cos � , x2�a sin � , x3�ab , x4�� ,
(19)

a��x1
2�x2

2, P�ap��x1
2�x2

2�p/2, ��tan�1� x2

x1
� ,

which is an extension of the Khasminskii transformation �19�. The
Itô equations for P, �, and b can be obtained using Itô’s lemma

d� P
�
b
�
	 �� �pP sin ��� cos � cos ���b �

�1�� cos ��� cos � cos ���b �

cos ���b���� cos � sin � cos ���b sin ��

	
	 dt

�� 0
0
0
�
	 dW . (20)

For small values of �, da/dt�O(�) and d�/dt��1�O(�), and
hence a(t)�a0��a1(t)� . . . , �(t)��t���1(t)� . . . . From
Eq. �17�,

x3� t ���
0

t

e���� t�s �a�s �cos ��s �ds

��
0

t

e���� t�s ��a0 cos s�O����ds

�
a0 sin t

1��2�2 �
��a0�cos t�e���t�

1��2�2 �O���

�a0 sin t�O���,

and

b� t ��
x3� t �

a� t �
�

a0 sin t�O���

a0�O���
�sin t�O���.

Hence, for small values of �, the range of b(t) may be taken as
�1�b(t)�1.

Applying a linear stochastic transformation

S�T�� ,b ,��P , P�T�1�� ,b ,��S ,

0���2� , �1�b�1, ������ ,

the Itô equation for the new pth norm process S is given by, from
Itô’s lemma,

dS�� 1

2
�2T���	T��T��cos �Tb����� cos � cos ���b �

��p sin �T�cos �T���b���� cos � sin � cos �

��b sin ��Tb�	 Pdt��T�PdW . (21)

For bounded and nonsingular transformation T(� ,b ,�), both
stochastic processes P and S are expected to have the same sta-
bility behavior. Therefore, T(� ,b ,�) is chosen so that the drift
term of the Itô differential Eq. �21� is independent of the processes
�(t),b(t), and �(t), so that

dS��Sdt��T�T
�1SdW . (22)

Comparing Eqs. �21� and �22�, it is seen that such a transforma-
tion T(� ,b ,�) is given by the following equation:

�L0��L1�T��T , (23)

where

L0T�
1

2
�2T���	T��T��cos �Tb ,

L1T�L10T�cos �•L11T ,
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L10T�b�p� sin �T�� cos �T������b sin ��Tb� ,

L11T�� cos ��p sin �T�cos �T��b sin �Tb�.

Equation �23� defines an eigenvalue problem for a second-order
differential operator of three independent variables, in which � is
the eigenvalue and T(� ,b ,�) the associated eigenfunction. From
Eq. �22�, the eigenvalue � is seen to be the Lyapunov exponent of
the pth moment of system �14� or �18�, i.e., ���x(t)(p).

In the following section, the method of regular perturbation is
applied to the eigenvalue problem �23� to obtain a weak noise
expansion of the moment Lyapunov exponent for system �18�.

3 Weak Noise Expansion of the Moment Lyapunov
Exponent

In this section, the method of regular perturbation is applied to
obtained a weak noise expansion of the moment Lyapunov expo-
nent �x(t)(p), i.e., the eigenvalue � of the eigenvalue problem
�23� for small �.

Applying the method of regular perturbation, both the eigen-
value �x(t)(p) and the eigenfunction T(� ,b ,�) are expanded in
power series of � as

�x� t ��p ���
n�0

�

�n�n�p �, T�� ,b ,����
n�0

�

�nTn�� ,b ,��,

(24)

in which Tn(� ,b ,�), n�0,1, . . . , are periodic functions in � of
period 2�. Substituting the perturbation series �24� into the eigen-
value problem �23� and equating terms of equal power of � yields
the nth-order equation, n�0,1, . . . ,

L0Tn�L1Tn�1��
k�0

�

�kTn�k . (25)

To simplify the expressions of the results in this paper, the
following notations are employed:

	�1��	�1 �2�
1

4
�4, 	�1��	�1 �2�

1

4
�4,

	�2��	�2 �2�
1

4
�4, 	�2��	�2 �2�

1

4
�4,

	�2
� �	2�4�

1

4
�4, 	�2

� �	2�4�
1

4
�4,

	�1
� �	2�1�

1

4
�4, 	�2i�	2�4�

1

4
�4.

3.1 Zeroth-Order Perturbation. The equation for the
zeroth-order perturbation is L0T0��0T0 , or

�2

2

�2T0

��2 �	
�T0

��
�

�T0

��
�cos �

�T0

�b
��0T0 . (26)

From the property of the moment Lyapunov exponent, it is known
that �x(t)(0)��n�0

� �n�n(0)�0, which results in �n(0)�0 for
n�0,1, . . . . Since the eigenvalue problem �26� does not contain
p, the eigenvalue �0(p) is independent of p. Hence, �0(0)�0
leads to �0(p)�0. The solution of Eq. �26� is taken as

�0�p ��0, T0�� ,b ,���1. (27)

Since �0(p)�0, the associated adjoint differential equation of
�26� is
Journal of Applied Mechanics
�2

2

�2T0*

��2 �	
�T0*

��
�

�T0*

��
�cos �

�T0*

�b
�0. (28)

Applying the method of separation of variables and letting
T0*(� ,b ,�)�F0*(� ,b)Z0*(�) leads to

1

F0*
� �

�F0*

��
�cos �

�F0*

�b � �
1

Z0*
� �2

2

d2Z0*

d�2 �	
dZ0*

d� � �k .

For the F0*(� ,b) equation, letting k�0 yields F0*(� ,b)
�constant. Hence, F0*(� ,b) can be taken as F0*(� ,b)
��0*(�)B0*(b), where

�0*����
1

2�
, 0���2� , (29)

which is the probability density function of a uniformly distrib-
uted random variable � between 0 and 2�, and

B0*�b ��
1

2
, �1���1, (30)

which is the probability density function of a uniformly distrib-
uted random variable b between �1 and 1.

The Z0* equation becomes, for k�0,

1

2
�2Z̈0*�	Ż0*�0, (31)

and the solution is given by

Z0*����C1�C2 exp� 2	

�2 � � .

For Z0*(�) to be bounded, C2�0 and Z0*(�)�C1�constant.
Note that �(t)�	t��W(t)�
 , which is a linear function 	t

with superimposed noise � W(t), and �(t) appears as an angle of
a sinusoidal function cos �, which is a periodic function of period
2�. Hence, after folding, the angle �(t) may be considered as
taking values between 0 and 2�. Z0*(�) may then be chosen as

Z0*����
1

2�
, 0���2� , (32)

which is the probability density function of a uniformly distrib-
uted random variable between 0 and 2�.

Hence T0*(� ,b ,�)��0*(�)B0*(b)Z0*(�) represents the joint
stationary probability density function of the independent random
variables �, b, and �, in which � is uniformly distributed between
0 and 2�, b is uniformly distributed between �1 and 1, and � is
uniformly distributed between 0 and 2�.

3.2 First-Order Perturbation. The first-order perturbation
equation is

L0T1��1T0�L1T0 . (33)

Since the homogeneous equation L0T0�0 has a nontrivial solu-
tion as given by Eq. �27�, for Eq. �33� to have a solution it is
required that, from the Fredholm alternative,

��1T0�L1T0 ,T0*��0, (34)

where T0*(� ,b ,�) is the solution of the adjoint Eq. �28� as ob-
tained in Section 3.1, and (F1 ,F2) denotes the inner product of
functions F1(� ,b ,�) and F2(� ,b ,�) defined by

�F1 ,F2���
��0

2� �
b��1

1 �
��0

2�

F1�� ,b ,��F2�� ,b ,��

��0*���B0*�b �Z0*���d�dbd� .

For the simplicity of analysis, define the inner product for func-
tions F1(� ,b) and F2(� ,b) as
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�F1 ,F2���
b��1

1 �
��0

2�

F1�� ,b �F2�� ,b ��0*���B0*�b �d�db .

Because (T0 ,T0*)�1 and

L1T0��L10�cos �•L11�T0� f 0
�1 ��� ,b ��cos �• f cos,1

�1 � �� ,b �,

where f 0
(1)(� ,b)�L10T0�p�b sin �, and f cos,1

(1) (� ,b)�L11T0
�p� sin � cos �, the first-order perturbation of the moment
Lyapunov exponent is, using Eqs. �29�, �30�, and �34�,

�1��L1T0 ,T0*�

�� f 0
�1 ��� ,b �,F0*�� ,b ���E�cos ��•� f cos,1

�1 � �� ,b �,F0*�� ,b ��

�0, (35)

in which E�h(�)� denotes the expected value of the random func-
tion h(�) with � being the uniformly distributed random variable
between 0 and 2�.

Hence, Eq. �33� becomes

L0T1�g0
�1 ��� ,b ��cos �•gcos,1

�1 � �� ,b �, (36)

where g0
(1)(� ,b)�� f 0

(1)(� ,b), gcos,1
(1) (� ,b)�� f cos,1

(1) (� ,b). Equa-
tion �36� is in the form of Eq. �50� and the solution is given in the
Appendix by Eq. �66�.

From the Appendix, the solution of Eq. �36� is obtained as

T1�� ,b ,���G0
�1 ��� ,b ��cos �•Gcos,1

�1 � �� ,b ��sin �•Gsin,1
�1 � �� ,b �,

(37)

where

G0
�1 ��� ,b ���

0

s

g0
�1 ����r ,��sin���r ��dr ,

Gcos,1
�1 � �� ,b ���

0

s

gcos,1
�1 � ���r ,��sin���r ��•c1�r�s �dr ,

Gsin,1
�1 � �� ,b ����

0

s

gcos,1
�1 � ���r ,��sin���r ��•s1�r�s �dr ,

in which c1(r�s) and s1(r�s) are as defined in Eq. �65�, and the
substitutions ��s�� , ��b�sin �, and s→�� have been em-
ployed after the integration.

3.3 Second-Order Perturbation. The equation for the
second-order perturbation is

L0T2��2T0�L1T1 . (38)

From the Fredholm alternative, for Eq. �38� to have a solution, it
is required that

��2T0�L1T1 ,T0*��0. (39)

Since, from Eq. �37�,

L1T1��L10�cos �•L11��G0
�1 ��� ,b ��cos �•Gcos,1

�1 � �� ,b ��sin �

•Gsin,1
�1 � �� ,b ��

� f 0
�2 ��� ,b ���

k�1

2

�cos k�• f cos,k
�2 � �� ,b ��sin k�• f sin,k

�2 � �� ,b �� ,

where

f 0
�2 ��� ,b ��L10G0

�1 ��� ,b ��
1

2
L11Gcos,1

�1 � �� ,b �,

f cos,1
�2 � �� ,b ��L10Gcos,1

�1 � �� ,b ��L11G0
�1 ��� ,b �,

f sin,1
�2 � �� ,b ��L10Gsin,1

�1 � �� ,b �,
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f cos,2
�2 � �� ,b ��

1

2
L11Gcos,1

�1 � �� ,b �, f sin,2
�2 � �� ,b ��

1

2
L11Gsin,1

�1 � �� ,b �,

and noting that E�cos k���E�sin k���0, k�1,2, . . . , one obtains
the second-order perturbation of the moment Lyapunov exponent

�2��L1T1 ,T0*��� f 0
�2 � ,F0*��

p�p�2 ��2�2	�2i

32	�2	�2
. (40)

In Section 2.2, it is shown, although not in a vigorous manner,
that the range of the variable b(t) is �1�b(t)�1. To ascertain
this conclusion, assume that the range of b(t) is �b0�b(t)
�b0 . Following the same procedure, one obtains the second-
order perturbation of the moment Lyapunov exponent as

�2�
p�p�2 �b0�

2�2	�2i

32	�2	�2
.

Ignoring the viscoelastic effect, i.e., setting ��0 in Eq. �14�, sys-
tem �14� becomes a two-dimensional system under bounded noise
excitation. The resulting moment Lyapunov exponent should re-
duce to that obtained in Xie �13�, which is the same as Eq. �40�. It
is obvious that the value of b0 should be taken as 1.

Equation �38� becomes

L0T2�g0
�2 ��� ,b ���

k�1

2

�cos k�•gcos,k
�2 � �� ,b ��sin k�•gsin,k

�2 � �� ,b �� ,

(41)

where g0
(2)(� ,b)��2� f 0

(2)(� ,b), gcos,k
(2) (�,b)��fcos,k

(2) (�,b),
gsin,k

(2) (�,b)��fsin,k
(2) (�,b), k�1,2. From the Appendix, the solution

of Eq. �41� given by Eq. �66� is

T2�� ,���G0
�2 ��� ,b ���

k�1

2

�cos k�•Gcos,k
�2 � �� ,b �

�sin k�•Gsin,k
�2 � �� ,b �� , (42)

where, for k�1,2,

G0
�2 ��� ,b ���

0

s

g0
�2 ����r ,��sin���r ��dr ,

Gcos,k
�2 � �� ,b ���

0

s

�gcos,k
�2 �

•ck�r�s ��gsin,k
�2 �

•sk�r�s ��dr ,

Gsin,k
�2 � �� ,b ���

0

s

��gcos,k
�2 �

•sk�r�s ��gsin,k
�2 �

•ck�r�s ��dr ,

in which the functions g0
(2) , gcos,k

(2) , gsin,k
(2) in the integrands are all

functions of ���r ,��sin(��r)�, and the substitutions ��s
�� , ��b�sin �, and s→�� are taken after integration.

3.4 Third-Order Perturbation. From Eq. �25�, the equa-
tion for the third-order perturbation is

L0T3��2T1��3T0�L1T2 . (43)

According to the Fredholm alternative, for Eq. �43� to have a
solution, it is required that

��2T1��3T0�L1T2 ,T0*��0.

Since, from Eq. �42�,

L1T2��L10�cos �•L11�� G0
�2 ��� ,b ���

k�1

2

�cos k�•Gcos,k
�2 � �� ,b �

�sin k�•Gsin,k
�2 � �� ,b ��	 � f 0

�3 ��� ,b ���
k�1

3

�cos k�

• f cos,k
�3 � �� ,b ��sin k�• f sin,k

�3 � �� ,b �� ,
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where

f 0
�3 ��� ,b ��L10G0

�2 ��L11Gcos,1
�2 � ,

f cos,1
�3 � �� ,b ��L10Gcos,1

�2 � �L11G0
�2 ��

1

2
L11Gcos,2

�2 � ,

f sin,1
�3 � �� ,b ��L10Gsin,1

�2 � �
1

2
L11Gsin,2

�2 � ,

f cos,2
�3 � �� ,b ��L10Gcos,2

�2 � �
1

2
L11Gcos,1

�2 � ,

f sin,2
�3 � �� ,b ��L10Gsin,2

�2 � �
1

2
L11Gsin,1

�2 � ,

f cos,3
�3 � �� ,b ��

1

2
L11Gcos,2

�2 � , f sin,3
�3 � �� ,b ��

1

2
L11Gsin,2

�2 � ,

and noting E�cos k���E�sin k���0, k�1, 2, 3, the third-order per-
turbation of the moment Lyapunov exponent is

�3��L1T2 ,T0*���2�T1 ,T0*��� f 0
�3 � ,F0*���2�G0

�1 � ,F0*�

��p�2�9p2��6p��16p��16��/48

�p� 32p2�2	�	�1	�2
� �p�2�64�	2�1 ��	2�4 ��5	2

�1 ��16�4�5	4�56	2�15��4�8�5	2�24��5�12�

�256�2	�2	�2	�1
� !/�2048	�1	�1	�2	�2�. (44)

3.5 Moment Lyapunov Exponent and Lyapunov Expo-
nent. The weak noise expansion of the moment Lyapunov ex-
ponent is obtained as

�x� t ��p ���2�2��3�3�O��4�, (45)

where �2 and �3 are given by Eqs. �40� and �44�, respectively.
The procedure of regular perturbation presented in Sections

3.1–3.4 can be extended easily to higher-order terms and can be
carried out using a symbolic computation software such as Maple.
However, the numbers of terms involved in higher-order expan-
sions increase drastically, and the higher-order terms obtainable
are limited by the computer systems.

When the effect of viscoelasticity is absent, i.e., when ��0,
system �14� is a two-dimensional dynamic system under bounded
noise parametric excitation. The moment Lyapunov exponents
�x(t)(p) can be obtained from Eqs. �40� and �44� by setting ��0:

�2�
p�p�2 ��2�2	�2i

32	�2	�2
, �3�0,

which are the same as those obtained in �13�.
The Lyapunov exponent for system �14� can be obtained from

Eq. �45� by using the property of the moment Lyapunov exponent

�x� t ��
d�x� t ��p �

dp 

p�0

��2�2��3�3�O��4�, (46)

where

�2�
�2�2	�2i

16	�2	�2
, �3��

1

3
�2��

��2	�1
�

8	�1	�1
.

3.6 Stability Index. By definition, the stability index is the
nontrivial zero of the moment Lyapunov exponent. For system
�10�, the moment Lyapunov exponent is given by
Journal of Applied Mechanics
�q����p ����2c0p�
�x� t ��p �,

and the stability index �q(�) is given by �q(�)(�q(�)�0, or

�x� t ���q������2c�q����0, (47)

where c�c0 /
 .
Expanding the stability index �q(�) in power series of � as

�q(�)��k�0
� �k�k , substituting it into Eq. �47� along with Eq.

�45�, expanding, and equating terms of equal power of � yields the
equations

�2: �0� �c�
�2�2��0�2 �	�2i

32	�2	�2
	 �0,

�3: �c�1�
�1��0�1 ��2�2	�2i

16	�2	�2
�

1

48
�0�

2�9�0
2��6�0�

�16�0��16����0��2 �256	�2	�2	�1
� ��0�64�	2�1 �

��	2�4 ��5	2�1 ��16�4�5	4�56	2�15��4�8�5	2

�24��5�12��32�0
2	�1	�1	�2

� !/�2048	�1	�1	�2	�2�

�0, (48)

] ]

Using a symbolic computation software such as Maple, these
equations can be easily manipulated and solved for � i ,i
�0,1, . . . , to result in

�0��2�
32c	�2	�2

�2�2	�2i
,

(49)

�1�8� 96�4�4	�2i	�1	�1���2	�2
� �2������	�2	�2�

�c�2�2	�2i	�2	�2• �3�2�448	6�16�144�7�4�	4

�4�528�256�4�7�8�	2��256�528�4�144�8�7�12��

�256��21��8��	�1	�1	�2	�2!

�3072c2	�1	�1�	�2�
2�	�2�

2���2	�2
�

�12�2	�2	�2�!/�3�6�6�	�2i�
3�16	4�32	2�8�4	2�16

�8�4��8��.

4 Numerical Results and Conclusions
In this paper, the moment Lyapunov exponents of a two-

dimensional viscoelastic system under bounded noise parametric
excitation are studied. An extension of the Khasminskii transfor-
mation is employed to convert the two-dimensional viscoelastic
system under bounded noise excitation into a four-dimensional
system in terms of P, �, b, and �. An approach original applied by
Wedig to two-dimensional Itô’s system is used to set up the ei-
genvalue problem for the moment Lyapunov exponent. The
method of regular perturbation is applied to obtain a weak noise
expansion of the moment Lyapunov exponent in terms of the
small fluctuation parameter. Weak noise expansions of the
Lyapunov exponent and stability index are also obtained.

When the viscoelastic effect is not considered, i.e., when ��0,
system �14� is a two-dimensional system under bounded noise
excitation. In the absence of noise perturbation, i.e., when ��0,
the two-dimensional system �14� under bounded noise parametric
excitation �15� is further reduced to the Mathieu’s equation. It is
well-known that parametric resonance occurs when the nondimen-
MAY 2002, Vol. 69 Õ 351
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Fig. 1 Moment Lyapunov exponent �x„t…„p…. �Ä0.05, �Ä1, �Ä5, �Ä0, �Ä0.5.

Fig. 2 Moment Lyapunov exponent �x„t…„p…. �Ä0.05, �Ä1, �Ä5, �Ä0, �Ä1.

Fig. 3 Moment Lyapunov exponent �x„t…„p…. �Ä0.05, �Ä1, �Ä5, �Ä1, �Ä0.25.
Õ Vol. 69, MAY 2002 Transactions of the ASME



sional excitation frequency 	/2 is in the vicinity of 1, 1/2, 1/3,
1/4, . . . . For system �14� without the viscoelastic effect and noise
fluctuation, the primary parametric resonance occurs in the vicin-
ity of 	�2, while the secondary parametric resonance occurs in
the vicinity of 	�1.

When the noise fluctuation parameter � is not zero, the
bounded noise is a sinusoidal function with noise superimposed.
The larger the value of �, the noisier the bounded noise cos �(t),
resulting in a smaller effect of the parametric resonance. The ef-
fect of primary parametric resonance can be clearly observed from

Fig. 4 Moment Lyapunov exponent �x„t…„p…. �Ä0.05, �Ä1, �Ä5, �Ä1, �Ä0.5.

Fig. 5 Moment Lyapunov exponent �x„t…„p…. �Ä0.05, �Ä1, �Ä5, �Ä1, �Ä1.
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the typical plots �Figs. 1 and 2� of the moment Lyapunov expo-
nent �x(t)(p) for system �14� given by Eq. �45� without the vis-
coelastic effect.

Typical results of the moment Lyapunov exponents for system
�14� are plotted in Figs. 3–5, while those for system �10� are

shown in Figs. 6 and 7. The viscoelastic term has a significant
effect on dynamic stability of the system. This is clearly seen by
comparing Figs. 1–2 and Figs. 3–5, Figs. 6 and 7. In general, the
viscoelasticity has a stabilizing effect, which may be seen more
clearly by plotting the stability index later in this section.

Fig. 6 Moment Lyapunov exponent �q„�…
„p…. �Ä0.05, c0Ä1, p0Ä0, 	0Ä1, �0Ä1, �0

Ä5, �0Ä0, �0Ä0.5.

Fig. 7 Moment Lyapunov exponent �q„�…
„p…. �Ä0.05, c0Ä1, p0Ä0, 	0Ä1, �0Ä1, �0

Ä5, �0Ä1, �0Ä0.5.
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For the viscoelastic system �10�, typical results of the Lyapunov
exponent �q(�) are shown in Figs. 8–10 for �0�0, 0.5, and 1,
respectively. The effect of parametric resonance when 	0 is in the
vicinity of 2 can be clearly seen. It can also be observed that the
viscoelastic term has a stability effect in the sense that the
Lyapunov exponent �q(�) is reduced with the increase of the value
of �0 .

The stability index is one of the single most important param-
eters in characterizing the dynamic stability of a stochastic sys-
tem. From the definition of the stability index, it is clear that the
larger the value of the stability index, the more stable of the sys-
tem in the sense of moment stability.

For the viscoelastic system �10�, it can be concluded that the
viscoelasticity renders the effect of parametric resonance more
prominent in the vicinity of 	0�2. The noise term has a destabi-
lizing effect in the sense that the stability index �q(�) is reduced
with the increase of the noise intensity parameter �0 . It is also

observed that the effect of parametric resonance diminishes with
the increase of the noise intensity parameter �0 . As expected, the
damping term has a stabilizing effect. It is found that the effect of
the relaxation rate is not very significant, although it reduces the
effect of parametric resonance when the values of �0 is increased.
The viscoelasticity has a stabilizing effect in the sense that the
stability index is increased with the increase of the parameter �0.

It should be noted that the application of the method of regular
perturbation in determining the moment Lyapunov exponent is
based on the assumption that the noise fluctuation parameter � is
not small so that the eigenvalue problem �23� is not singular.
Hence, the results obtained in this research cannot be used to
deduce the results for the Mathieu’s equation by setting � to zero.
In the case of small noise fluctuation, i.e., � is small, a method of
singular perturbation has to be employed to determine the moment
Lyapunov exponent, which will be studied in future research.

Fig. 8 Lyapunov exponent 
q„�…
. �Ä0.05, c0Ä0, p0Ä0, 	0Ä1, �0Ä5, �0Ä0, �0Ä0.5.

Fig. 9 Lyapunov exponent 
q„�…
. �Ä0.05, c0Ä0, p0Ä0, 	0Ä1, �0Ä5, �0Ä0.5, �0

Ä0.5.
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Appendix

Solution of L0T„� ,b ,�…Äf„�…g„� ,b… . Consider the partial
differential equation L0T(� ,b ,�)� f (�)g(� ,b), or

� �2

2

�2

��2 �	
�

��
�

�

��
�cos �

�

�b �T�� ,b ,��� f ���g�� ,b �.

(50)

Introducing an auxiliary time t� to Eq. �50� leads to

� �

�t�
�

�2

2

�2

��2 �	
�

��
�

�

��
�cos �

�

�b �T�� ,b ,�;t��

� f ���g�� ,b �. (51)

Applying the transformation

��
1

2
� t����, s�

1

2
� t����, ��b�sin � ,

or the inverse transformation

t����s , ����s , b���sin���s �,

Eq. �51� becomes

� �

�s
�

�2

2

�2

��2 �	
�

�� �T�� ,� ,�;s �� f ���g���s ,��sin���s �� .

(52)

Applying Duhamel’s principle ��20��, the solution T(� ,� ,�;s)
to Eq. �52� is given by

T�� ,� ,�;s ���
0

s

V�� ,� ,�;s;r �dr , (53)

where V(� ,� ,�;s;r) is the solution of the homogeneous equation

� �

�s
�

�2

2

�2

��2 �	
�

�� �V�� ,� ,�;s;r ��0, for s�r ,
(54)

V�� ,� ,�;r;r �� f ���g���r ,��sin���r �� , for s�r .

To solve Eq. �54�, consider the equation

� �

�s
�

�2

2

�2

��2 �	
�

�� � P�s ,�;t ,z ��0, s�t ,
(55)

P� t ,�;t ,z ��lim
s↑t

P�s ,�;t ,z ����z���.

Equation �55� is the Kolmogorov’s backward equation for the
transition probability function P(s ,�;t ,z). It is well known ��21��
that the transition probability P(s ,�;t ,z) is also the fundamental
solution of the forward or Fokker-Planck equation, i.e., for the
initial condition s and � fixed,

� �

�t
�

�2

2

�2

�z2 �	
�

�z�P�s ,�;t ,z ��0, t�s ,
(56)

P�s ,�;s ,z ��lim
t↓s

P�s ,�;t ,z ����z���.

Applying the Fourier transformation ��20��

P̃�s ,�;t ,k ��F�P�s ,�;t ,z ���
1

�2�
�

��

�

eikzP�s ,�;t ,z �dz

to Eq. �56� leads to

� P̃

�t
�� 1

2
�2k2�i	k � P̃�0,

(57)

P̃�s ,�;s ,k ��
1

�2�
eik�.

Equation �57� can be solved using the method of characteristics to
give

P̃�s ,�;t ,k ��
1

�2�
exp� ik��� 1

2
�2k2�i	k � � t�s �� . (58)

Fig. 10 Lyapunov exponent 
q„�…
. �Ä0.05, c0Ä0, p0Ä0, 	0Ä1, �0Ä5, �0Ä1, �0

Ä0.5.
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Applying the inverse Fourier transformation

P�s ,�;t ,z ��F�1� P̃�s ,�;t ,k ���
1

�2�
�

��

�

e�ikzP̃�s ,�;t ,k �dk

to Eq. �58� leads to

P�s ,�;t ,z ��
1

2� �
��

��

exp� i����z ��	� t�s ��k

�
1

2
�2k2� t�s �	 dk .

Using the integral formula

�
��

��

exp��qx�p2x2�dx�
��

p
exp� q2

4p2� , p�0,

as in Formula 3.323�2� of reference �22�, one obtains

P�s ,�;t ,z ��
1

�2��z� t �

exp� �
�z��z� t ��

2

2�z� t �
2 	 , (59)

where

�z� t ����	� t�s �, �z� t �
2 ��2� t�s �. (60)

Hence, for the initial condition �(s) fixed, z(t) is a normally
distributed random variable with mean �z(t) and standard devia-
tion �z(t) , the probability density function of which is given by
Eq. �59�.

From Eqs. �54� and �55�, the solution V(� ,� ,�;s;r) to Eq. �54�
is given by

V�� ,� ,�;s;r ��g���r ,��sin���r ���
��

�

f �z �P�s ,�;r ,z �dz ,

(61)

where

E� f �z�r �����
��

�

f �z �P�s ,�;r ,z �dz ,

is the expected value of the random variable f (z(r)) with z(r)
being the normally distributed random variable as defined in �59�
and �60�.

Combining Eqs. �53� and �61�, the solution to Eq. �52� is given
by

T�� ,� ,�;s ���
0

s

g���r ,��sin���r ��E� f �z�r ���dr .

(62)

The solution T(� ,b ,�) to Eq. �50� is obtained by replacing �
���s ,b���sin(��s), and passing the limit s→�� .

For the special cases when f (�)�sin k� or cos k�, one has

E� � sin kz�r �

cos kz�r �	 �� 1

�2��z�r �

�
��

��� sin kz
cos kz	

�exp� �
�z��z�r ��

2

2�z�r �
2 	 dz

�exp��
1

2
k2�z�r �

2 � � sin k�z�r �

cos k�z�r �
	 , (63)

in which the integral formulas

�
��

��

exp��q2x2�� sin�p�x����
cos�p�x����	 dx

�
��

q
exp� �

p2

4q2� � sin p�
cos p�	 ,

as given in 3.896�1� and �2� of reference �22� have been em-
ployed. Substituting Eq. �60� into �63� results in

E� � sin kz�r �

cos kz�r �	 ��ck�r�s �� sin k�
cos k�	 �sk�r�s �� cos k�

�sin k�	 ,

(64)

in which the following notations are used:

� sk�r�s �

ck�r�s �	 �exp��
1

2
k2�z�r �

2 � � sin k	�r�s �

cos k	�r�s �	 . (65)

Substituting Eqs. �64� into Eq. �62�, one obtains the solution of
Eq. �50� as, when f (�)�sin k� and cos k�, respectively,

T�� ,� ,�;s ���
0

s� sin k�•ck�r�s ��cos k�•sk�r�s �

cos k�•ck�r�s ��sin k�•sk�r�s �	
�g���r ,��sin���r ��dr . (66)
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Width-Wise Variation of Magnetic
Tape Pack Stresses
A model is developed for predicting the stress and displacement fields within a mag
tape pack, where those quantities are allowed to vary in both the pack’s radial
transverse (cross-tape) directions. As has been the case in previous analyses base
one-dimensional wound roll models, the present approach accounts for the aniso
and nonlinear constitutive properties of the layered tape, and the incremental mann
which the pack is wound. Further, such widthwise variation effects as differential
compliance and nonuniform winding tension, which can be significant in data cartr
design, are also treated in the model. The pack is analyzed through a two-dimens
axisymmetric finite element model that couples individual representations of the
flange and layered tape substructures. The bulk radial elastic modulus of the tape,
depends on the in-pack radial stress, is measured for a variety of media samples,
reduced-order model is developed to capture the nonlinear modulus-stress correl
The stiffness matrix of the hub/flange at its interface with the media provides a m
boundary condition to the tape substructure. In this manner, design-specific hubs c
readily analyzed, and criteria for their optimization explored. Simulations of sev
cartridge designs are presented, and the roles of hub compliance and wound-in te
gradient in setting the pack’s stress field and cross-tape width change
discussed.@DOI: 10.1115/1.1460911#
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1 Introduction
Magnetic data storage on flexible media has played an im

tant role in computer systems since the early 1950s. Tape sys
currently span a broad range of consumer and enterprise sto
applications, including audio, video, instrumentation, and co
puter systems. Within the next decade, compact tape cartridge
computer data storage are projected to provide several terabyt
capacity through a nearly 50-fold growth in areal density a
substantial reduction in media thickness. In the rapidly mov
computer industry, tape storage systems remain compet
through their low storage cost per megabyte of data and their
capacity. The technologies of magnetic and optical disk record
at least presently, do not offer the same combination of adv
tages, and while other emerging technologies do offer strength
one or more areas, overall they do not meet the entire se
performance needs that tape cartridge drives address.

One application of magnetic tape systems is backup/res
missions on medium-to-large scale computers and networks.
number of cartridges required for such applications can grow
the hundreds or thousands for systems in the graphics, me
imaging, and entertainment industries. For instance, a large
tem with a thousand gigabytes of on-line disk capacity can req
about 3000 to 5000 gigabytes to hold several full and daily inc
mental backups. Although a primary use of tape systems is
off-line and archival data storage, mass storage systems are t
supplemented by automated robotic libraries that make tape
age a nearly on-line computer peripheral. With growth in netwo
based business and information retrieval systems, the accessi
and reliability of vast data libraries on magnetic tape remains
important technical issue.

As tape technology continues to migrate towards thinner me
substrates~;4–5 mm!, lower winding tensions~;0.28–0.56 N!

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Mar.
2001; final revision, Nov. 22, 2001. Associate Editor: R. C. Benson. Discussion
the paper should be addressed to the Editor, Prof. Lewis T. Wheeler, Departme
Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and
be accepted until four months after final publication of the paper itself in the AS
JOURNAL OF APPLIED MECHANICS.
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and higher speeds~;7–10 m/s! to increase capacity and reduc
access time, tape mechanics problems, for which solutions
been engineered, often recur. For instance, reductions of
thickness and data track width provide the direct means to
crease volumetric storage density, and therefore the capacity
given sized cartridge. On the other hand, as the media beco
thinner, its handling and mechanical stability become more pr
lematic. Over roughly the past decade, media substrates have
reduced in thickness from some 30mm to 5 mm, and as track
widths fall to several microns, the dimensional stability of t
media in the presence of aggressive in-pack stresses likewise
comes critical. Uneven or excessive compressive stress with
cartridge can cause tape layers, individually or together, to bu
in the pack’s radial direction, axial direction, or both. The pho
graph of Fig. 1 depicts a so-called spoking defect in which
tape layers buckled locally to such an extent that an internal
formed. Such buckling is facilitated by the combined conditio
of low radial stress, and high compressive circumferential
transverse stresses.

Traditionally, research on the stress field in magnetic tape pa
or other types of wound rolls has emphasized one dimensio
models wherein the hub and tape are each treated as being
nitely wide, and with uniform mechanical properties and tens
across the width. Based on the constitutive properties specified
the media, the one-dimensional models can be categor
broadly into four groups: linearly elastic~@1–3#!, linearly vis-
coelastic ~@4–6#!, nonlinearly elastic~@7–11#!, and nonlinearly
viscoelastic~@12#!. Such studies consider only radial and circum
ferential stresses, treat the media as being orthotropic, specify
the hub has uniform cross-tape compliance, and ignore eff
associated axial and shear stress components~@13#!.

The tape pack itself is generally modeled as a layered struc
which is developed incrementally as a succession of pretensio
hoops that are shrunk-fit onto the underlying pack. That proces
a nonlinear one to the extent that the effective radial elastic mo
lus of the tape region, at the bulk level, is a function of the int
layer radial stress which in turn changes as the pack is formed
short, the mechanical properties of a wound tape pack are o
quite different from those of a single isolated layer because
entrained air and surface asperity contact. Accordingly, the b
radial modulus plays an important role in pack stress mode
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~@8,9,14#!. Since the media’s substrate is typically a polymer su
as PET~polyethylene terephthalate! or PEN ~polyethylene naph-
thalate!, viscoelastic effects, although not considered here, set
manner in which wound-in stresses relax over time. Other effe
including wound-on tension losses, temperature, humidity, and
nite deformation have also been studied in various applicati
~@3,10,11#!.

Certain two-dimensional stress models have been consid
with a view towards understanding stress dependencies w
arise due to thickness variations across the width~@15–17#!. The
nonuniform widthwise winding tension was simulated by stacki
web layers having varying widthwise thickness. Each of the
approaches was based on the assumptions that the pack cou
partitioned across its width into a discrete number of segme
that do not couple, and that the stresses and displacemen
developed are width-independent. Notably, shear-extension
bending-extension coupling were ignored in those treatments

In what follows, a two-dimensional axisymmetric finite eleme
model is developed in order to analyze the magnetic tape p
stress problem. The internal stresses are allowed to vary bot
the pack’s radial and axial directions, and four stre
components—radial, circumferential, axial, and shear—as wel
two displacements—radial and axial—are determined. T
present approach is appropriate for treating realistic cartridge
designs, nonuniform widthwise tension profiles which can res
from guiding imperfections, and the tape’s cross-track wid
change. Experiments are further discussed in which the bulk c
pressive radial modulus is measured for several media specim
A reduced-order treatment of individual layer and nonlinear int
face compression is discussed in order to model the experime
data and incorporate it into the stress analysis.

2 Finite Width Tape Pack Model
A magnetic tape pack is formed by winding a continuo

stream of media, having specified tension and speed, onto a
In general, the hub will have a radial stiffness that varies acros
width, and the hub’s geometry and materials are designed
chosen to meet various functionality requirements. Shown ill
tratively in Fig. 2~a! is the so-called 9840-style cartridge hu
which has a plane of symmetry with respect to the media’s c
terline. The central rib at the hub’s centerline reinforces the str
ture and allows more tape to be wound at higher tension. Since

Fig. 1 Magnified view of a region in a magnetic tape pack ex-
hibiting interlayer buckling
Journal of Applied Mechanics
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flanges and the hub connect only through a press-fit snap lock
stiffness afforded to the hub by the flanges is neglected in
case. Figure 3~a! depicts a second type of hub design, term
3480-style, which is a common format in the tape storage indus
and which has no particular midplane symmetry. The cartridg
two flanges are formed from different materials, and the str
ture’s cross-sectional geometry is generally step-shaped in o
to facilitate attaching the hub to the drive motor’s spindle.

By way of motivation, Fig. 4 indicates how the collocated poi
radial compliance of these two hub designs changes across
media’s width. The ratio of the maximum-to-minimum compl
ance values for the symmetric hub design is roughly 5:1, and
ratio is roughly 4:1 for the asymmetric design. The cross-ta
compliance variation is significant in each case, and sets
boundary condition afforded to the layered tape region at its
terface with the hub. In what follows, the effects of differenti
hub compliance are explicitly treated in the pack stress mode
order to develop a stress simulation of greater fidelity than
available through existing conventional one-dimensional mode

In Figs. 2 and 3, the tape has thicknessh, and it is wound layer
by layer into a nearly cylindrical shape having outer radiusr o and
inner radiusr f common with the hub’s winding face surface
Formed fromN individual layers which are conceptually shrunk
fit onto one another in an incremental quasi-static manner, the
region is treated as being a composite material having bulk an
tropic and nonlinear material properties. In general, the hub is
integral solid structure, and it is often made of fiber-reinforc
plastic. In short, the material properties of the hub and tape
gions can be substantially different.

In order for the analysis to properly account for various h
geometries, the tape pack is conceptually separated into the
and tape substructures following the approach developed in@13#.
The respective subdomains are denotedH5$(r ,u,z):r ,r f ,0,u
,2p,2w/2,z,w/2% over the hub, andT5$(r ,u,z):r f,r
,r o,0,u,2p,2w/2,z,w/2% over the tape. For the symmetri
hub shown in Fig. 2, the hub’s winding face and outer radius
the same. For the asymmetric hub of Fig. 3, the winding face

Fig. 2 „a… An axisymmetric hub that is also symmetric with
respect to the pack’s midplane, and „b… model of the hub and
tape layer substructures
MAY 2002, Vol. 69 Õ 359
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Fig. 3 „a… An axisymmetric hub having no particular midplane symmetry, and
„b… model of the hub and tape layer substructures
h
-

ub
ge,
he
d.
located at a different radius than the hub’s outer radiusr h owing
to presence of the flanges. The substructures couple throug
interfacial hub stiffness matrixKH which affords a mixed bound
ary condition to the tape substructure. In order to effectively d
02
the

eal

with the potential variety of hub materials and geometry, the h
itself is analyzed through a commercial finite element packa
andKH is extracted by sequentially applying unit loads along t
hub-tape interface, and inverting the flexibility matrix so obtaine
Fig. 4 Collocated point radial compliance of „a… the symmetric hub of Fig. 2,
and „b… the asymmetric hub of Fig. 3
Transactions of the ASME
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The stress field and displacements inT develop as each layer,
pre-tensioned cylindrical shell, is fit to the underlying pack. As
nth layer is added, for instance, the cumulative stressessn within
the pack are expressedsn211Dsn , where sn21 is the stress
developed upon winding the first through (n21)st layers, and
Dsn is the incremental stress associated with addition of the fi
nth layer.

As thenth layer is added,T is discretized with bilinear axisym
metric elements. The governing equations comprise equilibri
constitutive, and compatibility conditions, and they are functio
of nodal displacementsa5$uw%T, whereu(r ,z) and w(r ,z) are
the radial and transverse components. The stiffness matrix inT is
KT5( i 51

NE k i
e , wherek i

e is the stiffness matrix for each elementi,
andNE is the number of elements inT’s representation. The 838
elemental stiffness matrix becomes

k i
e52pE

Ae
Bi

TEiBidAe, (1)

whereAe is the element’sr –z cross-sectional area,Bi is the de-
rivative of the strain-displacement relation, andEi is the materi-
al’s elasticity matrix. In turn, the structure-level stiffness matrix
the entire pack becomesK P5KH1KT , where proper assembly o
the matrices accounting for the interfacial nodes atr 5r h is im-
plied. In addition, the nodal loads for the entire pack are evalua
asF5( i 51

NE f i
e where the elemental nodal load is given by

f i
e52pE

dAe
Ni

Tt i rddAe12pE
Ae

Bi
TDie0idAe22pE

Ae
Bi

Ts0idAe.

(2)

Here Ni is the bilinear shape function, ande0i and s0i are the
initial strain and stress for each element. The governing equat
becomeK P(a)a5F and are written in terms of the nodal displac
mentsa.

Solutions are subject to specified displacement and trac
boundary conditions. For instance, the boundary conditions f
cartridge with the symmetric hub of Fig. 2 include vanishi
transverse displacement at (r i ,0) in order to suppress the rigi
body motion. The general traction boundary conditions includ

• vanishing traction at all hub surfaces excluding the positio
with specified displacement boundary conditions,

• sz5s rz50 over the upper and lower tape surfacesz
56w/2 andr P@r f ,r o#,

• s rz50 ands r5T(z)/(w(r f1(n21)h)) over the outer tape
surfacer 5r o andzP@2w/2,w/2#

wherer i andw are the hub’s inner radius and the tape’s width, a
the winding tensionT(z) is specified.

As the media’s bulk radial modulus is known to depe
strongly on stress, as each layer or group of layers is added t
existing pack, a truncated Taylor expansion is used to linearize
governing equations about either an initial estimate or a conve
result obtained from calculation at the preceding state. Comp
tion through Newton-Raphson iteration begins by evaluatingK P
at an initial estimatea* . In the first iteration, the nodal displace
ments becomea15K P

21(a* )F. The vector of imbalanced noda
loads in the second iteration becomesDf25F2K P(a1)a1 . The
incremental nodal displacementsDa in the second iteration are
Da25K P

21(a1)Df2 , and the cumulative displacements at th
stage becomea25a11Da2 . Iteration proceeds until the solutio
satisfies a specified convergence criterion expressed in term
the normh25(Daj

2/( aj
2. Whenh falls below a specified toler-

ance, say 1023 as in the case studies below, the solutions are s
to have converged relatively, and iteration is terminated. With
nodal displacements so obtained, the stresses over elementi are
incremented byDsni5Di(Biai2e0i)1s0i , and the cumulative
stresses advance tos(n21)1Dsn .
Journal of Applied Mechanics
he

nal

m,
ns

of
f

ted

ons
-

tion
r a
g

ns

nd

d
o an
the
ged
ta-

-
l

at

s of

aid
the

3 Media Bulk Radial Modulus
RegionT is well approximated as being orthotropic and ax

symmetric, and so some four elastic moduli~Er , Eu , Ez , and
Grz! and six Poisson ratios~n ru , n rz , nuz , nur , nzr , and nzu!
must be specified to complete the formulation. The values
these material properties, exclusive ofEr , are developed follow-
ing the discussion presented in reference@13#, and they are listed
in Table 1.

The media’s substrate, magnetic and tribological coatings,
interfaces each contribute toEr . The radial modulus was mea
sured through compression tests conducted with a conventi
materials testing machine. Each stack of experimental media
dimensions 102 mm312.7 mm312.7 mm. When such sample
are extracted from an existing pack or larger format pancake,
possible for irregular or distorted edges to be present, and s
effects are minimized by having the compression plates be sm
in diameter than the samples’ lengths. A 5 kN load cell was u
to measure the applied force, and an extensometer with g
length 25.4 mm and 20 percent extension to measure the disp
ment across the sample. During manufacturing, a wide web
magnetic media is slit into many individual streams of tape, wh
in turn are wound on large format hubs so as to store the m
temporarily prior to forming data cartridges. The diameters
such pancakes typically vary from 200–300 mm, and the sam
used in these studies were cut from such pancakes.

For a particular experimental media, Fig. 5 illustrates a rep
sentative stress-strain response over five successive tests. Th
havior during the first load cycle differs somewhat from the su
sequent ones as most of the air entrapped between adjacent l
is expelled during that first load-unload cycle. The experimen
data are fit to a polynomial through least squares regression,
the bulk modulus is determined by differentiating the stress-st
expression. Figure 6 depicts measured response of the spec
over a full load-unload cycle, and the behavior is clearly pa
dependent. The area enclosed by the loading and unloading cu
represents the energy dissipated during the process as caus
the internal material damping and interfacial friction, among oth
factors. Such path-dependent behavior can be used to simulat
full winding and unwinding process.

In order to examine potential variability inEr for media
samples extracted from a single pancake, and namely from
same tape stream and widthwise position on the manufactu
web, samples were removed from the pancake from three diffe
radii, each at a different circumferential location. Because the p
cake is substantially larger than a typical data cartridge and
stress field within it varies substantially with position, ea
sample was presumably produced and stored under a diffe
stress history. It is an objective here to assess variability inEr
associated with the production process, quite aside from
wound roll model itself. Measured moduli for the nine med

Table 1 Baseline parameter values used in the pack winding
case studies

Hub
Property Symmetric Asymmetric

Modulus,E 2.5 GPa 3.5 GPa
Poisson ratio,n 0.43 0.43
Outer radius,r f 11.43 mm 25.00 mm

Tape
Tension,T0 1.0 N
Number of layers,NL 3000 —
Width, w 12.7 mm
Thickness,h 10.0mm
Bulk radial modulus,Er 7000/(1110.7s r

20.77) MPa
Circumferential modulus,Eu 7 GPa
Transverse modulus,Ez 9 GPa
Shear modulus,Grz 100 MPa
Poisson ratio,nuz5nur5nzr 0.3 —
MAY 2002, Vol. 69 Õ 361
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Fig. 5 Measured stress-strain response in compression of a magnetic tape
stack over five loading cycles; sample dimensions: 102 mm Ã12.7 mmÃ12.7
mm
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samples are shown in Fig. 7~a!, where some variability among th
samples depending on radial location within the pancake is
dent. At a fixed value of stress, say 2 MPa,Er varies between
roughly 800 and 1200 MPa, or620 percent about its mean valu
The three samples taken from the outer periphery of the pan
consistently exhibited lowerEr than those extracted from the in
ner periphery, consistent with the notion of the media undergo
slight strain hardening as asperities are plastically deformed
ing the pancake’s formation.
02
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In considering a media stack under uniform compression,
bulk deformation arises both from compression of the subst
layers and compliance of the surfaces. ConsideringN layers, there
are N21 interfaces formed by adjacent contact of the magne
surface on one layer, and the backcoat surface on another.
the tape layers and the interfaces contribute to the macrosc
stiffness, and this assemblage is modeled accordingly as a s
of elastic springs. Specifying that the substrate deforms line
during compression, the elastic constant contributed by the ta
Fig. 6 Typical measured stress-strain response of a magnetic tape stack over
a single load–unload cycle; sample dimensions: 102 mm Ã12.7 mmÃ12.7 mm
Transactions of the ASME
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Fig. 7 „a… Variability of the measured bulk radial modulus for nine nominally
identical media samples. „b… Measurements averaged over all samples „d d d
d…, and the least-squares fit to the modulus model „ …; cÄ1.61
Ã107 NÕmm4.26 and mÄ3.26.
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substrate for each layer isks5EA/h, whereE andA are the elas-
tic modulus and apparent contact area for a single layer. The
area of contact, in turn, increases with the compressive l
~@18#!. The interfacial stiffness changes in response to its de
mation with constantki5(cD i)

m, wherec and m are constants
determined subsequently through a fit to the data. For pure H
zian contact of similar materials, for instance,c516E2b/9 and
m51/2, whereb is the radius of an individual asperity’s summ
Extension to rough but nominally flat surfaces in contact is d
cussed by@18#.

Under compressive loadP, the stack’s total deformation be
comes D5NDs1(N21)D i'N(Ds1D i)'N(P/ks1P/ki) for
large N. By definition, the strain in the media’s stack ise
5D/(Nh)5(P/ks1P/ki)/h5P/(ErA). Following algebraic ma-
nipulation, the bulk radial modulus is expressed

Er5ES 11
EA

h

1
m11AcmPmD 21

(3)

as a function of applied stress. The unknown parametersc andm
are determined by fitting the experimental data through a le
square method. Figure 7~b! demonstrates the manner in which E
~3! captures the measured data.

4 Stress Field With Symmetric Hub Design
Figures 8 and 9 depict the predicted radial and circumferen

stress distributions as functions ofr and z for the hub design of
Fig. 2 and parameter values as given in Table 1. Pack forma
was simulated with a winding tension of 1 N having unifor
stress 7.87 MPa over the tape’s cross section. In Fig. 8,s r in-
creases from zero at the pack’s outer periphery to reach its m
mum compressive value of22.45 MPa along the hub-tape inte
face at the location (r ,z)5(11.43,0) mm of the hub’s centra
reinforcement rib. The radial stress is less compressive nea
tape’s edges where the hub has greater compliance. For the
layer on the hub,s r varies from21.48 MPa at the tape’s edges
22.45 MPa at the centerline, an increase of some 70 perc
Such cross-width variation of in-pack stresses is significan
Figs. 8–9 over only about one-third of the pack, as indicated
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the contour diagrams shown as insets in the figures. With res
to the circumferential stress, the maximum value occurs atr f on
the tape’s edges at the position~11.43,66.35! mm. Further,su
varies from27.73 MPa at the edges to21.21 MPa at the center
line for the pack’s first layer. Notably,su is compressive at the
pack’s innermost radial positions, grows to become tensile in
outer layers, and precisely equals the winding stress at the o
most layer. The bold demarcation line in the contour diagram in
in Fig. 9 indicates the loci of points wheresu50, in order to aid
in understanding the locations of such pack buckling defects
seen in Fig. 1. In this simulation, the transversesz and shears rz
stresses are significant only near the hub-tape interface and
from the strain mismatch between the different materials form
H andT. Since the edges of the pack model are traction free
couplingn rz between ther andz directions is almost zero,sz and
s rz are likewise negligible away fromr f .

4.1 Cross-Track Media Width Change. The in-pack
stresses in turn cause the tape’s width to change slightly, an
the pack would be subsequently unwound, those dimensio
changes would be reflected as variations in the spacing of
tracks. Figure 10 shows the predicted tape width changeDw as a
function of position along the tape’s length based on the str
fields of Figs. 8–9. To the extent that the viscoelastic relaxat
time of the media is long when compared to the time required
the pack to unwind,Dw would be measured and compensated
the read-write head’s servo system. The width change is ca
lated by subtracting the tape’s transverse displacements at the
per and lower edges, and the difference increases gradually
the outer periphery with a rapid increase nearH. The maximum
value reached in this case study is about 14mm or 1100 ppm,
which is in fact greater than the roughly 5mm data track width on
a modern drive. As shown in Fig. 10, more than 35 percent of
pack is subjected to a width change greater than a single t
width.

4.2 Cross-Tape Tension Gradient. Figures 11 and 12 illus-
trate the radial and circumferential stress fields as functionsr
and z for a pack wound under tension that varies linearly acr
MAY 2002, Vol. 69 Õ 363
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Fig. 8 Radial stress field in the symmetric hub case study. The insets depict
the hub’s cross section and a contour representation of s r over the rÀz plane;
constant tension, NRÄ100, NZÄ80.
n
a
a n
the tape’s width. Such a situation arises when the tape bends i
transport path either as a result of guide misalignment or t
lateral motion. The tension profile is approximated by a quadr
function asT(z)5c2z21c1z1c0 , wherec2 , c1 , andc0 are set
by specified values at the tape’s edges and centerline.
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In Figs. 11 and 12, the tension is specified to vary from 0.75T0
at the bottom edgez526.35 mm to 1.25T0 at the top edgez
56.35, whereT0 is the nominal tension. The resulting tensio
profile becomes T(z)5(z/2w11)T0 over z5@2w/2,w/2#.
Cross-tape variations ofs r andsu are more prominent in Figs. 11
Fig. 9 Circumferential stress field in the symmetric hub case study. The in-
sets depict the hub’s cross section and a contour representation of su in the
rÀz plane; constant tension, NRÄ100, NZÄ80
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Fig. 10 Predicted change in tape width. The maximum value at the hub-tape
interface is about 14 mm, or 1100 ppm.
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and 12 than for the case of a uniform tension profile in Figs 8
9. Along the tape’s higher tension edge, both the radial and
cumferential stresses in Figs. 11 and 12 have higher magnitu
As was the case in Figs. 8 and 9, the maximal compressive ra
stress occurs at the location of the central reinforcement ri
located. With respect to the extreme values ofs r at the first layer,
the ratio of the maximum and minimum values is 2.4:1, somew
hanics
nd
cir-
des.
dial

is

hat

larger than 1.7:1 as in the uniform tension case study. Compo
su has a more uneven distribution, and the ratio of the extre
values here is 9.4:1, with the maximum compressive value
211.1 MPa occurring at~11.43,6.35! mm.

In some circumstances, the winding tension is known to roll-
at both edges of the tape in a manner well approximated
T(z)5(2(z/w)211)T0 . The radial and circumferential stresse
Fig. 11 Radial stress field in the symmetric hub case study. The insets depict
the hub’s cross section and a contour representation of s r in the rÀz plane;
linear cross-tape tension gradient, NRÄ100, NZÄ80.
MAY 2002, Vol. 69 Õ 365
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Fig. 12 Circumferential stress field in the symmetric hub case study. The
insets depict the hub’s cross section and a contour representation of su in the
rÀz plane; linear cross-tape tension gradient, NRÄ100, NZÄ80.
1

ck
rs of
ose
resulting from this tension profile are shown in Figs. 13 and
Heres r andsu are less compressive than in the case of unifo
tension, but they do vary to a greater extent across the ta
width. Here the ratios of the extreme values at the first layer fors r
andsu are 2.2:1 and 6.2:1, respectively.
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5 Stress Field With Asymmetric Hub Design

In the case of the asymmetric hub format of Fig. 3, the in-pa
stress field is expected to be singular at the intersecting corne
the hub’s winding face and the flanges, to the extent that th
Fig. 13 Radial stress field in the symmetric hub case study. The insets depict
the hub’s cross section and a contour representation of s r in the rÀz plane;
parabolic cross-tape tension gradient, NRÄ100, NZÄ80.
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Fig. 14 Circumferential stress field in the symmetric hub case study. The
insets depict the hub’s cross section and a contour representation of su in the
rÀz plane; parabolic cross-tape tension gradient, NRÄ100, NZÄ80.
o

e
f the
rs.
components are formed of dissimilar materials~@13,19#!. Stress
behavior at those regions was investigated through a mesh re
ment convergence study. Figure 15~a! shows the predicted radia
stresses along the pack’s centerline and edges as functions
dial position forNZ540 and 80. Stresss r converges well along
the centerline and throughout most of the pack, except for
hanics
fine-
l
f ra-

the

narrow regions near the hub-tape interface. Figure 15~b! shows
the distribution ofs r in the first layer as a function of cross-tap
position. The radial stress converges over some 90 percent o
cross section atNZ580 except for regions adjacent to the corne
The domain of convergence expands with increasingNZ as the
singularity further localizes.
Fig. 15 Radial stress distribution „a… in the down-tape direction at three posi-
tions across the width, and „b… across the tape’s width at the hub-tape inter-
face; NZÄ40 „s s s s… and NZÄ80 „ …. Shaded zones indicate where the
solution did not converge to three significant figures.
MAY 2002, Vol. 69 Õ 367



368 Õ Vol. 69, MAY 20
Fig. 16 Radial stress field in the asymmetric hub case study. The insets depict
the hub’s cross-section and a contour representation of s r in the rÀz plane;
constant tension, NRÄ100, NZÄ80.
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Figures 16 and 17 show the radial and circumferential stre
as functions ofr andz only in the domain over which the solutio
has fully converged. The singular behavior at the corners stron
affectss r over the first several layers of tape, and it exhibits
sudden increase in compression near the corners. Even thoug
upper portion of the hub is comparatively compliant, the hi
gradients dominate thes r distribution. Likewise, stresssu varies
significantly along the hub-tape interface from 2.30 MPa at
pack’s bottom edge to28.97 MPa at the top edge. The bo
demarcation line in the inset contour diagram of Fig. 17 repres
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the loci of points wheresu50. It is interesting to note that the
pack’s bottom edge is not in circumferential compression, e
dently suggesting that it is more stable from the defect format
perspective than regions near the top surface.

6 Summary
A finite width model for predicting the stresses and displa

ments within a magnetic tape cartridge has been discussed.
widthwise variations as differential hub stiffness and nonunifo
Fig. 17 Circumferential stress field in the asymmetric hub case study. The
insets depict the hub’s cross section and a contour representation of su in the
rÀz plane; constant tension, NRÄ100, NZÄ80.
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winding tension are explicitly treated in the formulation. The s
lution is developed through finite element and substructur
methods in order to handle a potential variety of hub geomet
and materials. The cross-tape tension gradient as is cause
guide misalignment, scatterwinding, and tension roll-off is a
modeled with a view towards understanding the in-pack str
field as a precursor to defect formation.

Measurements of the media’s bulk radial modulus were p
formed through compression tests and demonstrate that such
ues do depend on the specimen’s stress history and location w
the manufacturing pancake. The heuristic reduced-order mode
Er was shown to represent the measured data, and aside
polynomial curve fits as have been used previously, provide
meaningful bound with increasings r . In case studies with two
typical hub designs, the simulations quantify the roles of differ
tial hub compliance, hub design, and winding tension gradient
setting the pack’s internal stress distribution.
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Finite Element Investigation of
Quasi-Static Crack Growth in
Functionally Graded Materials
Using a Novel Cohesive Zone
Fracture Model
This work studies mode I crack growth in ceramic/metal functionally graded mate
(FGMs) using three-dimensional interface-cohesive elements based upon a new ph
enological cohesive fracture model. The local separation energies and peak traction
the metal and ceramic constituents govern the cohesive fracture process. The
formulation introduces two cohesive gradation parameters to control the transitio
fracture behavior between the constituents. Numerical values of volume fractions fo
constituents specified at nodes of the finite element model set the spatial gradat
material properties with standard isoparametric interpolations inside interface elem
and background solid elements to define pointwise material property values. The
describes applications of the cohesive fracture model and computational scheme to
lyze crack growth in compact tension, C(T), and single-edge notch bend, SE(B),
mens with material properties characteristic of a TiB/Ti FGM. Young’s modulus
Poisson’s ratio of the background solid material are determined using a self-consi
method (the background material remains linear elastic). The numerical studies de
strate that the load to cause crack extension in the FGM compares to that for the m
and that crack growth response varies strongly with values of the cohesive grad
parameter for the metal. These results suggest the potential to calibrate the value o
parameter by matching the predicted and measured crack growth response in sta
fracture mechanics specimens.@DOI: 10.1115/1.1467092#
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1 Introduction

Functionally graded materials~FGMs! provide promising can-
didates for advanced technological applications~@1–3#!. An FGM
comprises a multiphase material with volume fractions of the c
stituent materials varying in a pre-determined profile, thus giv
a nonuniform microstructure in the material with continuous
graded properties. In applications involving severe thermal gr
ents~e.g., thermal protection structures!, FGM systems exploit the
heat, oxidation, and corrosion resistance typical of ceramics,
the strength and toughness typical of metals.

Cohesive fracture models have been widely used to simu
and analyze crack growth in ductile and quasi-brittle materials
a cohesive fracture model, a narrow band termed a cohesive z
or process zone, exists ahead of the crack front. Material beha
in the cohesive zone follows a cohesive constitutive law wh
relates the cohesive traction to the relative displacements of
adjacent surfaces. Crack growth occurs by progressive decohe
of the cohesive surfaces. Dugdale@4# first proposed a cohesive
type model to study ductile fracture in a thin sheet of mild ste
The Dugdale model assumes that a cracked metal sheet def
elastically outside of the extended surfaces of the crack whe
narrow band~plastic zone! of idealized zero width deforms at th
constant yield stress of the material. Cohesive fracture mo

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, June
2001; final revision, Oct. 15, 2001. Associate Editor: A. Needleman. Discussio
the paper should be addressed to the Editor, Professor Lewis T. Wheeler, Depa
of Mechanical Engineering, University of Houston, Houston, TX 77204-4792,
will be accepted until four months after final publication of the paper itself in
ASME JOURNAL OF APPLIED MECHANICS.
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have been extended to study fracture processes in quasi-b
materials such as concrete~see, e.g.,@5,6#!, ductile metals~see,
e.g.,@7,8#!, and metal matrix composites~@9#!.

Though cohesive fracture models have been successfully
ployed to simulate failure processes in homogeneous mate
and conventional composites, few studies have extended the
cept to FGMs. The difficulty lies in the coexistence of differe
failure mechanisms in an FGM as explained in the next sect
Studies of crack growth through the whole FGM component
quire a new phenomenological model to simulate the fracture p
cess. Jin and Batra@10# studied crack growth in the ceramic-ric
region in a ceramic/metal FGM by using both a rule of mixtur
and a crack bridging model~essentially a cohesive-type model!.
Cai and Bao@11# investigated crack growth in a ceramic/met
graded coating by using a similar, but simpler crack bridgi
model. Simple applications of the rule of mixtures to an FG
significantly overestimate the fracture toughness compared to
timates from crack bridging models~@10#!. Thus, it appears inap
propriate to employ directly the conventional rule of mixtures
formulate the cohesive parameters of FGMs. The modificati
described here provide a more realistic approach to formula
cohesive model suitable for FGMs.

This work studies crack growth in ceramic/metal FGMs usi
three-dimensional interface-cohesive elements. While we are
considering the ductile deformation in the graded background
terial, the current study focuses on presentation of the cohe
zone model and does incorporate the ductile separation of
graded cohesive material in the analysis of crack growth. Inve
gations of crack growth in ceramic/metal FGMs considering pl
ticity in the background material are in progress. The pape
organized as follows. Section 2 proposes a new phenomeno
cal, cohesive fracture model developed specifically for ceram
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metal FGMs. In addition to the cohesive energy densities and
peak cohesive tractions of the metal and ceramic phases,
other parameters are introduced to account for the overall dam
and other micromechanical effects in FGMs. Section 3 descr
the three-dimensional finite element formulation with graded so
and interface-cohesive elements for applications to FGMs. Sec
4 discusses the method of determining the material paramete
FGMs. Section 5 presents results of a parametric study of c
growth analyses for a titanium/titanium monoboride~Ti/TiB !
FGM. Compact tension, C~T!, and single-edge notched ben
SE~B!, specimens are considered in the numerical simulatio
Section 6 provides some conclusions and outlines ongoing w
to extend the present study. The Appendix summarizes detai
the tangent modulus matrix for the cohesive constitutive rela
applicable to FGMs.

2 A Novel Cohesive Fracture Model
Generalization of the cohesive zone concept to model frac

in functionally graded materials~FGMs! represents a challengin
task in view of the different failure mechanisms present in
FGM. In a typical ceramic/metal FGM, the ceramic-rich regi
may be regarded as a metal particle reinforced ceramic ma
composite, whereas the metal-rich region may be treated
ceramic particle-reinforced metal matrix composite. Though m
els for the failure mechanisms of conventional composites ma
adopted to study the fracture processes in the ceramic-ric
metal-rich region, the failure mechanisms operative in the in
connecting region which has no distinct matrix and inclus
phases remain unknown. This section thus proposes a vol
fraction-based phenomenological cohesive fracture model suit
for engineering scale applications. The formulation first consid
tensile mode~mode I! fracture of FGMs, and is then extended
general three-dimensional fracture including both tensile
shear deformations. Such volume fraction-based formulas h
been used previously to calculate Young’s modulus and the pla
tangent modulus of FGMs~@12,13#!.

2.1 Mode I Fracture. Let s f gm denote the normal traction
across the surfaces of the cohesive zone necessary to mod
propagation of a macroscale crack. We propose that the cohe
tractions of a two-phase FGM~e.g., ceramic/metal FGM! can be
approximated by the following volume fraction-based formu
having a simple functional form

s fgm~x!5
Vmet~x!

Vmet~x!1bmet@12Vmet~x!#
smet

1
12Vmet~x!

12Vmet~x!1bcerVmet~x!
scer, (1)

wheresmet is the cohesive traction of the metal,scer the cohesive
traction of the ceramic,Vmet(x) denotes the volume fraction of th
metal,x5(x1 ,x2 ,x3), andbmet(>1) andbcer(>1) are two cohe-
sive gradation parameters. The motivation to choose~1! is that the
cohesive traction of the FGM will reduce to that of the me
whenVmet51, and to that of the ceramic whenVmet50, and the
two parametersbmet and bcer, together with the metal volume
fraction (Vmet), could describe the transition of the failure mech
nism from pure ceramic to pure metal~operative in the intercon-
necting region which has no distinct matrix and inclusion phas!.

The FGM cohesive fracture model, Eq.~1!, increases the num
ber of material-dependent parameters by two (bmet,bcer). Values
for the local separation energies and peak cohesive traction
lated to the pure ductile and brittle phases are obtained u
standard procedures for homogeneous materials~see@8#, for ex-
ample!. The material-dependent parametersbmet andbcer describe
approximately the overall effect of cohesive traction reduct
~from the level predicted by the rule of mixtures! and the transi-
tion between the fracture mechanisms of the metal and cera
phases. Our preliminary computations of crack growth in a TiB
Journal of Applied Mechanics
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FGM indicate thatbmet plays a far more significant role thanbcer,
which can be simply set to unity. We anticipate that the param
bmet may be experimentally calibrated by two different proc
dures. The first procedure determinesbmet by matching the pre-
dicted and measured crack growth responses in standard fra
mechanics specimens of FGMs. Instead of using FGM specim
the second procedure employs fracture specimens made
monolithic composite each with a fixed volume fraction of t
constitutents. This opens the potential to calibratebmet for each
volume fraction level of metal and ceramic, which comprise t
FGM specimens, i.e.,bmet can become a function ofVmet in the
present model. The second calibration procedure may be par
larly useful if a constantbmet fails to generate a match betwee
the predicted and experimentally measured crack growth
sponses. Experimental determination of thebmet parameter is
presently under investigation for zirconia/stainless steel FGM

For the metal phase, the cohesive traction may be derived f
a free-energy density function,fmet(d,q), in the form~@8,14–16#!

smet5
]fmet

]d
, (2)

where d is the normal displacement jump across the cohes
surfaces andq is an internal variable describing the irreversib
processes of decohesion. Because in general, the shape o
cohesive traction-separation curve~s2d! is not as significant as
the cohesive energy density and the maximum cohesive tractio
simulating fracture in ductile metals~@17#!, the free-energy poten
tial, fmet(d,q), may be chosen in a computationally convenie
exponential form~@8,14–16#!

fmet5esmet
c dmet

c F12S 11
d

dmet
c D expS 2

d

dmet
c D G . (3)

Under loading conditions governed byq, the cohesive traction of
the metal with the above energy potential is given by

smet5esmet
c S d

dmet
c D expS 2

d

dmet
c D , (4)

wheree5exp(1),smet
c the maximum cohesive traction, anddmet

c

the value ofd at smet5smet
c . Figure 1~a! shows a typical curve for

smet/smet
c versusd/dmet

c .
For quasi-brittle materials such as concrete and ceramics,

shape of the cohesive traction-separation curve may play a sig
cant role in determining the peak load~@18#!. In the present study
of ceramic/metal FGMs, however, the failure mechanism of me
phase plays a dominant role. Thus, for simplicity, this stu
adopts the same exponential form as Eq.~4! to describe the cohe
sive response of the ceramic material

scer5escer
c S d

dcer
c D expS 2

d

dcer
c D , (5)

wherescer
c is the maximum cohesive traction of the ceramic o

curring atd5dcer
c . The free-energy potential corresponding to E

~5! is

fcer5escer
c dcer

c F12S 11
d

dcer
c D expS 2

d

dcer
c D G . (6)

Figure 1~b! shows typical curvesscer/smet
c versusd/dmet

c for vari-
ous values ofdcer

c /dmet
c .

By substituting Eqs.~4! and ~5! into Eq. ~1!, we obtain the
cohesive traction of the FGM under loading conditions as
MAY 2002, Vol. 69 Õ 371
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s fgm~x!5
Vmet~x!

Vmet~x!1bmet@12Vmet~x!#
esmet

c S d

dmet
c D expS 2

d

dmet
c D

1
12Vmet~x!

12Vmet~x!1bcerVmet~x!
escer

c S d

dcer
c D expS 2

d

dcer
c D .

(7)

The free-energy density function corresponding to the above
hesive traction is

f fgm~x,d,q!5
Vmet~x!

Vmet~x!1bmet@12Vmet~x!#

3esmet
c dmet

c F12S 11
d

dmet
c D expS 2

d

dmet
c D G

1
12Vmet~x!

12Vmet~x!1bcerVmet~x!

3escer
c dcer

c F12S 11
d

dcer
c D expS 2

d

dcer
c D G . (8)

As often assumed for homogeneous materials, the cohesive
of the FGM also follows an irreversible path. The internal varia
describing the irreversible processes,q, is chosen asdmax, the
maximum opening displacement attained. For updating of the
hesive stresses, the loading condition is defined by

d5dmax and ḋ>0, (9)

Fig. 1 Normalized cohesive traction versus nondimensional
separation displacement; „a… for metal, smet Õsmet

c versus
dÕdmet

c ; „b… for ceramic, scer Õsmet
c versus dÕdmet

c
„where metal Õ

ceramic strength ratio, smet
c Õscer

c , is taken to be 3 …
372 Õ Vol. 69, MAY 2002
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where ḋ denotes the rate ofd. The unloading condition is then
described by

d,dmax or ḋ,0. (10)

Following the cohesive law for homogeneous materials, the
loading curve follows the linear relation

s f gm5S smax

dmax
D d, if d,dmax or ḋ,0, (11)

wheresmax is the value ofs f gm at d5dmax calculated from Eq.
~7!. We note that the irreversibility of the above cohesive law do
not influence the results reported in Section 5 since we have
studied crack growth under monotonic loading conditions.

2.2 Three-Dimensional Mixed Mode Fracture. For gen-
eral three-dimensional mixed mode fracture problems, an ef
tive opening displacement jump is introduced~@19#!

deff5Adn
21h2ds

2, (12)

wheredn andds are the normal and tangential displacement jum
across the cohesive surfaces. The parameterh assigns different
weights to the opening and sliding displacements~h is usually
taken as&!. Similarly, an effective cohesive traction may b
introduced~@19#!

seff5Asn
21h22ss

2, (13)

where sn and ss are the normal and shear tractions across
cohesive surfaces. Here we assume that resistance of the coh
surfaces to relative sliding is isotropic in the cohesive~tangent!
plane so that

ds5Ads1
2 1ds2

2 , (14)

ss5Ass1
2 1ss2

2 , (15)

where ds1 and ds2 are the two relative sliding displacemen
across the cohesive surfaces, andss1 and ss2 are the two shear
tractions.

With the introduction of the above effective traction and d
placement, a free-energy potential in three dimensions is assu
to exist in the same form as that for the mode I case~8!, i.e.,

f fgm~x,deff ,deff
max!5

Vmet~x!

Vmet~x!1bmet@12Vmet~x!#

3esmet
c dmet

c F12S 11
deff

dmet
c D expS 2

deff

dmet
c D G

1
12Vmet~x!

12Vmet~x!1bcerVmet~x!

3escer
c dcer

c F12S 11
deff

dcer
c D expS 2

deff

dcer
c D G ,

(16)

wheredeff
max is the maximum value ofdeff attained. The cohesive

law for general three-dimensional deformations is then formula
as follows:

sn5
]f fgm

]dn
5

]f fgm

]deff

]deff

]dn
5S seff

deff
D dn ,

(17)

ss5
]f fgm

]ds
5

]f fgm

]deff

]deff

]ds
5h2S seff

deff
D ds ,

where
Transactions of the ASME
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seff5
]f fgm

]deff
5

Vmet~x!

Vmet~x!1bmet@12Vmet~x!#
esmet

c S d

dmet
c D

3expS 2
d

dmet
c D 1

12Vmet~x!

12Vmet~x!1bcerVmet~x!

3escer
c S d

dcer
c D expS 2

d

dcer
c D ,

if deff5deff
max and ḋeff>0, (18)

for the loading case, and

seff5S seff
max

deff
maxD deff , if deff,deff

max or ḋeff,0, (19)

for the unloading case, whereseff
max is the value ofseff at deff

5deff
max calculated from Eq.~18!.

2.3 Cohesive Energy Density. The cohesive energy den
sity, or the work of separation per unit area of cohesive surfac
defined by

G fgm
c 5E

0

`

s~deff!ddeff . (20)

By substituting Eq.~18! into the above equation, we obtain

G fgm
c ~x!5

Vmet~x!

Vmet~x!1bmet@12Vmet~x!#
Gmet

c

1
12Vmet~x!

12Vmet~x!1bcerVmet~x!
Gcer

c , (21)

Fig. 2 Normalized cohesive energy density G fgm
c ÕGmet

c

„Gcer
c ÕGmet

c Ä0.05, Vmet„X…Ä„XÕb …n
…, „a… nÄ0.5; „b… nÄ1.0
Journal of Applied Mechanics
-
, is

whereGmet
c andGcer

c are the cohesive energy densities of the me
and ceramic phases, respectively,

Gmet
c 5esmet

c dmet
c , Gcer

c 5escer
c dcer

c . (22)

Equation~21! shows that the cohesive energy density follows t
same rule as that of the cohesive traction. Figure 2 shows
normalized cohesive energy densityG fgm

c /Gmet
c versus the nondi-

mensional coordinateX/b for a ceramic/metal FGM with meta
volume fractionVmet5(X/b)n, whereX is the gradation direction
andb is a geometrical parameter, e.g., the thickness of the FG
specimen. In these figures, the energy ratio,Gcer

c /Gmet
c is assumed

0.05 with bcer taken as 1.0. The cohesive energy of the FG
decreases markedly with increasingbmet.

3 Three-Dimensional Finite Element Modeling of
Functionally Graded Materials

This section describes the small-displacement formulation
both the three-dimensional solid element and the interfa
cohesive element with graded material properties. In the pres
study, the solid elements remain linearly elastic but the mate
properties~Young’s modulus and Poisson’s ratio! may vary within
the element and thus graded elements are employed~Kim and
Paulino @20#!. For the cohesive element, the material propert
follow the functionally graded cohesive law described in Secti
2. Figure 3 illustrates the three-dimensional interface-cohes
and solid elements used in the present work. The interfa
cohesive element consists of two four-node bilinear isoparame
surfaces. Nodes 1–4 lie on one surface of the element while no
5–8 lie on the opposite surface. The two surfaces initially occu
the same location. When the whole body deforms, the two s
faces undergo both normal and tangential displacements rela
to each other. The cohesive tractions corresponding to the rela
displacements follow the constitutive relations~17!–~19!, and
thus maintain the two surfaces in a ‘‘cohesive’’ state.

Now first consider the stiffness matrix of the isoparamet
solid element. Denote byNi(j,h,z)( i 51,2, . . . ,m) the standard
shape functions of the solid element~@21#!, wherem is the number
of the nodes of the element. The element stiffness matrix is gi
by

K5E
21

1 E
21

1 E
21

1

BTDBJ0djdhdz, (23)

whereB is the strain-displacement matrix,J0 is the usual Jacobian
of the transformation between parametric~j,h,z! and Cartesian
coordinates (x1 ,x2 ,x3), andD is the elastic stiffness matrix. Fo
functionally graded materials~FGMs!, the D matrix depends on

Fig. 3 Interface-cohesive and three-dimensional solid
elements
MAY 2002, Vol. 69 Õ 373
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spatial position. To calculate the Young’s modulus and the P
son’s ratio in the solid element, we use the following interpo
tion:

E5(
i 51

m

NiEi , n5(
i 51

m

Nin i , (24)

where Ei and n i( i 51,2, . . . ,m) are the values of the Young’
modulus and the Poisson’s ratio at nodal points, respectively.

Turning to the cohesive element, the tangent stiffness matr
given by ~@8#!,

KT5E
21

1 E
21

1

Bcoh
T DcohBcohJ0dhdz, (25)

where Bcoh extracts the relative displacement jumps within t
cohesive element from the nodal displacements~@8#!, J0 is
the Jacobian of the transformation between parametric~h,z! and
Cartesian coordinates (s1 ,s2) in the tangent plane of the cohesiv
element, andDcoh is the tangent modulus matrix of the cohesi
law ~17!–~19! which can be found in the Appendix. For FGM
Eq. ~18! and Eqs.~34! and ~35! in the Appendix show that the
Dcoh matrix depends on spatial position through the grad
volume fraction of the metal phase,Vmet, in a ceramic/metal
FGM. In this study,Vmet is also approximated by the standa
interpolation

Vmet5(
i 51

4

NiVmet
i , (26)

whereVmet
i ( i 51,2,3,4) are the values ofVmet at the nodal points

of the interface-cohesive elements. The present formulatio
fully isoparametric in which the same shape functions interpo
the displacements, the geometry and the material parame
Such a generalized isoparametric formulation has been prese
by Kim and Paulino@20#.

4 Functionally Graded Material Properties
This section describes the techniques adopted to obtain

properties for both the background functionally graded mater
~FGM! and cohesive FGM materials. One of the advantages of
present methodology is that each model is developed separ
for each material, as described below. This feature introduces
nificant flexibility in modeling the actual material behavior.

4.1 Background Material Properties. Consider an FGM
as a two-phase composite with graded volume fractions of
constituent phases. The effective properties of an FGM shoul
calculated from those of the constituent materials and the volu
fractions by means of a micromechanical model. Though suc
model is not available as yet for FGMs, some models for conv
tional homogeneous composite materials, for example, the
consistent scheme, may be used for FGMs with reasonable a
racy ~@22#!. In this study, we use the self-consistent scheme~@23#!
to calculate the effective elastic properties of the FGM. The sh
and bulk modulim fgm andK fgm of the FGM are thus calculated b
the following system of equations:

~m fgm2mmet!~m fgm2mcer!F VmetKmet

Kmet14m fgm/3
1

~12Vmet!Kcer

Kcer14m fgm/3
12G

15@Vmetmcer~m fgm2mmet!1~12Vmet!mmet~m fgm2mcer!#

50, (27)
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K fgm52
4

3
m fgm

1
~Kmet14m fgm/3!~Kcer14m fgm/3!

Vmet~Kcer14m fgm/3!1~12Vmet!~Kmet14m fgm/3!
.

(28)

The Young’s modulusEfgm and the Poisson’s ration fgm of the
FGM are then determined from the following relations:

Efgm5
9m fgmK fgm

m fgm13K fgm
, (29)

n fgm5
3K fgm22m fgm

2~m fgm13K fgm!
. (30)

In the present study, the volume fraction of the metal ph
follows a simple power function, i.e.,

Vmet~X!5S X2Xmin

Xmax2Xmin
D n

, (31)

wheren is the power exponent,X is the gradation direction, and
the material properties are graded in the interval@Xmin ,Xmax#. Fig-
ure 4 shows the volume fraction of the metal phase for vari
values ofn.

The following numerical analysis of crack growth utilizes th
properties of a TiB/Ti FGM system. Table 1 lists the releva
material properties of TiB~titanium monoboride! and Ti~commer-
cially pure titanium!. The company CERCOM Inc. developed th
ceramic/metal FGM system in a layered structural form for arm
applications~@24#!.

4.2 Cohesive Material Properties. The functionally graded
cohesive constitutive model~7! or ~18! ~three-dimensional case!
has the following six independent parameters that characterize
fracture process in a ceramic/metal FGM:

Gmet
c : local work of separation of metal

Gcer
c : local work of separation of ceramic

smet
c : peak cohesive traction of metal

scer
c : peak cohesive traction of ceramic

Fig. 4 Volume fraction of metallic phase in a ceramic Õmetal
functionally graded material „FGM…

Table 1 Material Properties of Ti and TiB

Materials

Young’s
modulus
~GPa!

Poisson’s
ratio

Jc
~KJ/m2!

smet
c

~MPa!
dmet

c

~mm!
scer

c

~MPa!
dcer

c

~mm!

Ti 107 0.34 150 620 0.089
TiB 375 0.14 0.11 4.0 0.01
Transactions of the ASME
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bmet andbcer: cohesive gradation parameters.
The calibrated values ofGmet

c and smet
c are the Griffith energy

release rate~under small-scale yielding conditions! and the peak
cohesive stress of the metal phase, which generally lies betw
two to three times the uniaxial yield stress. The first equation
~22! yields the characteristic opening displacementdmet

c . We note
that ductile deformations are present in the background mat
when the cohesive characteristic parameters of the metal are
brated following the above procedure, however, such defor
tions are not considered in the present study. Nevertheless,
calibration procedure is used with emphasis on the presentatio
the cohesive model and the effects of gradation parameterbmet
and metal volume fractionVmet on the load versus crack growt
responses. For the ceramic phase, it is natural to assign the e
release rate toGcer

c . For this phenomenological model applicab
at engineering scales, the characteristic opening displacemendcer

c

is assumed to be approximately the average grain size of cer
particles in the ceramic/metal FGM. The peak cohesive trac
scer

c is therefore determined from the second equation of~22!. At
smaller length scales, the local nature of the failure mechan
contributes to the characteristic parameters of the cohesive
model, which may lead to different material parameters and
ferent simulation results of crack growth. Calibration of the oth
two parametersbmet andbcer follows by matching the predicted
with measured, fracture behavior. Table 1 lists the relevant co
sive properties for the TiB/Ti FGM, where the criticalJ values
(Jc , as the cohesive energy! for TiB and Ti are taken from refer-
ences@25,26#.

5 Crack Growth in TiB ÕTi Functionally Graded
Materials

5.1 Finite Element Models. We performed numerica
analyses of crack growth for both C~T! and SE~B! specimens, as
illustrated in Figs. 5–6 and Figs. 7–8, respectively. Table 2 su
marizes the geometric parameters of the C~T! specimen. The ab-
solute size for the specimen isW550 mm. The initial nondimen-
sional crack length isa0 /W50.4, the initial nondimensiona

Fig. 5 C „T… specimen geometry

Fig. 6 Typical mesh for analyses of C „T… specimen
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ligament size is thenb0 /W50.6, and the thickness is 4.5 mm
Table 3 provides the geometric parameters for the SE~B! speci-
mens. A layered functionally graded material~FGM! version of
the SE~B! specimen has been recently tested in@25#. From a mod-
eling point of view, the functionally graded material~FGM! com-
position varies from 100 percent TiB at the cracked surface to
percent Ti at the uncracked surface. Thus the volume fraction
Ti varies from zero at the cracked surface to one at the uncrac
surface.

The finite element models consist of eight-node isoparame
solid elements and the eight-node interface-cohesive eleme
Due to symmetry considerations, we model only one-quarte
each specimen. Interface-cohesive elements are placed only
the initial uncracked ligament and have a uniform size of 0.25 m
for the C~T! specimen, and 0.1 mm for the SE~B! specimens. The
finite element model has eight uniform layers of elements over
half thickness for the C~T! specimen. For the thicker SE~B! speci-
mens, the model has ten uniform layers over the half thickn
Figure 6 shows the front view of the typical finite element me
for the C~T! specimen and Fig. 8 shows the front view of the fin
element mesh for the SE~B! specimens.

5.2 Finite Element Analysis. The FGM modeling features
described in this work have been implemented in the fract
mechanics research code WARP3D~@27#!. In addition to the con-
ventional solid and interface-cohesive elements for homogene
materials, this code also incorporates the solid element w

Fig. 7 SE „B… specimen geometry

Fig. 8 Typical mesh for analyses of SE „B… specimen

Table 2 Geometric parameters of C „T… specimen

Specimen W (mm) B (mm) a0 /W

C~T! 50 4.5 0.4

Table 3 Geometric parameters of SE „B… specimens

Specimen L (mm) W (mm) B (mm) a0 /W R (mm)

SE~B! 79.4 14.7 7.4 0.1, 0.3 10.2
MAY 2002, Vol. 69 Õ 375
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graded elastic properties and the interface-cohesive elem
coupled with the functionally graded cohesive constitutive mo
described in Sections 2 and 3.

WARP3D supports the conventional interface-cohesive elem
for crack growth with adaptive load control, element extincti
and other features. Such computational procedures~previously
used for homogeneous materials! also prove essential in analyse
of FGMs to track accurately the cohesive constitutive respon
For the cohesive fracture model proposed in Section 2, the a
tive load control parameter becomes the characteristic ope
displacementdmet

c of the metal. The analysis uses a limit o
Dd/dmet

c 50.2 per load step for adaptive load control, whereDd is
the largest change of effective opening displacementd experi-
enced by interface-cohesive elements in a given load step.
element extinction occurs when the average opening displace
d of the element reaches 5dmet

c , which corresponds to a cohesiv
traction less than 10 percent of the peak value of the metal m
tiplied by the metal volume fraction. Selection ofdmet

c ~of the
metal phase! as the controlling parameter for adaptive load cont
and element extinction follows from the analyses demonstra
that the metal phase largely controls fracture behavior of
FGM. The cohesive fracture energy of TiB, for example, is le
than 0.1 percent of that for Ti.

5.3 Crack Growth in C„T… Specimen. The specimen is
loaded by opening displacements applied uniformly through
thickness at the loading pin. Crack growth is taken to occur w
the interface-cohesive elements ahead of the crack front sa
the element extinction condition. Figure 9~a! shows the load ver-
sus crack extension curves for the C~T! specimen for various val-
ues of bmet. The power exponentn50.5 ~shape index of the
metal volume fraction! defines an overall metal rich specime
Because the cohesive traction of the ceramic phase is extre
small compared with that of the metal phase for the TiB/Ti FG
studied, the parameterbcer plays a negligible role in determining
the cohesive traction of the FGM. Consequently, we takebcer
51.0 in the current and all subsequent calculations. Figure~a!
shows that for a givenbmet, the load decreases steadily with cra
extension in the present analyses which do not include plast
in the background material. This contrasts with ductile fracture
metals which show load increases with crack extension du
initial growth followed by load reductions when strain hardeni
no longer accommodates the decreasing ligament~see@8# for ex-
amples!. The figure also shows that for a given crack extension
larger bmet lowers the load. This is consistent with the cohes
fracture model~7! where a largerbmet reduces the peak cohesiv
traction. Figure 9~b! and 9~c! show similar results for the sam
specimen forn51.0 ~a specimen with equal overall metal an
ceramic volume fractions! and n52.0 ~an overall metal lean
specimen!, respectively. Comparing the results in the three fi
ures, we observe that the load becomes lower for largern. The
result is expected since a largern corresponds to a lower meta
volume fraction, which results in a lower cohesive energy for
FGM.

Figure 10 shows the load versus crack extension curves for
same C~T! specimen studied in Fig. 9~a! with addition of the
crack growth responses for homogeneous metal~Ti! and ceramic
~TiB! specimens. These two additional configurations prov
bounding solutions for the FGM responses. The load for pure
remains larger than those for the TiB/Ti FGM with variousbmet.
The loads during crack extension for the pure TiB, however,
main vanishingly small compared to the FGM.

5.4 Crack Growth in SE„B… Specimen. As a final numeri-
cal example, we consider an SE~B! specimen loaded by openin
displacements applied uniformly through the thickness at
specimen center plane. A layered FGM version of the specim
has been recently tested~@25#!. The first layer of the tested spec
men consists of 15 percent Ti and 85 percent TiB, while the
layer ~seventh layer! consists of 100 percent Ti. Crack initiatio
376 Õ Vol. 69, MAY 2002
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occurred at a measured load of 920 Newtons~N!. The experimen-
tal results show that load increases with crack extension du
the initial growth and then decreases with further crack extens
The measured load corresponding to a crack growth of 5 mm
about 1200 N. Figure 11 shows the volume fraction of Ti in th
TiB/Ti specimen. The dotted~stepped! line shows the property
gradation in the experimentally tested specimen. A least-squ
approximation yields the power exponentn50.84 in the metal
volume fraction function of Eq.~31!. Figure 12 shows the numeri
cal results of the load versus crack extension responses for
SE~B! specimen withbmet516 and n50.84. For thebmet se-
lected, the crack initiation load agrees quite closely with the
perimentally measured value. Compared with the experime
observations after the crack initiation~@25#!, the discrepancy in
the trend of load versus crack extension response arises bec
the present analysis does not consider plasticity in the backgro

Fig. 9 Load-crack extension response for the C „T… TiÕTiB
specimen with a0 ÕWÄ0.4, BÄ4.5 mm; „a… nÄ0.5; „b… nÄ1.0;
„c… nÄ2.0
Transactions of the ASME
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material. When the plasticity effect is taken into account~work
underway by the authors!, we expect that the trend of the loa
versus crack extension will be more consistent with the exp
mental observations~the calibrated value ofbmet may be larger
than 16!. Figure 12 also shows the numerical results of the lo
versus crack extension for plane-strain and plane-stress mo
Though we have not found differences between the tw
dimensional and three-dimensional responses, we expect tha

Fig. 10 Load-crack extension response for the C „T… TiÕTiB
specimen with a0 ÕWÄ0.4, BÄ4.5 mm

Fig. 11 Volume fraction of Ti in the TiB ÕTi functional graded
material „FGM…

Fig. 12 Load-crack extension response for the SE „B… TiÕTiB
specimen with a0 ÕWÄ0.3, BÄ7.4 mm, nÄ0.84
Journal of Applied Mechanics
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nificant differences will develop with plasticity in the backgroun
material due to variations in crack front constraint and crack fr
tunneling.

Figure 13 shows the effect ofbmet and n on the load versus
crack extension responses for the SE~B! specimen. The power
exponentn ~shape index of the metal volume fraction! is 0.5 in
Fig. 13~a!, 1.0 in Fig. 13~b!, and 2.0 in Fig. 13~c!. Similar load
versus crack extension behavior to that for the C~T! specimen is
observed for the SE~B! specimen, i.e., for a givenbmet, the load
decreases steadily with crack extension; for a given crack ex
sion, a largerbmet reduces the load; and finally, the load becom
lower for largern. Becausebmet has a pronounced effect on th
load versus crack extension responses, we may expect to cali
the values ofbmet from experimental observations~see Section 2!.

Fig. 13 Load-crack extension response for the SE „B… TiÕTiB
specimen with a0 ÕWÄ0.3, BÄ7.4 mm; „a… nÄ0.5; „b… nÄ1.0;
„c… nÄ2.0
MAY 2002, Vol. 69 Õ 377
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Figure 14 shows the load versus crack extension curves for
SE~B! specimen with an initial nondimensional crack leng
a0 /W50.1. Similar results to that shown in Fig. 13~a! can be
observed. Therefore, without considering plasticity in the ba
ground material, the load decreases with crack extension du
the decreasing ligament for the laboratory crack size.

6 Concluding Remarks
This study presents a novel phenomenological cohesive frac

model for ceramic/metal functionally graded materials~FGMs!
and the corresponding implementation in a three-dimensiona
nite element method framework. The model has six independ
material parameters, i.e., the cohesive energy dens
(Gmet

c ,Gcer
c ), the peak cohesive tractions of the metal and cera

phases (smet
c ,scer

c ) and two cohesive gradation paramete
(bmet,bcer) to represent approximately the transition between
fracture mechanisms of metal and ceramic phases, respective
contrast to existing models that consider only tensile mode f
ture, the present model accommodates three-dimensional te
and shear fracture modes although the numerical examples
trate only mode I fracture behavior. Applications of the cohes
fracture model to the analysis of crack growth in both C~T! and
SE~B! specimens of TiB/Ti FGM show that the load to cau
crack extension in the FGM compares to that for a pure metal~Ti!
specimen. In the present study, the load decreases steadily
subsequent crack extension, which contrasts with ductile frac
behavior of metals~the present analyses do not admit plasticity
the background material!. The results obtained indicate that th
cohesive gradation parameter for the metal has a pronounce
fect on the load versus crack extension response. This sug
that the parameter may be reasonably calibrated by matching
predicted crack growth response with experimental observati
An extension of this work includes consideration of plasticity
the bulk FGM ~background!. In this case, we expect to dete
strong three-dimensional effects of crack front tunneling a
variations in crack front constraint. This investigation is curren
being pursued by the authors.
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Fig. 14 Load-crack extension response for the SE „B… TiÕTiB
specimen with a0 ÕWÄ0.1, BÄ7.4 mm; and nÄ0.5
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Appendix
In finite element analyses, the tangent modulus matrixDi j ( i , j

51,2,3) for the cohesive models~18! defined below is needed

ṡ i5Di j v̇ j , (32)

where (s1 ,s2 ,s3)5(ss1 ,ss2 ,sn), (v1 ,v2 ,v3)5(vs1 ,vs2 ,vn),
andDi j 5]s i /]v j . HereDi j are the components ofDcoh matrix in
Eq. ~25!. The detailed expression forDi j is given as follows. First
note that

Di j 5
]

]v j
S ]f fgm

]deff

]deff

]v i
D5seff

]2deff

]v i]v j
1

]seff

]deff

]deff

]v i

]deff

]v j
.

(33)

It is clear from the above equation thatDi j 5D ji . Use of Eqs~12!,
~14!, and~33! yields

D115h2
seff

deff
1

h4v1
2

deff
2 S ]seff

]deff
2

seff

deff
D ,

D225h2
seff

deff
1

h4v2
2

deff
2 S ]seff

]deff
2

seff

deff
D ,

D335
seff

deff
1

v3
2

deff
2 S ]seff

]deff
2

seff

deff
D ,

(34)

D125D215h4
v1v2

deff
2 S ]seff

]deff
2

seff

deff
D ,

D135D315h2
v1v3

deff
2 S ]seff

]deff
2

seff

deff
D ,

D235D325h2
v2v3

deff
2 S ]seff

]deff
2

seff

deff
D ,

whereseff is given by Eq.~18! and]seff /]deff is

]seff

]deff
5

Vmet~x!

Vmet~x!1bmet@12Vmet~x!#
eS smet

c

dmet
c D S 12

deff

dmet
c D

3expS 2
deff

dmet
c D 1

12Vmet~x!

12Vmet~x!1bcerVmet~x!

3eS scer
c

dcer
c D S 12

deff

dcer
c D expS 2

deff

dcer
c D , (35)

under loading conditions, and

seff5S seff
max

deff
maxD deff , (36)

]seff

]deff
5

seff
max

deff
max (37)

for the unloading case.
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Reduction of Vibration Caused by
Magnetic Force in a Switched
Reluctance Motor by Topology
Optimization
The topology optimization of a switched reluctance motor (SRM) excited by mag
forces is an important issue to minimize the noise and vibration level. In this pape
magnetic force is computed using the Maxwell stress method and the optimization
lem is formulated to minimize the frequency response based on the homogenization
method (HDM). The developed method is applied to the stator of an SRM to minimiz
deformation caused by the magnetic harmonic excitation. Numerical simulation s
that this method successfully decreases the vibration level of an SRM.
@DOI: 10.1115/1.1467093#
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1 Introduction
Among many types of motors, a switched reluctance mo

~SRM! has a very simple structure compared to the other type
motors because there is no wire winding around the rotor. A
since no magnetization is necessary, the manufacturing cost
be significantly reduced~@1#!. These make an SRM a strong co
tender in industrial applications.

However, the noise and vibration level of an SRM is high
than other competing motors. Vibration in an electric machine
a harmful effect on the efficiency of the machine, especially wh
the machine work must be accurate and quiet. Cameron and L
@2# found that the dominant source of the noise and vibration
the radial deformation of a stator due to radial magnetic forc
They also found that the result is severe when the operating
quency coincides with the natural resonant frequency of the st
The effect of the deformation of a rotor is small compared to t
of a stator since a rotor is stiffer than a stator. Colby et al.@3# used
structural finite element analysis to compute the eigenmodes
four-phase SRM and presented heuristic arguments to find
operating conditions that excite the dominant eigenmodes.
and Pollock@4# derived a concept for the power electric controll
to reduce the noise and vibration in a switched reluctance dri

In low-frequency ranges, the flux flow between a stator an
rotor is the main cause of vibration of an SRM. The flux flo
generates magnetic forces that perform as exciting forces for
vibration. On the other hand, in high-frequency ranges, the
ripple of the air-gap dominates the vibration. In both cases
analyze and solve the vibration problem in electric machines,
method to calculate the forces caused by magnetic flux mus
chosen carefully according to the characteristic of the problem

The methods of force calculation based on the finite elem
method can be classified as follows: the Maxwell stress meth
the virtual work method, and the magnetizing current method.
et al. @5# compared these three methods and confirmed that
Maxwell stress method and the virtual work method are less s
sitive to density of mesh discretization: however, the virtual wo
method is not good in large deformation cases. Hamler et al.@6#

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, July 1
2001; final revision, Oct. 23, 2001. Associate Editor: A. K. Mal. Discussion on
paper should be addressed to the Editor, Prof. Lewis T. Wheeler, Departme
Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and
be accepted until four months after final publication of the paper itself in the AS
JOURNAL OF APPLIED MECHANICS.
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used all three of these methods to calculate the torque of a d
current~DC! motor and showed that the Maxwell stress meth
shows the best result with small number of elements. Remov
or reducing the exciting forces that cause severe deformation
reduce the vibration of an SRM. However, we must consider t
the magnetic forces work not only as exciting forces causing
noise and vibration but also as driving forces of an SRM.

In this paper, we consider the frequency response problem o
SRM excited by magnetic forces. The objective of the design is
minimize the vibration level of the motor. The finite eleme
method together with the Maxwell stress method is used to ca
late the magnetic forces, and the homogenization design me
~HDM! is applied to obtain the optimal topology. First introduce
by Bendsøe and Kikuchi@7# for structural topology design, this
method has been successfully applied to structural optimiza
problems. Diaz and Kikuchi@8# extended the application of th
HDM to the dynamic problem and determined the optimal sha
of a structure to maximize a natural frequency. Ma et al.@9# de-
veloped a shape optimization method for the frequency respo
problem of a vibrating structure.

Based on these studies, we developed a process for minimi
vibration of a structure excited by magnetic forces and applied
process to obtain the optimal topology of a stator in an SRM.

2 Homogenization Design Method
In this section, homogenization theory in elasticity cases a

the concept of the homogenization design method are explai
The homogenized material properties such as homogen
Young’s modulus or density are computed using homogeniza
theory.

2.1 Homogenization Theory in Elasticity. The optimal
shape of a design domain is determined by the optimal mate
distribution using a composite material composed of variable
crostructures. Thus, a microstructure is introduced to solve
topology optimization problem. To determine whether a structu
part is removed or not, we introduce a characteristic function s
that

xV5H 1 in solid

0 in void
. (1)

Figure 1 shows design domain composed of the nonhomo
neous composite material.y(y1,y2,y3) represents the micro

6,
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t of
ill
E
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scopic level coordinate whilex(x1,x2,x3) represents the macro
scopic level coordinate. Those two coordinates have the follow
relation:

y5
x

«
(2)

where « is an asymptotic scale factor between the macrosco
and the microscopic structure. DomainV is an open connected
domain ofR3 with smooth boundaries. The domain is compos
of infinite number of microstructures, each of which has a hole
shown in the figure.G t is the traction boundary condition andGd
is the displacement boundary condition of domainV.

Using the characteristic function defined in Eq.~1!, the equilib-
rium of a structure composed of microstructures can be stated
weak form:

E
V

xEi jkl
0

]ui
«

]xj

]vk

]xl
dV1E

V
xr0

]2ui
«

]t2 dV

5E
V

f i
0v idV1E

G t

t iv idG for ;v iPV (3)

whereui
« is the displacement at equilibrium,v i is the virtual dis-

placement, andt i is the boundary traction.Ei jkl
0 , r0 , and f i

0 rep-
resent Young’s modulus tensor, mass density of the solid port
and the body force of the solid portion, respectively.V represents
the space of kinematically admissible displacement fields defi
as follows:

V5$vuvPH1~V!,v50 on Gd%, Gd :displacement boundary

whereH1(V) is the Sobolev space.
Since Ei jkl

0 , r0 , and f i
0 are not homogeneous in the desig

domain, they must be solved at macroscale and microscale le
Using the homogenization theory, we can write the weak form

E
V

Ei jkl
H

]ui
0

]xj

]vk

]xl
dV1E

V
rH

]2ui
0

]t2 dV5E
V

f i
Hv idV1E

G t

t iv idG

(4)

whereui
0 represents the average displacement in the micros

domain.Ei jkl
H , rH, and f i

H are homogenized Young’s modulu
mass density, and body force, respectively.Ei jkl

H is calculated us-
ing the characteristic displacement of the unit cell.rH and f i

H can
be represented asrH51/uYu*Yr0dY and f H51/uYu*Yf i

0dY, re-
spectively, since they are proportional to the volume ratio of e
unit cell Y. uYu represents the volume ofY ~@7,9#!.

Fig. 1 Design domain compared of microstructures
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2.2 Concept of the Homogenization Design Method. The
design domain,V, is composed of a composite material with pe
forated microstructures as shown in Fig. 2. The design domain
given boundary conditions]Vd and]V t , which are the displace-
ment boundary condition and traction boundary condition, resp
tively. The unit cell of the microstructure has a rectangular ho
as shown in Fig. 1. If the size of the hole in the unit cell is 0, t
unit cell becomes a solid. On the other hand, if the size is the s
as the unit cell size, the unit cell becomes a void. During
optimization process, the material is transferred from one par
another part in the design domain and finally the optimal mate
distribution is determined.

The optimization problem using the homogenization des
method~HDM! is defined using the total potential energy or me
compliance of a design domain. As can be seen from Eq.~4!, the
weak form, which defines the energy, is formulated using the
mogenized properties such as Young’s modulus, density, and
body force. Thus, to obtain the homogenized properties of a gi
microstructure, we must solve the unit cell problem. The unit c
of three-dimensional microstructure is assumed to have a b
hole of width 1-a, depth 1-b, and height 1-c. The size of body
hole D5$a,b,c%, and rotation angleQ5$w,u,c% are the design
variables. AssumingR~Q! to be the rotational matrix based o
rotational angleQ, we can compute Young’s modulus using th
following equation:

E5R~Q!TEH~D!R~Q!. (5)

During the optimization process, the design variables of each
cell are changing continuously. Therefore, the homogenized
ues of Young’s modulus must be obtained by continuously cha
ing the size of the hole for all possibilities of material densi
This is possible if homogenized Young’s modulus can be
pressed by a function of the design variables. However, hom
enized Young’s modulus is too complex to express as a sin
function. Therefore, we calculate the homogenized values only
some discrete sizes of the hole, and interpolate the other value
the Bezier function.

3 Magnetic Force Calculation
The force caused by magnetic harmonic flux of the air-gap

have a harmful effect on quiet electric machines if it works as

Fig. 2 Macro design domain and porous microstructures
MAY 2002, Vol. 69 Õ 381
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exciting force of the machine vibration. Therefore, accurate co
putation of the force in the air-gap is necessary to solve the n
and vibration problem in electrical machinery.

The Maxwell stress method can be applied regardless of
material properties. Also, it can be used for linear material pr
erties as well as nonlinear material properties while the integra
path must be carefully selected for accurate. The integration
must not include any ferromagnetic material, and it must be p
tioned as far as possible from the ferromagnetic material. Also,
application of this method is restricted to the air-gap part.
calculate the force in the portion that includes a ferromagn
material, Reyne et al.@10# suggested a modified stress tensor
ing an energy approach. In spite of these limitations, the Maxw
stress method is widely used to calculate the magnetic force s
the results using this method are consistent with theory and
perimental results.

Using this method, we define volume force density as

f v5¹�s (6)

wheres is the Maxwell stress tensor for three dimensional ca
and it is defined as follows:

s5
1

m0
F sxx sxy sxz

syx syy syz

szx sxy szz

G
5

1

m0F Bx
22

1
2 uBu2 BxBy BxBz

ByBx By
22

1
2 uBu2 ByBz

BzBx BzBy Bz
22

1
2 uBu2

G (7)

whereBx , By , andBz represents thex, y, andz directional flux
density value, respectively.uBu2 is computed using those values
Bx

21By
21Bz

2. We can compute the magnetic force by integrati
volume force density over an integration path as follows:

F5E
V
¹�sdv. (8)

The volume integration is transformed from volume integration
surface integration by the divergence theorem:

F5E
A
s�dA. (9)

Although the Maxwell stress tensor can be defined in thex-y
coordinate, usually it is determined in the normal and the tang
tial directions of a material to apply for circular shapes such
motors and generators. In the analysis of a switched relucta
motor ~SRM!, we compute the normal and the tangential dire
tional forces based on Eqs.~7!–~9! and the relation ofx-y andt-n
coordinates.

4 Optimization Problem
In this section we formulate the topology optimization proce

for the frequency response problem. The objective of the opti
zation process is to minimize the response of the stator o
switched reluctance motor~SRM! excited by harmonic loading
caused by magnetic flux. We obtain the objective function by
weak form of the structure based on the virtual displacem
theory. For the optimization solver, the optimality criteria meth
is used to deal with the large number of design variables.

4.1 Formulation of the Optimization Problem. We con-
sider a design domainV where the body forcef and tractiont are
applied as shown in Fig. 1. Using the homogenized Youn
modulus, mass density, body force, and ignoring the damping
fect, the weak form for a simple dynamic case can be written
382 Õ Vol. 69, MAY 2002
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Eq. ~4!. Assuming thatu is the displacement at equilibrium andv
is the virtual displacement, we can define energy bilinear fo
a(u,v) and load linear formb(v) as follows:

a~u,v!5E
V

Ei jkl
H

]ui
0

]xj

]vk

]xl
dV1E

V
rH

]2ui
0

]t2 dV (10)

b~v!5E
V

f i
Hv idV1E

G t

t iv idG. (11)

Therefore, we can write the weak form as

a~u,v!5b~v! ;vPSk (12)

whereSk is the space of kinematically admissible displaceme
We call the right term of Eq.~12! as the mean compliance. A
equilibrium, Eq.~12! can be rewritten as

a~u,u!5b~u!. (13)

The energy bilinear form shown in Eq.~10! includes a time de-
rivative term. For numerical analysis, the time discretizati
method or the quasi-static analysis can be used. If the exci
force is harmonic and the frequency is given, the weak form
simplified without considering the time difference. Assumingv to
be the given frequency for the exciting force, we can substitute
displacementui

0, body forcef i
h , and tractiont i asUie

j vt, Fie
j vt,

andTie
j vt, respectively. Therefore, we can write each term of E

~13! as follows:

a~u,u!5E
V

Ei jkl
H

]Ui

]xj

]Uk

]xl
dV2v2E

V
rHUi�UidV (14)

b~u!5E
V

FiUidV1E
G t

TiUidG. (15)

The objective of the topology optimization can be defined
minimizing the mean compliance defined as Eq.~11! to minimize
deformation. However, if the exciting frequency is large, the s
sitivity of the objective function can be a negative value and it
hard to apply the optimality criteria method. Ma et al.@9# shifted
the sensitivity value using shift parameter to make the value a
positive one. This method requires additional calculation of
shift parameter according to the sensitivity of the objective fu
tion and constraint functions. In this paper, we modified the
jective function as the square of the mean compliance to sa
the criteria:

minimize b2~v!
vPSk

(16)

where the square value of the mean compliance is used as
objective to make the objective as a positive value regardles
the exciting frequency.

In the optimization process, the design variables are upda
based on the sensitivity of the objective function. The sensitiv
can be computed based on the total potential energy and the
tion of the total potential energy and the mean compliance. C
sidering Eq.~16!, we modify the total potential energyTf as

Tf~v!5
1
2 a2~v,v!2b2~v!. (17)

Since Eq.~13! is satisfied at equilibrium, we can derive the fo
lowing relation:

Tf~u!5
1
2a2~u,u!2b2~u!52

1
2 b2~u!. (18)

By the relation of Eq.~16! and Eq.~18!, we can say that minimiz-
ing the square of the mean compliance is the same as maxim
the value ofTf .

AssumingX to be the design variable, and using Eq.~14! and
Eq. ~15!, we can derive the variation ofTf with respect to the
design variableX and equilibrium displacementu as follows:
Transactions of the ASME
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dTf~u,X!52S E
V

Ei jkl
H

]Ui

]xj

]Uk

]xl
dV2v2E

V
rHUi�UidV D

�F E
V

Ei jkl
H

]Ui

]xj

]

]xl
S dUk1

]Uk

]Xm
dXmDdVdXm

2v2E
V

rHUi�S ]Ui1
]Ui

]Xm
]XmDdVdXm

1
1

2 EV

]Ei jkl
H

]Xm

]Ui

]xj

]Uk

]xl
dVdXm2

1

2
v2E

V

]rH

]Xm
Ui

�UidVdXmG22b~u!bS dUi1
]Ui

]Xm
dXmD . (19)

The first and second terms in the bracket can be canceled out
the last term by settingv5du1(]u/]Xm)dXm . Thus, we can
define the sensitivity function to design variableX as

]Tf

]Xm
52S E

V
Ei jkl

H
]Ui

]xj

]Uk

]xl
dV2v2E

V
rHUi�UidV D

�S 1

2 EV

]Ei jkl
H

]Xm

]Ui

]xj

]Uk

]xl
dV2

1

2
v2E

V

]rH

]Xm
Ui�UidV D .

(20)

To satisfy the criteria of the optimality criteria method, this val
must be positive. Since homogenized elastic-moduli are hig
nonlinear according to the material volume ratio~@7#!, satisfaction
of this condition cannot be guaranteed. However, considering
an SRM rotates at high speed, the sensitivity value can be pos
if the following conditions are satisfied:

E
V

Ei jkl
H

]Ui

]xj

]Uk

]xl
dV<v2E

V
rHUi�UidV

and

E
V

]Ei jkl
H

]Xm

]Ui

]xj

]Uk

]xl
dV<v2E

V

]rH

]Xm
Ui�UidV. (21)

Since the ratio of left terms in Eq.~21! depends on the material
used, the application of the objective function defined in Eq.~16!
is limited. In the given model of an SRM,v must be large enough
to satisfy the conditions in Eq.~21!. Considering the metallic ma
terial properties such as Young’s modulus and density of s
used for stator parts, we can compute that the conditions
gested in Eq.~21! are satisfied whenv is over than 50 Hz.v is the
exciting frequency of the magnetic harmonic force and it is c
sistent with the motor speed. 50 Hz is approximately 480 rpm
the SRM is usually operated at higher speed than 480 rpm.
cording to the Colby et al.’s work~@3#!, the deformation modes o
an SRM for severe vibration and noise are much higher tha
kHz. Therefore, the objective function expressed as in Eq.~16!
can be used for ordinary operating conditions.

Using the relation of the total potential energy and the me
compliance shown in Eq.~18!, we can define the sensitivity of th
mean compliance as

]b2~u!

]Xm
5S E

V
Ei jkl

H
]Ui

]xj

]Uk

]xl
dV2v2E

V
rHUi�UidV D

�S 2E
V

]Ei jkl
H

]Xm

]Ui

]xj

]Uk

]xl
dV1v2E

V

]rH

]Xm
Ui�UidV D .

(22)

4.2 Optimality Criteria Method. In the design process, th
design variables are updated at each of the iterations using
Journal of Applied Mechanics
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sensitivity values based on an updating rule. As in the homog
zation design method~HDM! if the number of design variables i
much larger than the number of constraints, the optimality crite
method is very efficient.

Generally, the optimization problem using the HDM can
defined as follows:

minimize
x,Q

f (23)

subject to h~X!<0 (24)

xi
l<xi<xi

u , i 51,2, . . . ,nx (25)

2
p

2
<u i<

p

2
, i 51,2, . . . ,nu (26)

wheref is the objective function andh is the constraint function
defined as*V1dV<V0 whereV0 is the pre-defined total volume
ratio. X5$xi% is the set of the sizing design variables which co
responds to the size of holes in the microstructure in a finite
ment model.Q5$u i% is the set of the orientation design variabl
that corresponds to the rotation of the microstructure in a fin
element model.xi

l and xi
u are the lower and upper bounds o

design variablexi , respectively.nx andnu are the number of the
sizing design variable and the number of the orientation des
variable, respectively.

Using the Lagrangian function and the Kuhn-Tucker con
tions, the necessary condition for a stationary point can be wri
as

ei5
1

l S 2
] f

]xi
Y ]h

]xi
D51 for xi

l,xi,xi
u (27)

where ei is the effectiveness of theith design variable. If the
structure is not in the optimal stage, the value of the effectiven
is not one. Using the effectiveness, the updating rule for the o
mality criteria method is defined as follows@7#:

xi
k115H xi

l for ~ei
k!hxi

k<xi
l

~ei
k!hxi

k for xi
l<~ei

k!hxi
k<xi

u

xi
u for xi

u<~ei
k!hxi

k

(28)

wherexi
k is theith sizing design variable in thekth iteration,xi

k11

is the ith updated sizing design variable, andh is a weighting.
The updating rule regarding orientation design variableu i is

based on the work of Pedersen@11#. Angle u i must be aligned to
the directions of principal stresses for materials of weak sh
stiffness. Since the material used in the topology optimizat
usually has weak shear stiffness, Pedersen’s work can be ap
as an updating rule for the orientation design variables.

5 Application to a Switched Reluctance Motor„SRM…

The homogenization design method~HDM! was applied to a
6/4 ~six stator poles–four rotor poles! type SRM to obtain the
optimal shape of the stator for minimizing the frequency respon
After obtaining the optimal shape, the material properties of
structure were changed according to the optimization result
ABAQUS was used to verify the effect of the optimal shape.

5.1 Finite Element Model and Topology Optimization.
Since the rotor is rotating, the relative position of a stator to
rotor is changing continuously. We analyzed at three different
sitions to compare the results according to the stator-rotor p
tion. Figure 3 displays a finite element model used to compute
magnetic force. The model is composed of hexahedral th
dimensional elements one layer deep. The air-gap portion betw
a rotor and a stator is composed of three layer finite elements
the integration path for applying the Maxwell stress method
defined along the middle layer. The stator-rotor position drawn
the figure is defined as position 1 while positions 2 and 3
MAY 2002, Vol. 69 Õ 383
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defined when the rotor is rotated counterclockwise from the p
tion 1 by 10 deg and 20 deg, respectively. As can be seen from
figures, we use a quarter of the motor for modeling becaus
symmetry. Along the circular edge, the Dirichlet boundary con
tion is applied while the Neumman boundary conditions are
plied along the symmetry line. Figure 4 shows the vector plot
magnetic forces computed by the Maxwell stress method base

Fig. 3 Finite element model of a switched reluctance method
„SRM… for magnetic force calculation: position 1
384 Õ Vol. 69, MAY 2002
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the value of the flux density. As can be seen from Fig. 4,
magnetic forces are more widely distributed as the contact are
the rotor and the stator is larger. The magnetic forces show
Fig. 4 are applied as exciting forces to obtain the optimal sha
for minimizing the frequency response at three different positio

Figures 5~a! and 5~b! display the design domain with boundar
conditions and load conditions. The magnetic forces are applie
the nodes designated in the Fig. 5~a!. The optimization was per-
formed at 100 Hz exciting frequency by changing the load con
tions corresponding to the three different positions with 60 perc
volume constraint.

Figure 6 shows the optimal material distributions of the des
domain at three different positions and the black parts repre
high-density material. Figure 7 shows the three-dimensional o
mal shapes composed of the selected elements whose dens
larger than the 70 percent of the maximum density. As can be s
from these figures, more material is distributed around the st
pole as the contact area of the rotor and the stator becomes la
Also, we can confirm that making the material density weak in
middle part of the stator pole is effective in reducing the weig
without any harmful effect on the vibration level. Figure 8 show
the convergence history of the optimization process for the mo
representing position 1. We can verify that the objective funct
converges well until 100 iterations. This tendency is similar to
other two positions.

As shown in Fig. 7, the optimal topology is different accordin
to the relative position between the stator and the rotor. It is
most impossible to make a stator that has ‘changing’ mate
distribution: however, we can designate the locations of the st
that keeps high-density material distribution regardless of the r
tive position and we can select such locations for the reinfor
ment in the design modification. If some relative positions such
Fig. 4 Vector plot of magnetic force

Fig. 5 Design domain for the structural optimization of the stator
Transactions of the ASME
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Fig. 6 Optimal shapes at three different positions

Fig. 7 Three-dimensional optimal shapes at three different positions

Fig. 8 Convergence history of the optimization for the position 1 with 100 Hz
exciting frequency
echanics MAY 2002, Vol. 69 Õ 385
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the contact-beginning position or the contact-ending position m
be considered more seriously than others, the multiobjective fu
tion can be an effective alternative to obtain the optimal topolo

The magnetic force is also changed as the optimal mate
distribution of the stator is changed during the optimization p
cess. In this study, the optimal topology shown in Fig. 7 is used
select the reinforcement part of the stator rather than removing
low-density part as in ordinary ‘‘mass-minimization’’ topolog
optimization. The final product of the stator is composed of t
materials that have same ferromagnetic properties but diffe
mechanical properties such as Young’s modulus to minimize
frequency response as well as keeping the pattern of the mag
force. Therefore, we can decouple the magnetic force calcula
and the optimization process.

5.2 Verification by ABAQUS. We verified the optimal
shapes using the commercial package ABAQUS. Considering
the maximum deformation occurs at the beginning of the tra
tion period, position 1 is used for the verification. Figure 9 sho
the deformed shape of the original stator by frequency respo
analysis using ABAQUS for position 1 at 100 Hz exciting fr

Fig. 9 Deformed shape by frequency response analysis at
position 1

Fig. 10 Comparison of displacements at the selected nodes
386 Õ Vol. 69, MAY 2002
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quency. As can be seen from the figure, the stator is deforme
the outward and the deformation at the stator pole edge, whic
adjacent to the rotor pole, is very large. Therefore, we can ve
the results by comparing the displacement at the nodes locate
the edge as designated in Fig. 9.

As can be seen from Fig. 7, the optimal topology for minim
ing vibration shows a hole at the stator pole. However, makin
hole inside of a pole can distort magnetic flux and it can exe
bad influence upon the motor efficiency. As mentioned in Sect
5.1, we focus the modification on changing the material prope
of the selected portion shown in Fig. 7~a! rather than removing the
nonselected part to avoid the severe change in magnetic flux
tribution. Therefore, we increased Young’s modulus at the fin
elements that are displayed in Fig. 7~a! while using the original
material in the other part. For the first and second analyses,
value of Young’s modulus of the elements was increased by
percent and 50 percent, respectively. Also, for a comparison,
value was increased by 50 percent at the elements that are
selected in Fig. 7~a! in the third analysis. During the analysis, th
material density is assumed to be similar for the selected
nonselected parts. It can be realized by using the combinatio
iron and ferromagnetic alloy such as cast iron-nickel. Figure
shows the comparison of deformation magnitude at the sele
nodes. The graph shows the root mean square value ofx and
y-directional displacements at the nodes. As can be seen from
graph, increasing Young’s modulus is effective in reducing
deformation. However, increasing Young’s modulus of the e
ments that are not selected by the optimization process is
effective in reducing the deformation. Therefore, we can confi
that not only increasing Young’s modulus but also selecting
appropriate portion to increase Young’s modulus is importan
reducing the frequency response. By these results, we can con
that the HDM is valid for the purpose of minimizing the fre
quency response.

6 Conclusion
In this paper, we have discussed on structural topology opti

zation using the homogenization design method~HDM! to mini-
mize the frequency response of a switched reluctance m
~SRM!. We have formulated the objective function as a squ
form of mean compliance to guarantee the positive value at o
nary exciting frequencies. The magnitude and direction of the
citing force were calculated using the Maxwell stress method. T
developed optimization algorithm was applied to the stator of
SRM to minimize the frequency response caused by the magn
forces.

The final design suggested is the optimal material distribut
of two different materials in the stator to avoid the abrupt chan
of the magnetic flux distribution. It is also possible to obtain t
optimal topology of a structure in magnetic fields to maximize t
magnetic flux~@12#!. This study can be extended as the multio
jective optimization considering both the magnetic flux and
frequency response to obtain the optimal topology composed
single material.
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1 Introduction
In the theoretical studies of crack problems, several differ

electric boundary conditions at the crack surfaces in piezoele
materials have been proposed by numerous researchers~@1–4#!.
However, these solutions contain stress and electric displace
singularity. This is not reasonable according to the physical
ture. To overcome the stress singularity in the classical ela
theory, Eringen@5# used the nonlocal theory to study the state
stress near the tip of a sharp line crack in an elastic plate subje
to antiplane shear. The solution did not contain any stress sin
larity. Recently, the same problems have been resolved in Zh
papers~@6#! by using the Schmidt method.

In this paper, the behavior of two collinear symmetric crac
subjected to the antiplane shear loading in the piezoelectric m
rials is investigated by using the Schmidt method and the nonl
theory for permeable crack surface conditions. The traditio
concept of linear elastic fracture mechanics and the nonlo
theory are extended to include the piezoelectric effects. As
pected, the solution in this paper does not contain the stress
electric displacement singularity at the crack tip.

2 Basic Equations of Nonlocal Piezoelectric Materials
As discussed in@7#, for the antiplane shear problem, the bas

equations of linear, nonlocal piezoelectric materials can be wri
as follows:

]txz

]x
1

]tyz

]y
50 (1)

]Dx

]x
1

]Dy

]y
50 (2)

tkz~X!5E
V
a~ uX82Xu!@c44w,k~X8!1e15f ,k~X8!#dV~X8!,

~k5x,y! (3)

Dk~X!5E
V
a~ uX82Xu!@e15w,k~X8!2«11f ,k~X8!#dV~X8!,

~k5x,y! (4)

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
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where the only difference from classical elastic theory is that
the stress and the electric displacement constitutive Eqs.~3!–~4!,
the stresstzk(X) and the electric displacementDk(X) at a pointX
depends onw,k(X) andf ,k(X), at all points of the body.w andf
are the mechanical displacement and electric poten
c44,e15,«11 are the shear modulus, piezoelectric coefficient, a
dielectric parameter, respectively.a(uX82Xu) is the influence
function. As discussed in the papers~@5,6#!, a(uX82Xu) can be
assumed as follows:

a~ uX82Xu!5
1

p
~b/a!2 exp@2~b/a!2~X82X!~X82X!# (5)

whereb is a constant anda is the lattice parameter.

3 The Crack Model
Consider an infinite piezoelectric plane containing two colline

symmetric permeable cracks of length 1-b along thex-axis. 2b is
the distance between two cracks. The boundary conditions of
present problem are

tyz
~1!~x,01!5tyz

~2!~x,02!52t0 , b<uxu<1 (6)

Dy
~1!~x,01!5Dy

~2!~x,02!, f~1!~x,01!5f~2!~x,02!, uxu<`
(7)

w~1!~x,01!5w~2!~x,02!50, 0,uxu,b,1,uxu (8)

w~k!~x,y!5f~k!~x,y!50, for ~x21y2!1/2→`, ~k51,2!.
(9)

Note that all quantities with superscriptk(k51,2) refer to the
upper half-plane and the lower half-plane.

As discussed in@7#, the general solutions of Eqs.~1!–~2! satis-
fying ~9! are, respectively,

w~1!~x,y!5
2

p E
0

`

A1~s!e2sy cos~xs!ds,

f~1!~x,y!2
e15

«11
w~1!~x,y!5

2

p E
0

`

B1~s!e2sy cos~xs!ds

(10)

w~2!~x,y!5
2

p E
0

`

A2~s!esy cos~xs!ds,

f~2!~x,y!2
e15

«11
w~2!~x,y!5

2

p E
0

`

B2~s!esy cos~xs!ds (11)
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whereA1(s), B1(s), A2(s), B2(s) are to be determined from th
boundary conditions.

For solving the problem, the gap functions of the crack surf
displacements and the electric potentials are defined as follow

f w~x!5w~1!~x,01!2w~2!~x,02! (12)

f f~x!5f~1!~x,01!2f~2!~x,02!. (13)

Substituting Eqs.~10!–~11! into Eqs.~3!–~4!, ~12!–~13!, applying
the Fourier transform and the boundary conditions~6!–~8!, it can
be obtained as

1

p E
0

`

s f̄w~s!erfc~«s!cos~sx!ds5
t0

c44
, b<uxu<1 (14)

1

p E
0

`

f̄ w~s!cos~sx!ds50, 0,uxu,b, 1,uxu,` (15)

and f̄ f(s)50, f f(x)50, for all s and x. «5a/2b, erfc(z)51
2F(z), F(z)52/Ap*0

z exp(2t2)dt.

4 Solution of the Triple Integral Equations
As discussed in@6#, the Schmidt method~@8#! can be used to

solve the triple-integral Eqs.~14!–~15!. The gap functions of the
crack surface displacement can be represented by the follow
series:

f w~x!5(
n50

`

anPn
~1/2,1/2!S x2

11b

2

12b

2

D
3S 12

S x2
11b

2 D 2

S 12b

2 D 2 D 1/2

,

for b<x<1, y50 (16)

f w~x!50, for 0,x,b, 1,x, y50 (17)

wherean is unknown coefficients to be determined andPn
(1/2,1/2)

3(x) is a Jacobi polynomial. The Fourier transformation of E
~16! is

f̄ w~s!5(
n50

`

anQnGn~s!
1

s
Jn11S s

12b

2 D (18)

Qn52Ap

GS n111
1

2D
n!

,

Gn~s!5H ~21!n/2 cosS s
11b

2 D , n50,2,4,6, . . .

~21!~n11!/2 sinS s
11b

2 D , n51,3,5,7, . . .

(19)

whereG(x) and Jn(x) are the Gamma and Bessel functions,
spectively. By substituting Eq.~18! into Eqs.~14!–~15!, respec-
tively, Eq. ~15! can be automatically satisfied. Then the remain
Eq. ~14! reduces to the form

(
n50

`

anQnE
0

`

erfc~«s!Gn~s!Jn11S s
12b

2 D cos~sx!ds5
p

c44
t0 .

(20)

Equations~20! can now be solved for the coefficientsan by the
Schmidt method~@8#!.
Journal of Applied Mechanics
ce
s:

ing
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5 Numerical Calculations and Discussion
tyz andDy along the crack line can be expressed as

tyz5tyz
~1!~x,0!

52
c44

p (
n50

`

anQnE
0

`

erfc~«s!Gn~s!Jn11S s
12b

2 D cos~xs!ds

(21)

Dy5Dy
~1!~x,0!

52
e15

p (
n50

`

anQnE
0

`

erfc~«s!Gn~s!Jn11S s
12b

2 D cos~xs!ds

5
e15

c44
tyz

~1!~x,0!. (22)

So long as«Þ0, the semi-infinite integration and the series in Eq
~20! is convergent for any variablex. Equations~21! and~22! give
finite stress and electric displacement all alongy50, so there are
no stress and electric displacement singularity at the crack
The results are plotted in Figs. 1 and 2. From the results,
dimensionless stress field is found to be independent of the m
rial parameters. They just depend on the length of the crack
the lattice parameter. However, the electric displacement fiel
found to depend on the stress loads, the shear modulus, the le
of the crack, the lattice parameter and piezoelectric coeffic
except the dielectric parameter«11. Contrary to the impermeable
crack surface condition solution, it is found that the electric d
placement for the permeable crack surface conditions is m
smaller than the results for the impermeable crack surface co
tions.

Fig. 1 The stress along the crack line versus x for bÄ0.1,
aÕ2bÄ0.0005 „PZT-5H…

Fig. 2 The electric displacement along the crack line versus x
for bÄ0.1, aÕ2bÄ0.0005 „PZT-5H…
MAY 2002, Vol. 69 Õ 389
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Propagation of a Shear Direction
Acoustic Wave in Piezoelectric Coupled
Cylinders
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1 Introduction
Acoustic wave polarized in the horizontal shear direction~SH

wave! have attracted much attention in the topic of smart mat
als research because of the following reason~@1–3#!. The particle
displacement associated with SH wave has almost zero com
nent normal to the free surface. The absence of the surface no
component avoids fast dispersion of energy into surrounding
dium when the subject is immersed in liquids~@4#!. The properties
of SH wave traveling in the piezoelectric coupled cylindric
structure are however quite different from that in plate or be
structures~@5,6#!. In the case of cylindrical geometry, SH wave
polarized along the axis of the cylinder with zero particle d
placement component normal to the cylindrical surface. T
present paper is concerned with SH wave circulating aroun
long metallic cylinder covered with a piezoelectric layer. Disp
sion relations are obtained, which provides potential applica
of this structure in the design of nondestructive evaluation of
lindrical structures submerged in water.

2 Formulation of mechanical model
The model under consideration involves a long metallic cyl

der of radiusa covered by a piezoelectric material of unifor
thicknessh ~see Fig. 1!. The equations of motion can be written
cylindrical coordinate system as

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Feb. 1
2001; final revision, Aug. 29, 2001. Associate Editor: A. K. Mal.
Copyright © 2Journal of Applied Mechanics
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]Trz

]r
1

1

r

]Tuz

]u
1

1

r
Trz5rüz , (1)

wherer is the mass density and dot denotes time derivative.
For an SH waveur5uu50 anduz is independent ofz. Hence,

the nonzero strain components are

Srz5
]uz

]r
and Suz5

1

r

]uz

]u
. (2)

The pertinent constitutive relations for the piezoelectric layer c
be reduced to

Tuz5c44Suz2e15Eu (3a)

Trz5c44Srz2e15Er (3b)

Dr5e15Srz1e11Er (3c)

Du5e15Suz1e11Eu (3d)

wherec44, e15, ande11 are the elastic, piezoelectric, and diele
tric constants of the piezoelectric layer, respectively,T denotes
stress,E the electric field, andD the electric displacements.

By employing the quasi-static approximation, the relations
between electric fieldE and electric potentialf can be reduced to

E52¹f (4)

and the electric displacement can be derived as

¹•D50. (5)

5,
Fig. 1 Geometry of the layered long cylinder
002 by ASME MAY 2002, Vol. 69 Õ 391



Fig. 2 Dispersion curves for the first and fourth modes

Fig. 3 Dispersion curves of cylinder with different core material
e

Substituting~2!–~4! into ~1! and~5! yield the electromechanica
coupled governing equations,

c44¹
2uz1e15¹

2f5rüz (6)

e15¹
2uz2e11¹

2f50, (7)

which can be simplified as

c44¹
2uz5rüz (8)

wherec445c441e15
2 /e11 and

¹2w50 (9)

wherew5f2(e15/e11)uz .

The stress can be written as

Trz5c44

]z

]r
1e15

]w

wr
. (10)

The corresponding equations for the metallic cylinder core ar
392 Õ Vol. 69, MAY 2002
l m8¹2uz85r8üz8 (11)

Trz8 5m8
]uz8

]r
(12)

Table 1 Material properties

Aluminum Steel Gold PZT-4

Mass density
~3103 kg/m3)

r852.8 r857.8 r8519 r57.5

Shear modulus
(31010 N/m2)

m852.7 m857.6 m852.6 c4452.6

e15 (k/m2) - - - 12.7
e11 (31029 f/m) - - - 6.45
c2 (3103 m/s) 3.11 3.12 1.17 2.60
Transactions of the ASME
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Fig. 4 Dispersion curves of an aluminum cylinder with a piezoelectric layer of
different thickness
t
t

i

t

d

wherem8 is the shear modulus and prime denotes variables of
core.

It is assumed that the poling direction of the PZT-4 layer co
cides with thez-axis and the outside surface of the piezoelec
layer is electrically shorted. Hence, the electrical poten
throughout both sides of the piezoelectric layer is zero. The o
side surface of the layer is stress free and the continuity condit
should be satisfied at the interface. The boundary conditions
thus be written as

f50, at r 5a1h (13a)

Trz50, at r 5a1h (13b)

f50, at r 5a (14a)

uz5uz8 , at r 5a (14b)

Trz5Trz8 , at r 5a. (14c)

3 Dispersion Relations
The harmonic wave solution for both the cylinder core and

piezoelectric layer can be represented as

uz8~r ,u,t !5Uz8~r !ei ~pu2vt !, 0<r<a (15)

uz~r ,u,t !5Uz~r !ei ~pu2vt !, a<r<a1h (16)
hanics
the

in-
ric
ial
ut-
ons
can

he

wz~r ,u,t !5cz~r !ei ~pu2vt !, a<r<a1h (17)

where P is the angular wave number andv is the angular fre-
quency. Substituting~15!–~17! into the governing Eq.~8!, ~9!, and
~11! gives

d2Uz8

dr2 1
1

r

dUz8

dr
1S ql

22
p2

r 2 DUz850 (18)

d2Uz

dr2 1
1

r

dUz

dr
1S qc

22
p2

r 2 DUz50 (19)

d2cz

dr2 1
1

r

dcz

dr
2

pl2

r 2 cz50 (20)

whereq1
25r8v2/m, andqc

25rv2/c44.

Solutions for~18!–~20! are

uz85AJp~qlr !ei ~pu2vt !, 0<r<a (21)

uz5@BJp~qcr !1CYp~qcr !#ei ~pu2vt !, a<r<a1h
(22)

w5~Dr p1Er2p!ei ~pu2vt !, a<r<a1h (23)

whereJp(z) andYp(z) are Bessel function of the first and secon
kind. Utilizing boundary conditions of~13!–~14! yield a system of
five equations as follows:
3
0

e15

e11
Jp~bVap!

e15

e11
Yp~bVap! apbp a2pb2p

0 c44

]Jp~bVap!

]r
c44

]Yp~bVap!

]r
e15pap21bp21 2e15pa2p21b2p21

0
e15

e11
Jp~Vap!

e15

e11
Yp~Vap! ap a2p

Jp~aVap! 2Jp~Vap! 2Yp~Vap! 0 0

m8
]Jp~aVap!

]r
2c44

]Jp~Vap!

]r
2c44

]Yp~Vap!

]r
2e15pap21 e15pa2p21

4 5 A
B
C
D
E
6 50 (24)
MAY 2002, Vol. 69 Õ 393
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5,
where a5(p8c44/rm8)1/2, b5(11h/a). The phase velocity a
r 5a is given byva5va/p, which can be nondimensionalized a

Va5va~c44/r!21/2. (25)

The dispersion equation is obtained by setting the determinan
coefficients of~24! to be zero.

4 Results and Discussions
The case of an aluminum cylindrical core of radius 0.1

wrapped with a PZT-4 piezoelectric layer of thickness 0.01 m~i.e.,
h/a50.1 is considered. Using~24!, the dispersion curvesVa as a
function of p for the first four mode shapes are computed a
shown in Fig. 2. It can be seen that as the wave number increa
the phase velocity of each mode decreases. When the wave
ber is large, the curves approach asymptotically to the Bluest
Gulyayev wave velocity~@6#!. This is consistent in view of the
fact that when wave number is large relative to the curvature
the cylindrical surface, the cylindrical problem can be reduced
a plane problem.

4.1 Dispersion Curves of Cylinder With Different Metal
Core. To study the significance of the coupling effect due
different metallic core, three materials, namely, aluminum, st
and gold are considered. The dispersion curves for the first m
are plotted in Fig. 3. For comparison purpose, the dispers
curves for a pure PZT-4 cylinder and a pure gold cylinder are a
plotted.

It is noted that the phase velocity of both the coupled st
cylinder and the coupled aluminum cylinder approaches
Bluestein-Gulyayev wave velocity, since the softer material is
piezoelectric layer. While the asymptotic velocity of the coupl
gold cylinder is relatively lower, since gold is slightly softer an
denser.

For low wave number, it is noted that the phase velocities of
coupled cylinders follow closely that of the respective rotatio
wave propagation velocityc2 of core materials, wherec28

5Am8/r8 for metallic material andc25Ac44/r for piezoelectric
material. The latter values are tabulated in Table 1 and it can
seen thatc2

s.c2
a.c2

p.c2
g , wherec2

s, c2
a, c2

p, c2
g , are rotational

wave velocities of steel, aluminum, PZT-4, and gold, respectiv
Due to the relatively lowerc2 of the piezoelectric material, the
coupling effect contributed by the piezoelectric layer lowers
phase velocity of the coupled aluminum cylinder or that of t
coupled steel cylinder. In contrast, sincec2

p.c2
g , the coupling

effect of the piezoelectric layer induces a higher phase velocity
the coupled gold cylinder with the dispersion curve of the p
piezoelectric cylinder as the upper bound.

4.2 Dispersion Curves of Different Thickness of Piezoelec
tric layer. From ~24!, the radiusa can be removed from the
dispersion equation of the controlling geometrical parameter is
thickness ratio,h/a. The nondimensional phase velocity atr 5a
1h, Va1h5Va(a1h)/a, is used to study the effect of the thick
ness of the piezoelectric layer by varyingh/a. The dispersion
curves~based onVa1h! of the coupled aluminum cylinder with
piezoelectric layer of different thicknesses are plotted in Fig.

It is noted that as the thickness of piezoelectric layer increa
the phase velocity decreases. This can be explained by the
thatc2 of piezoelectric layer is slower than that of aluminum co
As the thickness of the layer increases, the coupling effect
creases resulting in a lower phase velocity. It can be observed
the Bluestein-Gulyayev wave velocity is reached at lower wa
number as the thickness increases. However, the lower boun
limited by the dispersion curve of a pure PZT-4 cylinder given
Fig. 3.
394 Õ Vol. 69, MAY 2002 Copyright © 20
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A dimensional analysis has been made of elastic-plastic inde
tion of an anisotropic solid, and of a solid showing pressu
sensitive yield behavior. It is found that, P}d2, for indentation
with sharp, self-similar indenters, where P is the load applied
the indenter andd is the corresponding distance of penetration
the indenter into the solid. This extends and generalizes a sim
result obtained for isotropic solids showing conventional plas
behavior. When a strain-gradient plasticity is incorporated in
the material model, then it is found that P is no longer propo
tional to d2. Implications of the results for the indentation siz
effect and for the determination of stress-strain curves from ind
tation are discussed.@DOI: 10.1115/1.1458557#

Introduction
Measurement of hardness involves loading a hard sphere, c

or pyramid indenter into the surface of a material to produc
well-developed plastic zone and measuring the resulting inde
tion size. A hardness value is obtained by dividing the appl
load ~P! by the projected area~or surface area! of the indentation.

1Presently at MMC Technology Corporation, San Jose, CA.
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF

MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Jan. 2
2001; final revision, Oct. 5, 2001. Associate Editor: A. K. Mal.
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Because of the relative simplicity of hardness measurement
the semi-empirical relation that exists between hardness and
yield strength of a material, indentation hardness has found w
spread use as a technique for characterizing the plastic prope
of solids ~@1,2#!.

A recent trend in indentation hardness testing is the use
depth-sensing indentation methods. In depth-sensing indenta
a hardness value is derived from a measurement of the penetr
of the indenter into the material rather than from a measurem
of the indentation area. An important example of this approac
nano-indentation. The use of depth-sensing indentation for h
ness measurement requires a characterization of the relati~s!
that exists between applied load~P!, distance of penetration~d! of
indenter into the material and characteristic dimensions of
indent ~@3#!. The determination of this relation~s! should also fa-
cilitate efforts aimed at determining the stress-strain curve o
solid from a measurement of the load-penetration curve du
indentation~@4,5#!.

It has been shown recently, using dimensional analysis, thaP
}d2 for elastic-plastic indentation of an isotropic solid by sha
~self-similar! indenters~@6#!. Here, we show that a similar resul
P}d2, holds also for the more general case of elastic-plastic
dentation of anisotropic solids, and of solids which show press
sensitive yield behavior. When a strain-gradient plasticity mode
incorporated into the analysis, it is found thatP}d2 is no longer
valid. Implications of these results for the ‘‘indentation size e
fect,’’ depth sensing indentation and determination of stress-st
curves from indentation are discussed.

Anisotropic Solid
Consider the elastic-plastic indentation of an anisotropic h

space by a rigid, sharp conical indenter having a semi-ap
angle,u. The generalized Hooke’s law for elastic deformation

s i j 5Ci jkl «kl (1)

whereCi jkl is the stiffness tensor of the fourth order. We use
following yield criterion proposed by Hill@7#, to describe the
onset of plastic flow in an anisotropic solid:

2 f ~s i j ![A~sy2sz!
21B~sz2sx!

21C~sx2sy!212Dtyz
2

12Etzx
2 12Ftxy

2 51 (2)

whereA,B,C,D,E,F are material parameters characteristic of t
current state of anisotropy. Linear terms are not included in~2!
since it is assumed that the material shows no Bauschinger e

The Levy-Mises formulation for the stress-strain increment
lations during plastic flow is

d«x5dl@C~sx2sy!1B~sx2sz!#

d«y5dl@A~sy2sz!1C~sy2sx!#

d«z5dl@B~sz2sx!1A~sz2sy!#
(3)

dgyz5dlDtyz

dgzx5dlEtzx

dgxy5dlFtxy

where dl is a material parameter that can be obtained fr
uniaxial stress-strain data.

The indentation loadP is completely determined by the con
stants,Ci jkl , the parameters,A,B,C,D,E,F anddl, the penetra-
tion distance,d, of the indenter into the half-space, the coefficie
of friction, m, between indenter and solid, and the cone se
apical angle~u!. Thus, we have
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P5 f ~Ci jkl ,A,B,C,D,E,F,dl,d,m,u!. (4)

Dimensional formulas for each of the above parameters may
written in terms of the independent dimensions ofC1111 andd as

Quantity Dimensional Formula

P @C1111#
1@d#2

Ci jkl @C1111#
1@d#0

A,B,C,D,E,F @C1111#
22@d#0

dl @C1111#
1@d#0

d @C1111#
0@d#1

m @C1111#
0@d#0

u @C1111#
0@d#0.

Using theP theorem of dimensional analysis~@8#! with C1111
andd as the independent dimensions we get

P5C1111d
2PS Ci jkl

C1111
,

A

C1111
22 ,

B

C1111
22 ,

C

C1111
22 ,

D

C1111
22 ,

E

C1111
22 ,

F

C1111
22 ,

dl

C1111
,m,u D (5)

whereP~•! is a function of the dimensionless parameters enclo
in brackets. Thus,P}d2, for cone indentation of an anisotropi
half-space.

If we set

D5E5F53A53B53C,

C11115C22225C33335~12n!E/~11n!~122n!,

C11225C11335C22335nE/~11n!~122n!,

C23235C13135C12125E/2~11n!

and the otherCi jlk 50 in Eq.~5!, then an isotropic material result
with E and n being its Young’s modulus and Poisson’s ratio, r
spectively. This is the case studied by Cheng and Cheng@6#.

Solid With Pressure-Sensitive Yield Behavior
Plasticity in some materials such as glasses and ceramic

often influenced by hydrostatic pressure. For such materials,
Drucker-Prager@9# yield criterion often provides a good descrip
tion of the onset of yield. The Drucker-Prager yield surface
given by

F~J1 ,J28!5AJ282bJ12k5 f j~J1 ,J28!2k50 (6)

where f j(J1 ,J28)5AJ282bJ1 , J15s i i , J2851/2Si j Si j and Si j
5s i j 2pd i j , p is the hydrostatic component of the stress sta
andb andk are material constants withb describing the pressure
sensitivity.

Using the associated flow rule with the yield function set eq
to the plastic potential, the plastic strain increments are

d« i j
p 5dl

] f j

]s i j
(7)

wheredl is the aforementioned material parameter. If we co
MAY 2002, Vol. 69 Õ 395
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sider indentation of this pressure-sensitive material by a co
then the load applied by the indenter can be expressed as

P5 f ~E,n,b,K,dl,d,u! (8)

whereE and n are, respectively, the Young’s modulus and Po
son’s ratio of the material. By applying theP theorem as before
with E andd as the independent dimensions, we get

P5Ed2PS b,
K

E
,n,dl,u D (9)

whereP~•! is a function of the dimensionless parameters enclo
in brackets. Thus,P}d2 is seen to hold also for this case.

The analysis leading to Eqs.~5! and ~8! carries over with little
modification for other self-similar indenters, e.g., wedge, Vicke
and Knoop.

These results imply thatP}d2 should hold for a large class o
materials. Furthermore, it is seen that the statements,P}d2, and
the hardness being independent of load for self-similar inden
are equivalent. This equivalence poses a challenge to the de
tion of the stress-strain curve of a material from theP versusd
relation obtained with a sharp, self-similar indenter.

Discussion
There is a wealth of evidence available from hardness tests

pyramid indenters which shows the hardness to be essentiall
dependent of load when the size of the indent is sufficiently la
~@10#!. In fine-grained homogeneous materials, this observa
appears to hold true for indentation widths in excess of about
micrometers. Numerical simulations of elastic-plastic indentat
have also shown the hardness to be independent of load~or P
}d2! for solids that obey conventional plasticity. Giannakopou
and Larson@11# have analyzed the indentation of materials sho
ing a pressure-sensitive yield behavior and noted thatP}d2 ap-
pears to be a good fit for both Vickers and Berkovitz indentatio
These results are consistent with the findings of our dimensio
analysis.

But how canP}d2 be reconciled with observations of an in
dentation ‘‘size effect’’? The size effect refers to a dependenc
hardness on indentation size that has been observed in ex
ments~@10#!. Several explanations have been proposed to exp
this effect including an error in hardness estimate due to impre
knowledge of indenter tip geometry, the presence of oxide or
formed layers on surfaces, and a lack of knowledge of the e
load bearing area of an indentation due to material pile-up
sinking in. Recently, a strain gradient plasticity model has b
proposed~@12#! to explain the indentation size effect. In th
model, the size effect arises due to the combined effect of
factors: a dependence of the flow stress~s! on a characteristic
length scale for the material (l̂ ); and the presence of strain grad
ents in the indentation field.

It is easy to incorporate the strain gradient plasticity model i
our dimensional analysis by assuming the effective flow stress~s!
of the material in the presence of a strain gradient to be given
~@13#!

S s

s0
D 2

511 l̂x (10)

wheres0 is the flow stress in the absence of a gradient andx is
the effective strain gradient; and assuming the material under
power-law hardening with

s05K«n (11)

wheren is a work hardening exponent, andK is a material con-
stant. If we consider the indentation of this material by a co
then the load applied by the indenter may be written as
396 Õ Vol. 69, MAY 2002
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P5 f ~E,n,K,n, l̂ ,d,u!. (12)

Using theP-theorem as before withE and d as independent di-
mensions, we get

P5Ed2PS n,
K

E
,n, l̂ /d,u D . (13)

Equation~13! shows thatP is no longer proportional tod2 but is
dependent on an additional parameter (l̂ /d) which involves the
indenter penetration depth~d!.

Thus, the hardness of the material is no longer independen
indentation size, but is dependent among other factors on (l̂ /d),
thereby, giving rise to an indentation size effect. It should
possible to establish the form of the dependence ofP on l̂ /d by
numerical simulation and/or indentation experiments.

Nix and Gao@12# indicate thatl̂ has values of around 10mm for
annealed copper. Since it is observed experimentally that hard
becomes independent of indent size~or load!, for sufficiently large
indents, Eq.~13! would imply that the parameter (l̂ /d) appears in
the function P~•! such thatP/d2 approaches a constant valu
asymptotically asl̂ /d→0.

Conclusion
It has been shown using dimensional analysis that the inde

load ~P! is proportional to the square of the indenter penetrat
distance~d! for elastic-plastic indentation of solids with shar
self-similar indenters. This relation is found to apply for soli
showing a wide range of yield behavior. The relation, however
seen to break down when strain-gradient plasticity is incorpora
into the material model.
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Resonance and the Aging Spring

T. J. Lardner
Department of Civil and Environmental Engineering,
University of Massachusetts, Amherst, MA 01003-5202
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The steady-state response of the classic mass-spring-das
model when the spring stiffness decays exponentially with
(an aging spring) and the system is excited by a forcing func
whose frequency is equal to the natural frequency of the sys
with the constant initial stiffness is investigated. The steady-s
response is obtained in terms of the damping and decay cons
of the system and exhibits an oscillation about a nonzero valu
@DOI: 10.1115/1.1458559#

1 Introduction
The classical mass-spring-dashpot model used to describ

bration characteristics of simple mechanical systems under t
dependent loading is well known. When the forcing function
harmonic with a frequency equal to the natural frequency of
undamped system, the system is said to be in resonance an
steady-state response is harmonic with an amplitude depende
the amount of damping in the system. The amplitude of the
sponse of the system at other values of the forcing frequenc
less than that at resonance and often is of less concern.

The purpose of this brief note is to determine the steady-s
response of the mass-spring-dashpot model when the value o
spring stiffness decays exponentially with time from a const
initial value to zero and the system is excited by a forcing funct
with a frequency equal to the natural frequency of the system w
the initial stiffness. The spring in this case is called anaging
spring~@1,2#!. This model has a simple interpretation of a physic
system becoming less stiff in time while excited by a loading t
would lead to resonance if the stiffness remained constant.
problem is of interest because of the importance of understan
resonant systems and because the results for the steady-sta
sponse are somewhat unexpected.

2 Formulation
The equation of motion for the displacementu(t) of a mass in

a mass-spring-dashpot system is

mü1cu̇1k~t!u5p~t! (1)

wherem,c,k(t) are the mass, dashpot constant, spring stiffn
that is a function of the physical timet, andp(t) is the forcing
function. We are interested in the case of resonance in which
forcing function is a sine function with a frequency equal to t
natural frequency of the the system with an undamped cons
spring stiffness. The spring stiffness is assumed to decay in
as ~an aging spring~@1,2#!!,

k~t!5k0 exp@2 êt# (2)

where k0 is the spring stiffness at time zero andê is the time
decay constant. Exponential decay is selected because of the
venience in the analysis~@1,2#! and the expectation that the stif
ness of a physical system will asymptote to small values in tim
In the absence of decay,ê50, the natural frequency of the un
damped system is

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, May 3
2001; final revision, September 5, 2001. Associate Editor: N. C. Perkins.
Copyright © 2Journal of Applied Mechanics
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v5Ak0 /m. (3)

For resonance loading the equation of motion becomes

mü1cu̇1k0 exp@2 êt#5p0 sinvt (4)

with initial conditions prescribed foru(0) andu̇(0).
The amount of damping in the system is defined by the dam

ing ratio J5c/2Ak0m which is the amount of damping relative t
critical damping in a system in whichê50. It is convenient to
nondimensionalize Eq.~4! by writing

y5
u

u0
, J5

c

2Ak0m
, v5Ak0 /m

(5)
t5vt, u05p0 /k0 , e5 ê/v

wheret is the nondimensional time. Equation~4! becomes

ÿ12Jẏ1e2ety5sin t (6)

with initial conditions

y~0!5y0 ; ẏ~0!5v0 (7)

where (̇ ) is the derivative with respect to the nondimension
time t. Usually in the study of resonance the initial conditions a
equal to zero; see, e.g.,@3#. In the case of no decay,e50, Eq.~6!
reduces to the classical case

ÿ12Jẏ1y5sin t (8)

for which the solution satisfying the initial conditions is

y~ t !5e2JtH S y01
1

2JD cosvDt1
S v01

1

2
1y0JD

vD
sinvDtJ

2
1

2J
cost (9)

wherevD5A12J2. The steady-state portion of the solution, th
is, the solution ast→`, has an amplitude of oscillatory motion o
(1/2J) which for lightly damped systems,J!1, can be large. The
steady-state behavior is also independent of the initial conditio
The steady-state solution in Eq.~9! follows directly from Eq.~8!
where the damping force term balances the forcing function
the inertia and spring force term cancel one another.

In the caseeÞ0 in Eq. ~6!, we note that ast→`, the steady-
state solution must satisfy

ÿ12Jẏ5sin t (10)

the solution to which is

y~ t !5C12
1

114J2 @sin t12J cost#, as t→` (11)

This result is surprising because the amplitude of the steady-s
oscillatory motion is now approximately unity having decreas
from (1/2J) whene50. Further, the solution oscillates in gener
about a nonzero value ofy given byC1 that will depend upon the
initial conditions and the values ofJ ande.

We now wish to obtain the exact solution of Eq.~6! using the
method of variation of parameters; see e.g.,@4#, from which the
steady-state solution of the form in Eq.~11! can be extracted
exhibiting the value ofC1 .

3 Exact Solution
The complete solution to Eq.~6! in terms of the two solutions

to the homogeneous equationu1(t), u2(t) can be written in the
form

y~ t !5u1~ t !F1~ t !1c1u1~ t !1u2~ t !F2~ t !1c2u2~ t ! (12)

where
0,
002 by ASME MAY 2002, Vol. 69 Õ 397
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F1~ t !52E sin tu2~ t !

W~ t !
dt (13)

F2~ t !5E sin tu1~ t !

W~ t !
dt (14)

W~ t !5Uu1 u2

u̇1 u̇2
U, (15)

Wronskian andc1 and c2 are the constants of integration. Upo
applying the initial conditions, Eq.~7!, we find that the solution
can be written in the form

y~ t !5u1~ t !F1~ t !2u1~ t !F1~0!1u2~ t !F2~ t !2u2~ t !F2~0!

1@u1~ t !$y0u̇2~0!2v0u2~0!%2u2~ t !$y0u̇1~0!

2v0u1~0!%#
1

W~0!
. (16)

The solutions to the homogeneous equation

ÿ12Jẏ1e2ety50 (17)

follow upon making the substitutions~@1#!

y~ t !5e2Jtv~ t !, s5s0e2t/s0, s05~2/e! (18)

to obtain a Bessel equation

s2v91sv81v~s22l2!50 (19)

wherel5(2J/e) and primes indicate differentiation with respe
to s. The solutions to Eq.~19! are Bessel functionsJl(s), J2l(s)
with lÞn, an integer. The solutions to Eq.~17! can be written in
the form

u1~ t !5e2JtJl~s0e2t/s0!; u2~ t !5e2JtJ2l~s0e2t/s0! (20)

andF1(t) andF2(t) follow from Eqs.~13–15!, ~20!,

F1~ t !52
ps0

2 sinlp E eJt sin tJ2l~s!dt (21)

F2~ t !5
ps0

2 sinlp E eJt sin tJl~s!dt. (22)

To obtain the solution ast→`, from Eq. ~16!, we need to deter-
mine the expansions ofu1(t), u2(t), F1(t), andF2(t) as t→`
and the values ofF1(0) andF2(0). It follows from the expan-
sions of the Bessel functions ast→`, s→0, that

u1~ t !→e22JtS s0

2 D l 1

l!
; u2~ t !→S 2

s0
D lY ~2l!! (23)

In order to findF1(t) andF2(t) as t→`, we expand the Besse
functions abouts50, and integrate to find

F1~ t !52
ps0

2 sinlp S 2

s0
D l 1

~2l!! Fe2Jt~2J sin t2cost !

114J2 G
(24)

F2~ t !52
ps0

2sinlp S s0

2 D l 1

l!
cost. (25)
398 Õ Vol. 69, MAY 2002
n

t

l

The combinationu1(t)F1(t)1u2(t)F2(t) in Eq. ~16! ast→` be-
comes

2~sin t12J cost !

114J2 (26)

which agrees with Eq.~11!. The remaining terms in Eq.~16! can
be evaluated, e.g.,F2(0) can be found from Eq.~22! by expand-
ing the Bessel functionJl(s) in series form, integrating term by
term, and settingt50 to find

F2~0!52
p

sinlp S s0

2 D l11

(
0

`
~21!k

k! ~k1l!! S s0

2 D 2k 1

11~2k/s0!2 .

(27)

It follows that the steady-state solution is

y~ t !5el21G~l!(
0

`
~21!k

k! ~k1l!! S s0

2 D 2k1l 1

11~2k/s0!2

2el21G~l!$y0Jl21~s0!2v0Jl~s0!%2
sin t12J cost

114J2

(28)

The value ofy about which the oscillations of the steady-sta
occur is given by the first two terms in Eq.~28!. We see therefore
that the steady-state resonance response in the presence
aging spring is an oscillatory motion of approximately unit amp
tude about a constant value that depends onJ ande and the values
of the initial conditions. This result is one that might not ha
been anticipated on physical grounds. For example, if the in
conditions are zero withJ50.1 ande50.3, the steady-state valu
is 520.282. As an additional result, we note that in the case o
zero forcing function with the system excited only by the initi
conditions, the steady-state response is a constant occurring a
finite number of oscillations.

4 Concluding Remarks
The interest in the nature of the solution was motivated by

work in @1,2# in which the finite number of zeros in the solutio
for the case of no damping and no external loading was discus
A related case is

k~t!5k11~k02k1!exp@2 êt#

in which the spring stiffness at long times approaches a nonz
value k1 . In this case the solution involves Bessel functions
imaginary order. However, the behavior of the steady-state mo
is oscillatory abouty50 with an amplitude determined by th
amount of damping relative to critical damping at the value ofk1 .
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An Exact Solution for Response
Spectral Density of a Single-Degree-of-
Freedom System Under Both
Parametric and Additive White Noise
Excitations
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Y. K. Lin
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Consider the following equation of motion

ẍ12a ẋ@11h~ t !#1V2x@11j~ t !#5z~ t ! (1)

where j(t), h(t), z(t) are Gaussian white noises~in the Stra-
tonovich sense! with spectral densitiesKjj , Khh , Kzz , respec-
tively. The two parametric white noises,h(t) andj(t), are corre-
lated, with cross-spectral densityKjh . The objective is to obtain
the spectral density~PSD! of the responsex(t), which exists if
x(t) is stationary in the wide sense. This is the case, providedx(t)
has constant finite mean and mean square values, and its PS
obtained is positive everywhere.

Rewrite Eq.~1! in the space state form

ẋ15x2 , ẋ2522ax22V2x122ax2h~ t !2V2x1j~ t !1z~ t !
(2)

and take the ensemble averagesE@xi #5mi to obtain

ṁ15m2 , ṁ2522gm22L2m1 ,
(3)

g5a~12aKhh!, L25V2~12aKjh!

in which the so-called Wong-Zakai correction~@1#! has been in-
corporated to evaluate the following expectations of the produ
of state variables and excitations~@1–3#!:

E@2x2h~ t !#5~Khh/2!E@~22ax2!~d/dx2!~22ax2!#

52a2Khhm2

E@2x1j~ t !#5~Kjh/2!E@~2V2x1!~d/dx1!~22ax2!#

5aV2Kjhm1 .

The parametersg andL, as defined in Eq.~3!, may be regarded
as the effective damping factor and effective natural frequen
respectively, provided thatg is positive andL is real ~negativeg
or imaginaryL, or both, implies system instability in the mea
which is not considered herein!.

To obtain the PSD ofx(t) at the state of stationarity in the wid
sense, Eq.~1! is supplemented with a ‘‘measuring filter’’~@2#!,
governed by the following second-order differential equation:
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,

z̈12b ż1v2z5x~ t !. (4)

Expressing the mean square value ofz(t) as the integral of the
product of the PSDFxx(v) of x(t) and the squared magnitude o
the transfer function of filter~4!, one can show that the following
relation holds:

E@z2#5 lim
b→0

@pFxx~v!/2bv2#. (5)

Thus, the response PSD of system~1! can be obtained when th
mean square response of the measuring filter~4! is found.

To solve this problem in the framework of the stochastic diffe
ential equation~SDE! calculus, Eq.~4! with z andż renamed asx3
and x4 , respectively, is first rewritten in the state space form
follows:

ẋ35x4 , ẋ4522bx42v2x31x1 . (6)

Combining Eqs.~2! and ~6!, and denotingui j 5xixj ; u̇i j 5 ẋixj
1xi ẋj ( i , j 51 – 4) one obtains the following SDE set forui j :

u̇1152u12,

u̇22524au22@11h~ t !#22V2u12@11j~ t !#1Au22z~ t !,

u̇125u222V2u11@11j~ t !#22au12@11h~ t !#1Au11z~ t !,

u̇135u231u14, u̇145u242bu142v2u131u11,

u̇235u2422au23@11h~ t !#2V2u13@11j~ t !#1Au33z~ t !,
(7)

u̇24522~a1b!u2422au24h~ t !2v2u23

2V2u14@11j~ t !#1u121Au44z~ t !,

u̇3352u34, u̇44524bu4422v2u3412u14,

u̇345u4422bu342v2u331u13.

The expectation operator is now applied to the ten SDEs~7! to
obtain a set of deterministic differential equations for the seco
order response momentsDi j 5E@ui j #5E@xixj # ( i , j 51 – 4). The
general formula for Wong-Zakai corrections@1–3# is used once
again to evaluate the expectations of products of the state v
ables and excitations. At the state of stationarity,E@ u̇ j #50, these
equations reduce to algebraic equations. Furthermore, it is evi
from the first and the eighth of these equations, thatD1250 and
D3450. The remaining eight equations are given by

24a~122aKhh!D221V4KjjD111Kzz50,

D225L2D11, D231D1450,

D2422bD142v2D131D1150,
(8)

D2422gD232L2D1350,

2~g1b!D2452v2D232L2D14, 4bD4452D14,

D442v2D331D1350
0,
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which can be split into several subsets, and solved analytically
particular, the mean square displacementD11 can be obtained
from the first and second equations in~8! as

D115E@x2#5Kzz /@4aV2~122aKhh!~12aKjh!2V4Kjj#.
(9)

The denominator on the right-hand side of~9! is assumed to be
positive, which is, in fact, the condition for mean square stabi
of system~1!, and is a necessary and sufficient condition for t
existence of the stationary state response in the wide sense.

From the seventh and the eighth equations in~8!, we obtain

2bv2E@z2#5D1412bD13. (10)

Note thatE@z2#5D33. Using relation~5!, and imposing then the
conditionb→0 in the remaining equations yield

pFxx~v!52gL2E@x2#/ b~v22L2!214g2v2c. (11)

Thus, the response PSD is seen to be of the same basic sha
that without the parametric excitations but with reduced ba
width and a shifted peak position, according to Eq.~3!. The
former of these effects is due to random variations of damp
the latter due to the cross correlation of these variations, wh
affects the stiffness of the system. The validity of the obtain
PSD is restricted under the imposed inequalities for system st
400 Õ Vol. 69, MAY 2002
. In
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ity in the mean and in the mean square. The condition for me
square stability is, of course, stricter than that for the mean
indicates, in particular, that the apparent bandwidth of the sys
never goes down to zero~contrary to the deterministic systems!.
For example, in a simple caseKjj50 its minimal value is just
gmin5a/2 since the system becomes unstable in mean sq
when the value ofaKhh exceeds 1/2. In such a case, the respo
PSD does not exist, as can be seen in Eq.~9!. The bound
Kjh

2 /KjjKhh<1 must hold also for realistic modeling of the ran
dom excitations. It is of interest to note that Eq.~11! for the
response PSD coincides with Eq.~70! in paper@4#, which was
derived using an approximate averaging procedure, under the
ditions of smalla as well as small excitation spectral densities.
contrast, the derivation presented herein is exact, without res
tions beyond those for stochastic stability of the system.
course, this exact solution is valid only if the excitations are mo
eled as white noises, so that the SDE calculus is applicable.
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