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Robert M. McMeeking Appointed Editor of the Journal of Applied Mechanics

Dr. Robert M. McMeeking, Professor of Mechanical Engineer-
ing at the University of California at Santa Barbara, has been
appointed Editor of thdournal of Applied Mechanickr a five-
year term starting on July 1, 2002. He succeeds Dr. Lewis T.
Wheeler who has served in this position since January 1993.

After nearly ten years at the helm of the Journal, Lewis
Wheeler will step down on June 30, 2002. We thank him for his
leadership and service to the international mechanics community
in general and to the Applied Mechanics Division of the ASME in
particular. Under his leadership the Journal has maintained its
position as a premier journal in mechanics. Recent changes en-
acted including the increase of the page limit on manuscripts from
six to nine pages, the switch from quarterly to bimonthly publica-
tion, a faster processing time and a new printing process should
help make the Journal an even more attractive place to publish.

Robert McMeeking earned a Bachelor of Science degree in
Mechanical Engineering from the University of Glasgow and
Master of Science and Doctor of Philosophy degrees in Solid
Mechanics from Brown University. From 1978 to 1985 he was on
the faculty of the Department of Theoretical and Applied Mechan-
ics at the University of Illinois at Urbana-Champaign. Since 1985
he has been a Professor of Mechanical Engineering and Environ-
mental Engineering at UC-Santa Barbara where he has also served
two terms as Department Chair. He is a Fellow of the ASME and

has seryed as Associate Editor of theurnal of Applied Mechan- consultation with past editors of the Journal and past AMD chairs.

ics for six years. . . . McMeeking was selected from a strong field of candidates. His

. Mc.Meekln.gs research interests span jche field of S.Ol'd m(':'Chaanélection and this five-year appointment were approved by the

ics with particular emphasis on mechanics of materials and COMSME Publications Committee at the 2001 IMECE meeting. On

putational aspects. His publications include works in finite defoB’ehaIf of the AMD Executive Committee we extend a warm Wel-

mation plasticity, inelastic fracture, toughening mechanisms (g)me to Robert McMeeking to this most prominent appointment
n

ceramics, bimaterial fracture, powder consolidation, failure Qfyy assyre him the support of the Division in his efforts to bring
composites, ferroelectrics, etc. Robert McMeeking will bring e Journal to even higher levels of excellence

the editorship a strong connection with materials science which'is
an important driver of many modern applied mechanics efforts. . Lo

This appointment represents the conclusion of a more than Stelios Kyriakides
twelve-month search conducted by the Executive Committee in for the AMD Executive Committee

Notice on JAM Correspondence

Effective July 1, 2002, all correspondence concerned with previously submitted articles and all new manuscript sub-
missions should be directed to:
Professor R. M. McMeeking, Editor
Journal of Applied Mechanics
Department of Mechanical and Environmental Engineering
University of California
Santa Barbara, CA 93106
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W. Chen

=== f Dynamic Gompression Testing

" | of Soft Material
Department of Aerospace and Mechanical 0 0 a e rl a s
Engineering,
The University of Arizona, Low-strength and low-impedance materials pose significant challenges in the design of
Tucson, AZ 85721-0119 experiments to determine dynamic stress-strain responses. When these materials are
tested with a conventional split Hopkinson pressure bar, the specimen will not deform
homogeneously and the tests are not valid. To obtain valid data, the shape of the incident
D. J. Frew pulse and the specimen thickness must be designed such that the specimens are in dy-
Assoc. Mem. ASME namic equilibrium and deform homogeneously at constant strain rates. In addition, a
sensitive transmission bar is required to detect the weak transmitted pulses. Experimental
M. J. Forrestal results show that homogeneous deformations at nearly constant strain rates can be
Fellow ASME achieved in materials with very low impedances, such as a silicone rubber and a poly-
urethane foam, with the experimental modifications presented in this study.
Sandia National Laboratories, [DOI: 10.1115/1.1464871
Albuquerque, NM 87185-1174
1 Introduction used and modified to determine the dynamic properties of a vari-

. i . ety of engineering materials, such as met&@say[5]), concrete
Materials with low-strength and low-impedance, such as elass . .

. o Ross et al.[6]), and ceramic§Chen and Ravichandrdi7—9)).
tomers and polymeric fO?mS' have found a W'd.e range of app\ﬁ}\%”ey et al.[10] summarized conventional SHPB tests for a
cations for shock absorption. Rubbers have traditionally been us

for shock-absorbing components; €.g., engine mounts, Suspr&%nge of hard polymers. Instead of the single data point obtained

sions, and gaskets in the automotive industry. More recently, el r&h the Charpy test, SHPB experiments provide complete dy-
' g ) Y. Y, mic stress-strain curves as a function of strain rates. However, if
tomers have been used to improve the drop-tolerance of port

electronic products, such as notebook computers and cellu specimen is a soft material with a low mechanical impedance,

hones Acpcidentalydro s have been the ma?n failure mode ch as silicone rubbers and polymeric foams, the conventional
P ; P . u lit Hopkinson pressure bar technique needs to be modified be-
many of these portable products. Polymeric foams have also bei'l

used to desian crash-resistant components in air and around 18 reliable dynamic data can be produced. Because of the drastic
9 P 9 iYﬁpedance mismatch at the soft sample/transmission bar interface,

hicles. With tight restrictions on the size and weight faced b ettransmitted signal can be too weak to be accurately measured

erSCIi?(?tethé g Insaésis?ggagrtl(;eh:xs :ﬁgrratgisr;azirﬁ g??g:lsset the surface strain gages on a steel bar. Viscoelastic bars have
P y P 9y P n used to obtain a transmitted signal with sufficiently high

materials under impact. When the dynamic response of an ela inal-to-noise ratidGamby and Chaoufil1], Wang et al[12],

meric or polymeric structure used as a shock absorber needs toZ 0 et al[13], and Sawas et al14]). However, dispersion and
predicted, _the finite elemem analysis met_hod IS commonly usedaq?enuation corrections in data reduction and the dependence of
the analysis tool for materials that experience nonlinear deforrqs)e-‘r material on temperature, moisture level, and aging factors

tion and very 'afge stramé\{allee and Shukld.1]). A.” material have brought uncertainties into the data from viscoelastic bar ex-
models need reliable experimental data to determine the mate‘ggL

constants and to check the accuracy of the model over the ran iments. Furthermore, it takes longer time for the specimen to
; Lo . y 9 ieve dynamic equilibrium when sandwiched between two low-
its application. It is therefore essential to understand the mech

- A ) airﬁ'fpedance bar¢Frew et al.[15]). To avoid these uncertainties,
cal response and failure behavior of soft materials under dynanrlh%gnesium baréGray and Blumenthdl16]), a hollow aluminum
loading conditions. transmission bafChen et al[17]), and a quartz-crystal-embedded

When very large strains and high strain rates are expepted fiminum transmission baiChen et al[18]) have been devel-
deformation processes, current standard dynamic experimentgl, '+ 2iidated

techniques for testing elastomers and polymeric foam materia he effects of specimen thickness for low-impedance speci-

are inadequate. Rotating eccentric test mach(ﬁﬂamroch[z]) . mens must also be thoroughly investigated because stress waves
are only capable of developing large specimen strains at relat'v%léfenuate when traveling through the soft specimens. A thick

i?vlv freiqnuen(i::jesl. \r/Ibtrr?tlrn\?v Tid;meiihﬁar{ 'St[\?])r Cﬁin ho;:en d?{ i ecimen acts as a shock absorber instead of a representative vol-
€lop sinusoida’ or other waveto put at very high Irequenc e for material properties. In his original work, Kolsk¥]

but cannot _achleve the desired Iarg_e sample strains. U'”"’?SO Kinted out that a thick specimen would invalidate the assumption
wave techniques produce small strains and usually have sig

cant material damping as the waves travel throuah soft materi at the axial stresses on both sides of the specimen were nearly
ping 9 al. Kolsky then studied the thickness effects on the dynamic

: 4 . u
The dynamic destructive .Ch"%rpy test cannot provu_ie an accur %’ﬂpressive stress-strain behavior of polythene as he varied the
and complete stress-strain history. The split Hopkinson pressyt

> ! ;?ecimen thickness from 2.68 mm to 0.25 mm. The peak strength
bar (SHPB), originally developed by Kolskjd], has been widely of the thickest specimen was only one-fifth that of the thinnest

" Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF one. Recently, Dioh et 419 pointed out that specimen thickness
MECHANICAL ENGINEERSfor publication in the ASME GURNAL OFAPPLIEDME- ~ WaS an Important parameter when the SHPB technique was used
CHANICS. Manuscript received by the ASME Applied Mechanics Division, April 5,10 test glassy polymers. Gray et §16,20 performed SHPB ex-

2001; final revision, November 14, 2001. Editor: K. T. Ramesh. Discussion on tigeriments with several thicknesses of Adiprene L-100 rubber and

paper should be addressed to the Editor, Prof. Lewis T. Wheeler, Departmentﬁ(ﬁ : S h .
Mechanical Engineering, University of Houston, Houston. TX 77204-4792, and wi owed that dynamlc eqU|I|br|um was achieved du“ng later Stages

be accepted until four months after final publication of the paper itself in the asmef the experiments for t.he thinne.r samples. '
JOURNAL OF APPLIED MECHANICS. We used pulse shaping techniques to obtain homogeneous de-
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formations at a nearly constant strain rate for the soft specimdiefore valid data can be obtained. For testing RTV 630 silicone
Some of the advantages and necessities for shaping the incideiber specimens, we used an aluminum SHPB appaf@tusn
pulse for split Hopkinson pressure bar experiments were discussedl Zhang[27]) to capture the weak strain signals transmitted
20 years ago. Frantz et 421] and Follansbe&22] wrote review from the low-impedance specimens. As schematically shown in
papers that discussed pulse shaping for SHPB experiments wiiQ. 1, the 7075-T6 aluminum elastic bars had 19-mm diameters.
metal samples. In these review papers, the authors emphasitéd incident, transmission, and striker bars were 1802, 762, and
that a slowly rising incident pulse is preferred to a pulse that ris@95 mm long, respectively. The strain gages shown in Fig. 1 were
steeply in order to minimize the effects of dispersion and allovacated at 560 mm from the impact surface on the incident bar and
the sample to achieve dynamic stress equilibrium. Frantz et 803 mm from the sample/bar interface on the transmission bar.
[21] and Follansbed22] discuss experimental techniques foiThe RTV 630 rubber specimens had a diameter and length of 12.7
pulse shaping and a numerical procedi28] for correcting raw mm with an aspect ratio of 1.0. As previously discussed, other
data for wave dispersion in the bars. To shape the incident pulsgestigators, such as Gray et (6,20, have shown that thinner
these authorf21,22 machined a large radius on the impact faceamples are required for valid tests on some rubber-like materials.
of the striker bar or placed a tip material between the striker aftbwever, we use a sample with an aspect ratio of 1.0 such that
incident bars. The tip material or pulse shaper was a disk slighttygh-speed digital photographs clearly show the sample deforma-
larger than the bars and 0.1 to 2.0 mm thick. The pulse shapien, which illustrates the problems associated with SHPB tests on
materials were paper, aluminum, brass, or stainless steel. Frasuft materials.
et al.[21] present experimental results that show the advantagesAccording to the conventional SHPB theofGray [5]), the
of pulse shaping for a 3041 stainless steel sample at an appraaminal strain rate:(t) and nominal stress(t) in the specimen
mate strain rate of 4,500 $. In addition, these authof&1] show are given by
that a properly chosen tip material or pulse shaper can also be
used to generate a nearly constant strain rate in the sample. Gray B(t)=— ﬁs (t) 1)
[5] and Gray and Blumenth&l 6] present additional information L "
in recent survey papers that include these subjects. However,
Duffy et al. [24] were probably the first authors to use pulse 0
shapers to smooth pulses generated by explosive loading for the o(t)= A_SESf(t)’ )
torsional split Hopkinson bar. A more recent and complete discus- o .
sion on pulse shaping is given by the auth@sew et al.[25]). whereL andAg are the original sar_nple length and crpss-sectlonal
In this paper, limitations of the SHPB technique for testing soft’€&;Co, E, and A, are the elastic bar-wave velocity, Young's
materials are illustrated, and necessary modifications are pfeodulus, and cross-sectional area of the bartt) ande(t) are
sented to obtain valid stress-strain data. In particular, the thickné8gasured reflected and transmitted strain signals on the bar sur-
of RTV 630" silicone rubber specimens is systematically varied f@ces. Figure 2 shows oscilloscope records of the incident, re-
determine the thickness effects. In addition, a pulse shaping tefigcted, and transmitted strain signals for an experiment where the
nique is used to ensure a homogeneous deformation at a ne&ffjker bar impacted the incident bar at 31 m/s. Equatibrand
constant strain rate in the soft specimen. It was found that a profié@ nearly constant amplitude of the reflected signal suggest that
pulse shaper and a reduced thickness must both be carefully @& dynamic deformation of the specimen was at a nearly constant
termined to achieve a dynamic equilibrium state of stress in ti§&ain rate. Equatiof2) and the very low amplitude of the trans-
specimen and obtain a nearly constant strain rate. To show éuifted signal suggest a very low average stress in the specimen.
techniques are reliable for extremely low-impedance materials, W@wever, Egs(1) and (2) are valid only if the sample is in dy-
also present dynamic stress-strain data for a low derg@p hamic stress equilibrium and undergoes a homogeneous deforma-

kg/m?’), r|g|d, and closed-cell p0|yurethane foam. tion (Gray and B|Umenth6[|16]) We next show that the dynamiC
deformation process of the sample during this SHPB experiment
2 A Conventional Split Hopkinson Pressure Bar does not undergo homogeneous deformation. Thus, conclusions

. . - drawn from the strain signals and E¢%) and(2) are not valid.
(SHPB) Experiment With an RTV Silicone Rubber As shown in Fig. 1, a high-speed digital Imacon 468 camera

The working principles of the SHPB technique are well docuwxas focused on the rubber test section of the SHPB setup. Figure
mented(Kolsky [4], Lindholm[26], and Gray[5]). The length-to- 3 shows the high-speed camera record of the dynamic deforma-
diameter ratios(aspect ratigsof the cylindrical specimens are tion process of the rubber sample during the SHPB experiment.
typically 0.5—1.0 in order to minimize the inertial and end fricThe first image was taken before the loading pulse reached the
tional effects. However, when the specimen is a low-strength aegdecimen. The next seven images were taken at 10, 40, 70, 100,
low-impedance material such as a silicone rubber or a polymefi80, 160, and 19Qks after the arrival of the incident pulse at the
foam, the limitations of the SHPB technique must be recognizegecimen. In each image, the grids are used as the background for

reference. The dark rod on the right is the incident bar, which

" IGE silicone, 260 Hudson River Road, Waterford, NY, 12188. moves toward the left during loadinglue to the optical system

Striker Incident bar Specimen Transmission bar

| A o o El “““ v 5 ]
- / e INC
Pulse shaper Straln gauge o Strain gauge

fore and e Imacon imaging area for &
I e e— ——]
Wheatstone Wheatstone
Bridge Bridge

Pre-amplifier ;:i Oscilloscope t:::i Pre-amplifier

Fig. 1 A schematic illustration of a split Hopkinson pressure bar setup
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Fig. 2 Oscilloscope records of a SHPB experiment on a silicone rubber

setup, the moving direction appears to be opposite of that illugiat a very small axial force was transmitted into the transmission
trated in Fig. 1. The aluminum bars are covered by dark tape tbar even though the specimen deformed significantly. The small
avoid strong glare on the images. The dark rod on the left is th@ansmitted signal shown in Fig. 2 is also consistent with this
transmission bar. The light-colored specimen is sandwiched h#bsservation. However, the specimen recovered after the impact
tween the dark bar-ends. The series of images in Fig. 3 show tHagding shows significant damag€ig. 4), even though the stress
after impact, significant deformation occurs near the impact-eid the specimen calculated froif®) and the weak transmitted

of the specimen as evidenced by the large lateral deformation nemal shown in Fig. 2 is very small.

the incident bar. Meanwhile, the other end of the specimen has ndrhe results shown in Figs. 2—4 indicate two distinct character-
visible deformation. The large, localized deformation then propéstics in dynamic compression experiments involving elastomeric
gates toward the transmission bar and, when reaching the traspgecimens with the conventional SHPB technigqignonequilib-
mission bar/specimen interface, is reflected back into the spedism stress state an@) nonhomogeneous deformation and non-
men. During the entire experiment, the transmission bar/specimsonstant strain rate in the specimen. The propagation of the defor-
interface nearly remained at its original position, which indicatesation wave in the specimen revealed in Fig. 3 clearly indicates a
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Fig. 3 Sequential images of a rubber deformation during a SHPB test

216 / Vol. 69, MAY 2002 Transactions of the ASME



neous deformation during dynamic compression, which is consis-
tent with the conclusions by previous investigatip#d6,19. The
wave speeds in the rubbers are very low compared to those in
metals and ceramics. A reduced specimen thickness is therefore
necessary. Second, the rise time of the incidading pulse is

too short. The rise time in a conventional SHPB is typically about
10 ws, which is too short for the stress waves to travel back and
forth inside the soft specimen more than three times to reach a
dynamic stress equilibriurfGray [5], Chen et al[28], and Rav-
ichandran and Subha$®9]). The shape of the loading pulse pro-
file must be carefully controlled to facilitate an equilibrium state
of stress and a homogeneous deformation at a nearly constant
strain rate.

3 Modified SHPB Experiments With RTV 630 Silicone
Rubber

In this section, we present modifications to the conventional
SHPB technique for the valid compression testing of soft materi-
als. We show that RTV 630 silicone rubber samples are in dy-
namic stress equilibrium and have nearly constant strain rates over
most of the test durations.

Fig. 4 An RTV 630 silicone rubber specimen recovered after a

SHPB test (the scale is in centimeters ) 3.1 Dynamic Stress Equilibrium. To check dynamic stress

equilibrium directly, 0.25-mm thick circular piezoelectric
) _ transducers(X-cut quartz crystal disks of the same diameter as
nonhomogeneous deformation state and thus a nonequilibrige barg were attached at both ends of the specimen to determine
stress state over the entire duration of the experiment. Thus, the axial load histories on the front and back surfaces of the speci-
stress and strain measured through incident and transmission bﬁé‘h The mechanical impedance of the self-generating quartz
cannot be correlated to any unique stress-strain state in the spggjstal transducer is very close to the mechanical impedance of
men due to the nonuniform deformation. The nonequilibriutthe aluminum bars, which ensures that the introduction of the
stress state is also demonstrated by the fact that the specimegugrtz disks does not affect the one-dimensional wave propaga-
extensively damagedFig. 4), even though only a small load istion in the bargChen et al[18]). Quartz-crystal force transducers
transmitted through the specimen as shown by the small amp{ave been used by previous investigators to measure dynamic
tude transmitted signal in Fig. 2 and by the nearly stationary pgsrce profiles(Karnes and RippergdB0], Wasley et al[31], and
sition of the transmission bar in Fig. 3. Even though the reflectebgami et al[32]). To prevent the large lateral expansion of the
signal in Fig. 2 suggests that a constant strain rate has begyi specimen during axial compression from damaging the brittle
reached in the specimen based on classical SHPB theory, the §artz crystal, a thin aluminum disk the same diameter as the
age_‘s n Flg.. 3 show that the strain rate cannot be constant over Rtz disk was p|aced between the quartz Crysta| and the Speci-
entire specimen. ] ] men. The aluminum disk also serves as an electrode to collect
The conventional SHPB has been an effective tool for invesgharges from the quartz crystal transducer. The modified experi-
gating the dynamic flow behavior of ductile metals. Howevemental setup for recording stresses is schematically shown in Fig.
when the specimen is a low-impedance and low-strength materigl.;The quartz-crystal transducer signals and the strain gage signals
the results shown in Figs. 2—4 show that the reflected signal is Bgm incident and transmission bars were recorded using a Tek-
proportional to strain rate nor is the transmitted signal propofronix TDS 420A digital storage oscilloscope through ADA400A
tional to specimen stress. Thus, the reflected and transmitigifierential amplifiers and Kistler 5010B charge amplifiers.
pulses that are commonly used to obtain dynamic stress and straiynamic stress equilibrium can also be checked by comparing
histories in the specimen witfl) and(2) are both not valid for the the transmitted signall-wave and the difference between the

experiment described in this section. Therefore, the limitations picident and reflected signal@-wave (Follansbee and Frantz
SHPB in testing soft materials should be recognized and remedied

_bef_ore reliable results can be_ Obtai_ned- First, the images in Fig: EVaIpey—Fisher Corp., 1994The User's Guide to Ultrasound Producf5 South
indicate that the rubber specimen is too thick to have a homog®; Hopkinton, MA 01748.

Quartz Aluminum

Striker incident bar transducer \ /_ Disk Transmission bar

] A o B I |
-] \_
Straln gauge_/ _______] Strain gauge
Pulse shaper fore ande Spacimen for & 88
[ e m—— =
Wheatstone Charge Charge Wheatstone
Bridge Amplifier Amplifier Bridge
I Pre-amplifier l I Pre-amplifier ] l Pre-amplifier ] I Pre-amplifier I
:{ Oscllloscope l::_

Fig. 5 A schematic illustration of a modified SHPB setup for stress equilibrium
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Fig. 8 Front and back-end force histories during a SHPB test with pulse shaping for various specimen thicknesses: (a)12.7

mm, (b) 6.58 mm, (¢) 3.06 mm, and (d) 1.53 mm

[23], Wu and Gorhani33], and Gray et al[16,20). The quartz- the large spike in the front-end force may have initiated the failure
crystal method is a more direct measurement of the end forcesinrihe specimen. When the thickness was reduced to 3.06 mm, the
the specimen. The method is also more effective when the spexscillations in the force histories were getting close to being in-
men is soft. The incident and reflected signals are nearly the sapi@se, but the amplitude of the front-end force was still signifi-
in this case, which makes 2-wave calculations very inaccurate.cantly higher(Fig. 6(c)). When the specimen thickness was fur-
ther reduced to 1.53 mm, no significant improvement in stress
uilibrium was observedFig. 6(d)). Since the desired stress
ilibrium was never reached as the aspect ratio of the specimens
s reduced from 1.0 to 0.12, we concluded that a state of dy-

3.2 Sample Thickness Effect. To determine the effect of
specimen thickness on the dynamic stress-strain behavior of
silicone rubber during a SHPB experiment, we conducted expe\;\i,-
ments with 12.7-mm diameter samples that had thicknesses alic sress equilibrium in the rubber specimens cannot be ob-
12.7, 6.58, 3.06, and 1.53 mm. The striker initial velocity wag,ineq py only reducing the specimen thickness. Next, we show
adlusted accordlng. to the specimen th"?"f.‘e.ss in an effort to Maifat the incident pulse needs to be controlled to avoid the sudden
tain the same nominal strain rate. To minimize the effects of f”%@act that results in the large spike in the front-end force.
tion on specimen/bar interfaces, the aluminum bar end faces wer
lapped, and a thin layer of Vaseline nursery jelly was applied to 3.3 Pulse Shaping. As shown in Fig. 2, the shape of the
the interfaces. Figure(é) shows the dynamic force histories onincident pulse in a conventional SHPB experiment is nearly trap-
the front and back surfaces of the specimen as recorded by the ®roidal with a rise time of about 1@s. The results shown in Fig.
embedded quartz-crystal force transducers. The results in @)g. 66 indicate that the nonequilibrium stress state or the nonhomoge-
show that the specimen with thickness 12.7 r@aspect ratio of neous deformation in the specimen shown in Fig. 3 cannot be
1.0) was never in a state of dynamic stress equilibrium during ttevercome by a reduction in specimen thickness alone due to the
entire 150us loading period. The large spike near the beginningharp rise of the loading pulse. The shape of the loading pulse
of front-end force history was at least an order of magnitude largerust be controlled so that its rise time is longer than the stress
than the maximum amplitude in the back-end force history. Theqjuilibrating time in the specimen. In this way, significant
probably caused failure of the specimen that started at the fratgformation/failure in the specimen occurs only after dynamic
end. This large amplitude of front-end force never propagated éguilibrium has been reached. Pulse-shaping techniques have re-
the back-end where the force was significantly smaller. A 1-wawently been further developed to control the loading puRav-
and 2-wave analysi§Gray and Blumentha]16]) also produced ichandran and Che84], Nemat-Nasser et g35], Togami et al.
similar results. When the specimen thickness was reduced to 6[38], and Frew et al.15,25)). In this study, the control of rise time
mm, the force history profiles were very similéig. 6(b)), and was achieved by attaching a combination of C11000 cofj8ét)
the desired dynamic stress equilibrium was never reached. Agand plastic disks, called a pulse shaper, at the impact end of the
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Fig. 9 Sequential images of a thin rubber specimen deforming during a SHPB test

incident bar. The plastic deformation of the pulse shaper upoment, whereas the amplitude of the spike from the front end re-
impact effectively increases the rise time of the incident pulse @uces significantlyFig. 8b)), as compared to the 12.7-mm thick
the bar. The amplitude and duration of an incident pulse are capecimen. The specimen did not fail due to the reduced loading
trolled by varying the pulse shaper and the striker bar velocity amanplitude. When the thickness was reduced to 3.06 mm, both of
length. An ideal incident pulse must produce dynamic sampliee force history profiles follow the same trend qualitativéhig.
equilibrium and a nearly constant reflected pulse for constaBc)). However, significant oscillations existed in the front-end
strain rate. If the specimen is linearly elastic, ramp incident pulsésce history. These oscillations could not propagate through the
of different slopes will generate constant strain rates in the spettiickness of the rubber specimen due to the dispersive nature of
men (Frew et al.[15,25). If the specimen is not linearly elastic, the rubber material. Therefore, the stress state and deformation in
as in most cases with rubber and foam materials, the shape of the specimen were still not uniform or homogeneous. When the
desired incident pulse depends on the shape of the transmitspecimen thickness was further reduced to 1.53 mm, the oscilla-
pulse. This situation requires iterations in experiments to approatitns in the front-end force history were much smaller in ampli-
constant strain rates through precise control of the profiles of thede and the front-end force history nearly agreed with the back-
incident pulses. Frew et a[25] have developed an analyticalend force history(Fig. 8d)). Therefore, at this thickness, the
model to predict the incident pulse in terms of the dimensions epecimen did not absorb any significant portion of the loading
a single-disk pulse-shaper, the length and the material of thalse. Rather, the entire specimen was in a nearly stress-
striker, and the striking velocity. This model provides an effectivequilibrium state. The mechanical response averaging over the
guidance in the dynamic experimental iterations to approach vagecimen volume represents the pointwise material behavior of
test conditions. A typical oscilloscope record of a pulse-shapétke silicone rubber under impact. Thus, for this case we obtain
SHPB experiment is shown in Fig. 7. valid stress-strain data.

The four specimen thicknesses of 12.7, 6.58, 3.06, and 1.53 mnirhe results shown in Figs. 6 and 8 indicate that, to achieve a
were used again for the pulse-shaped experiments with RTV 68¢namic homogeneous deformation in the soft specimen with
silicone rubber. Figure 8 shows the dynamic force histories on t&#1PB testing, pulse shaping must be employed. In addition, a thin
front and back surfaces of the specimens as recorded by the tspecimen must be used. However, reducing the specimen thick-
embedded quartz-crystal force transducers. The results in@)g. 8hess alone will not facilitate a dynamic stress equilibrium and
show that, even with a pulse shaper, the specimen with an aspatiform deformation. On the other hand, pulse shaping alone on
ratio of 1.0 never reaches a state of dynamic stress equilibriuthick specimens will not result in an equilibrium state of stress
This is consistent with the intrinsic behavior of rubber; i.e., a thickither. It should be noted that, when the thickness of the 12.7-mm
piece of rubber will act as a shock absorber. There is again a ladjameter specimen is reduced to 1.53 mm as required for axial
spike in the front-end force historfFig. 8@)), which may have stress equilibrium, the friction on the interfaces between the speci-
caused the failure of specimens, starting at the front end. Thigen and the bars becomes a concern. To minimize the friction
large amplitude of front-end force never propagated to the baeKects in this study, the bar ends were lapped and a thin layer of
end where the force was significantly smaller, which is consisteviaseline nursery jelly was applied between the specimen and the
with the function of a shock absorber. When the specimen thickar ends, as mentioned previously. Using such smooth bar end-
ness was reduced to 6.35 mm, the force history profiles were véages and proper lubrication in the dynamic experiments, the thin
similar to the thicker sample case, although the back-end forspecimen expands in the radial directions nearly freely as shown
had a much higher amplitude during the later stages of the expénithe high-speed digital images in Fig. 9, which were taken using
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Fig. 11 Dynamic compressive stress-strain curve of an RTV 630 specimen

back-light illumination condition to show the specimen edge momorresponds to a constant strain rate in the soft specimen. The
clearly. Figure 9 also show that the specimen deformed uniformfyulse shaper should be designed such that an equilibrium stress
When the axial forces are nearly the same on both end-facesstdte is reached, as shown in Figd® and the specimen is de-
a 1.53-mm thick specimen, the axial stress in the specimenf@sming at a near constant strain rate over a major portion of the
expected to be nearly uniform over the 1.53 mm thickness. Theexperiment duration, especially during the late stages of the ex-
fore, the deformation is also expected to be uniform in the spegeriment when the loading levels are high, as shown in Fig. 7. The
men as verified by the high-speed photographs shown in Fig.fulse shaper for this experiment consisted of a hardened C11000
The basic assumptions of SHPB are thus verified in soft mater@pper disk with a 5.56 mm diameter and 2.42 mm thickness,
testing by the careful employment of a pulse shaper and a ttanother hardened C11000 copper disk with a 1.64 mm diameter
specimen. These verified assumptions are: the specimen unded 1.62 mm thickness, and a layer of silicone rubber with a 1.64
goes homogeneous deformation; the bars remain elastic; and i@ diameter and 1.51 mm thickness at the impact end.
specimen/bar interfaces remain flat. The last two assumptions ardfter all the basic assumptions are validated, the experimental
easily satisfied since the aluminum alloy bars are much strongkata can be reduced using conventional SHPB mettiGday
and more rigid than the elastomeric specimens. [15]). Figure 10 shows a typical dynamic strain history for the
When all the basic assumptions are satisfied, strain rate in th&3-mm thick RTV 630 specimen. The original oscilloscope
specimen is proportional to the reflected signal shown in Fig.récords of the SHPB experiment on this specimen are shown in
and is given by(1). A constant amplitude of the reflected pulseFig. 7. The fact that the strain increases almost linearly with in-
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creasing time during the majority of the experiment's duratio4 A Modified SHPB Experiment With a Low-Density
indicates that a nearly dynamic constant strain rate has beeglyurethane Foam

achieved. The slope is taken as the strain rate of the experimen? . . . .
On the other hand, if a pulse shaper is not used, dynamic stres esides elastomers, the SHPB technique with pulse shaping

equilibrium cannot be reached which results in an invalid exper‘?‘-nd a thin specimen can also be used to determine the dynamic

ment. Figure 11 shows the dynamic compressive stress Stréﬁrg]pressive behavior of other soft materials. For example, Fig. 12
: . . ) s the oscilloscope record of a SHPB test on a polyurethane
curve of the RTV 630 specimen at a strain rate of 3200/s. T W ! P polyu

. ’ , L Gam specimehwith a density of 290 kg/fh The rigid closed-cell
stress-strain curve is considered to represent the realistic dynaﬁ}ﬁ%cimen had a 12.7 mm diameter and 5.21 mm thickness. The

compressive behavior of this material because dynamic streaikness is more than ten times the average cell size in the foam.
equilibrium and homogeneous deformation at a nearly constatfter iterations, the pulse shaper to achieve dynamic equilibrium
strain rate have been achieved during the experiment, as showRifj a nearly constant strain rate consisted of a hardened C11000

Figs. 7, &d), 9, and 10. It was also noted that the specimen did nebpper disk with a 6.42 mm diameter and 2.42 mm thickness, and
fail due to the absence of an excessively large amplitude spike in

the front-end force history. SGeneral Plastics Manufacturing Co., Tacoma, WA 98409
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Fig. 12 A typical oscilloscope record of a dynamic compressive experiment on a
polyurethane specimen with a pulse shaper on an aluminum SHPB
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stant amplitude in the reflected signal in Fig. 12 indicates a con- the Rapid Deformation Behavior of a Range of Polymers,” Philos. Trans. R.
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¢ 5. conper Thermoelasticity Solutions
e | fOr Straight Beams

Harrisburg, PA 17105

W. D. Pilkey This paper presents a thermoelastic solution technique for beams with arbitrary quasi-
Department of Mechanical and static temperature distributions that create large transverse normal and shear stresses.
Aerospace Engineering, This technique calculates the stress resultants and centroid displacements along a beam.
University of Virginia, Then, the stress resultants and temperature distribution are used to calculate the stress
Charlottesville, VA 22903 distributions on a cross section of the beam. Simple examples demonstrate the numerical

efficiency of the proposed technique and the inadequacy of the strength of materials
theory to solve these types of problefqiB30Il: 10.1115/1.1427340

Introduction Pilkey and Liu[3] used a finite element code to solve the bihar-
- . monic equation. By using a plate element they were able to obtain

The theory of thermoelasticity predmts the response of a SOl analogical solution for the Airy stress function for a beam with
continuum to thgrmal and mechanical loads apd dlgplacem simply connected cross section. Although this method was
boundary condl_tlc_ms. Unfortuna_tely, the resulting d_|fferent| uccessful, they did not attempt to find the second stress function
equations are difficult to solve directly. Hence for particular 98equired for the remaining two shear stresses. All of these at-

ometries like beams, the thermoelastic equations under varigd pts to use Boley’s theory for calculating the stress distribution

assumptions have been reduced to tractable sets of equation$,ff3 thermally loaded beam have produced accurate results. But
ferred to as the theory of strength of materials. For beams,

. 2T " y have all been limited to beams with simply connected cross
strength of materials solution is based on the assumption that tions.

beam is long and thin and the transverse normal stresses angl, gevelop an improved thermoelastic solution technique for
strains are small. straight beams, this paper derives a solution for relatively simple
Consider the class of thermally loaded beam problems that hay€ometry and loading and then assumes that the relationships be-
large transverse normal stresses and strains. For these, the strefgiln stresses and stress resultants and between stress resultants
of materials solution technique is insufficient to predict the resng centroid displacements hold for more general cases. The ther-
sponse. Boley1] was able to prove that a beam with a simplymoelastic solution is developed for a prismatic beam with an ar-
connected cross section would fall into this class of problems onfjtrary cross-sectional shape, without in-span mechanical loads or
if the temperature distribution on the cross section was not plangpports, and with a temperature distribution that varies linearly
harmonic §¥2T+0), i.e., only if there are thermal sources on thevith respect to the span of the beam. Henca,iif the coordinate
cross section. He implied that this is also true for beams witdllong the length of the beam, then the temperature distribution can
multiply connected cross sections. As will be demonstrated, thie written as
contention is not the case for beams with multiply connected cross
sections. T(x,y,2)=T1(y,2) +xT,(y,2) 1)
This paper intends to propose a method to solve the thermoelas- ) )
tic equations for straight beams which can be applied in a systel?ereT, and T, are arbitrary functions oy andz.
atic manner to large complicated structures. Since the proposed© 0btain the thermoelastic solution for the simple beam, com-
method is based on the thermoelastic equations, it can be uB9feNts of the stresses and displacements are defined to satisfy
accurately on thermally loaded beam structures with large trarfifferential equations that coincidentally are the same as the rela-

verse normal stresses. Hence it provides a new tool for engineé‘r‘%;r.‘smphS thﬁt rbepresclant. the state ?f lplane st(aint.) Thiﬁ does not
Previously, methods to solve the thermoelastic equations f§€an that the beam is in a state of plane strain, but that compo-

straight beams have been developed. In 1960, Bdlpresented nents of the stresses and displacements satisfy the equations that

a thermoelastic formulation for a free-free prismatic beam. efi_ne plane strain. This approach permit§ commercial plane-
used an Airy stress function to calculate the stress distributions BRain programs to _be use_d to solve the straight beam problem.
he thermoelastic solution of the simple beam defines a solu-

the cross section of a prismatic beam with a temperature dIStrItwo'n technique which is uncoupled. First, the stress resultants and

tion that is arbitrary except that it varies linearly along the Iengtcentroid displacements are calculated alona a beam. as in strenath
of the beam. If the beam lies along tlxeaxis, the Airy stress P 9 ' 9

function orovides a solution for the three normal stress of materials. By identifying an alternative definition of the thermal
P . S6S. load, traditional strength of materials can be used to get accurate
oy, 0, and the shear stress,,. The Airy stress function is

defined by the bih ; tion. The sh ¢ d stress resultants and centroid displacements. Once they are
elined by the biharmonic equation. The shear SWesgeand gy the stress resultants and temperature distribution are used
oy, are determined by a second stress function.

) S h X . . to calculate the stress distributions on the cross section of the
Various individuals have tried to solve the biharmonic equati

. , . Beam.
in Boley's formulation. In 1960, Barrekette2] applied Boley’s
theory to a prismatic beam with an elliptical cross section and
solved the biharmonic equation using a series solution. In 1989,
Basic Equations of Thermoelasticity

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF . . . . . L
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- Strain-Displacement Relationship. For linear elasticity, the
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Apr. 225train36i. (i,j=x,y,z) are defined by
1993; final revision, Aug. 9, 2001. Associate Editor: X. Markenscoff. Discussion on !

the paper should be addressed to the Editor, Professor Lewis T. Wheeler, Department 1 i .

of Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and €j=73U;+u; ) (i,j=xy,2) (2)
will be accepted until four months after final publication of the paper itself in the . . . .
ASME JOURNAL OF APPLIED MECHANICS. whereu; represents the displacements in g, andz direction.
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Material Law.

stresses and strains are related by
o-ij=ﬁij[)\ekk—(3}\+2,u)aT]+2,u,eij (3a)

or

1
eisz[(l+V)o-ij_5ij(va-kk_aET)] (3b)

wherei,j,k=x,y,z. The constanty, u, A and E satisfy 2u(1
+v)=E and\(1+v)(1—-2v)=vE, «ais the coefficient of ther-
mal expansiong;j=1 if i=j, and ;=0 if i#].

Equations of Equilibrium (No Body Force9. For a body to
be in equilibrium, the stresses must satisfy

(i,j=xy,2) (4)

0ij,j=0;

at every point in the body.

Plane-Strain Formulation

In plane-strain problems, the out-of-plane normal strain a
shear strains are assumed to be zero. This section presents
displacement formulation for a thermally loaded plane-stra

problem where the-axis is normal to the plane. Thug,,= e,
=¢€,,=0. A region on which the problem could be defined
shown in Fig. 1. The temperature distributionTis-T(y,z) and

the unknown displacements in tii@andz directions are defined as
uy=uy(y,z) andu,=u,(y,z). Substituting the displacements and
temperature distribution into the strain-displacement relationship Nx=

and material law in Eq92) and(3a) yields

aij= &[Ny — (BN +2u) aT]+ u(u; j+u;p);  (ihj,k=Y,2)
)
Txx=N(Uy yF+ U, ;) = (3N+2u)aT;
Substitution of the stresses of E§) into the equilibrium Eq(4)
leads to the two differential equations

Sij[ AUk — (BN +2u) aT j]+ p(u; j;+uj ;) =0;

Oxy= 0x;=0.

(i,j,k=v,2)
(6)

which the displacement functions must satisfy in the region

the problem. The third equation of equilibrium is satisfied

automatically.

For a homogeneous, isotropic solid, thdraction free,o,,=o,,=0 on the boundary. Substituting the

stresses in Eq5) into Eg. (7) and settingo,,, and o, to zero
defines the boundary conditions as

[NUg,+ (A +2u)uy y— (3N +2u)aT]cos
+[\Uyy+ (N +2p)u, ,— (3N +2u) aT]sin? o

+2u(uy U, )cosysing=0 ®)
p(Uy o+ U, )(COS y—sir? )+ 2u siny cosy(u, ,— ) =0.

It follows from the uniqueness theorem presented by Boldy
that if u, andu, are smooth and satisf$) across the area arié)

on the boundary of the problem, the displacements constitute a
unique solution to the plane-strain problem, ignoring rigid-body
motion.

Straight Beam Formulation

This section derives a solution of the thermoelastic equations
for the prismatic beam in Fig. 2 without in-span loads or supports
r?cpd with a temperature distribution defined in E&). The end
Cfmgitions of the beam include mechanical loads and displace-
iments. The stress resultants on the cross section of the beam,
which are displayed in Fig. 2, include a normal resultajt, two

iﬁs\/?ear resultantsy, andV,, and two bending couplesd, and
5

If the origin of they-z plane is at the centroid of cross
section,N,, M, andM, are defined as

fo-xdi; My:fZUXXdA; Mzz—fanXdA 9)
A A A

whereA is the area of the cross section of the beam. By equilib-
rium, Vy, andV, are expressed as

V,=M,,; —V,=M,,. (10)

The solution of the thermoelastic equations is obtained by the
semi-inverse method in which assumptions are made about the
stresses at the outset. Then, the thermoelastic equations are solved
based on the assumptions. Since the beam lacks in-span loads and
supportsV, .=V, ,=0. This inspires the first assumption that

of (113)
SinceV, ,=V,,=0, Eq. (10 leads toM, ,,=M,,=0. This is

Oxzx— Oxyx— 0.

The stresses in Eq5) must satisfy the traction-free boundarythe basis for the second assumption that
conditions. The boundary conditions are defined by the outward
pointing normal stressr,, and the shear stress,,, which are (11b)
displayed on an exterior and interior boundary in Fig. 1. They atategrate the four expressions in E(L1b) with respect tox,
defined by giving

Oan= 0y COS i+ 04, SIN? -+ 207, COSY SiN Oyy=Oyy1+X0yy0;

Oxxxx— Oyy,xx— Ozzxx™ Oyzxx— 0.

O,,= 07T X020, Oy = a'yzl-i- XOyz

) (12)

=(cog i— sir? +siny cos — o),
Oam=(COS = SIT ) 7yat SN COSY(0™ ) = T X+ Ca(X) +YCol3)+ 2C(x)
hereo,, yyk, 02z, andoy, (k=1,2) are functions o and
z, andC;(x) is defined as

Ci(x):Cil+XCi2; (|:1,2,3) (13)

where C;; and C;, are constants. The form af,, in (12) is
different from that of the other stresses. This was done to accom-
modate the evaluation of stress resultants later.

At this point, the values oy, oyyk, 072k and oy, (K
=1,2) in Eq.(12) are defined to satisfy differential equations that
are identical in form to those that represent a traction-free plane-
strain problem on a region identical to the cross section of the
beam with a temperature distributidn, (k=1,2) from Eq.(1).

The beam in Fig. 2 is not in a state of plane strain, but that does
not prevent components of the stresses from satisfying the same
differential equations that define plane strain. uet(y,z) and
u,(y,z) (k=1,2) be the displacements in tlgeand z directions
that produce the stress componenfs,, oyyk, 0,k andoy, for
the temperature distributiofy . Hence the displacements, and

where ¢ is measured from the positivg-axis to the outward
pointing normal vector on the boundary. Since the boundary

Fig. 1 Multiply connected plane-strain region with traction
forces displayed on the inner and outer boundaries
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Fig. 2 Prismatic beam displaying the traction forces on the cross section
boundary and the positive stress resultants at the ends

uy (k=1,2) satisfy the plane-strain differential E¢6) and x2 x3 .

boundary conditiong8). Using Eq.(5), the stresses k, oyyk, Di(x)=Cir5 +Cizgs (i=1.23 (16)

0,2k andoy, can be expressed as
andC,;; andC;, are the same constants as in EtB). When the

_ . strains are integrated to get the displacements in , arbi-
ik = [N Unin = (3A+2p0) @il + sl U trary integrationgfunctionsgare producped. Most of thg?g have to be
defined to satisfy Eq11), but one remains arbitrary and appears
(i,j,n=y,z. k=1,2 in Eq. (15) as a warping termw(y,z).

14) Substituting Eq.(15) into the strain-displacement relationship
and the material law in Eq$2) and(3a) leads to the two remain-
k= MUyky T Uzi) = (BN +2u)aTy; (k=12 ing shear stresses
These representations of the stresses are functions afd z v (y*-2?

Hence, they can be used in Ed2) to define the stresses of the Txy= M| Wy Uyo— E(yCqu 2 C22+y2032”
beam without violating the assumptions in Efjlb). -
Once the values in Eq14) are substituted into Eq12), the (17)
material law in Eq(3b) will define four of the strains of the beam.
Use of these four strains and the strain-displacement relationship

v 22—y?)
in Eq. (2) produces the displacements Oxz= W+ Uz~ | 2Cty2Cpt —5—Cq

1 which satisfy the assumption in E(lL1a).
u(x,y,z2)=w(y,z)+ E[Dlvx(x)+yD2YX(x)+zD3,x(x)] Substitution of the stresses of E¢$2), (14), and(17) into the
equilibrium Eq.(4) provides three differential equations that the
displacem_ents in Eq(15 must satisfy. _Sin_ceuyk and u,, (k
Uy(X,Y,2) = Uy (Y,2) + XUy,(Y,2) =1,2) satisfy Eq(6) for a temperature distributiom, (k=1,2),
y two of the equilibrium equations are satisfied automatically. The
1 —z third equilibrium equation leads to the differential equation
—E[Dz(x)+v(yCl+ %Cﬁyz%” g q .
Tyx2 1 2v
(15) W,yy+W,zz+ w +uy2,y+u22,z+ ;_E (012+yC22+ZC’32)

UA(X,Y,2) =Uz(Y,2) + XUp(Y,2) =0 (18)
1 (22—y?) The stresses must satisfy the traction-free conditions on the
- E[D3(x)+ v| zC+yzC+ > C3” boundary of the cross section of the beam. The conditions are on
the outward pointing normal stress,,, and the two shear stresses
o,m and oy, shown in Fig. 2. Ther,,, and o,,, Stresses are de-
where the function®;(x) are fined in Eq.(7) and theo,, stress is defined by

226 / Vol. 69, MAY 2002 Transactions of the ASME



Oxn= 0y, SiNY+ oy, COSY. (19) wcosy+w,sinyg

v (y*=29
=| 2| YCiot —5—CptyzCsp| — Uy, |COSY
Since the beam lacks in-span loads and supperts=onm E 2
= ay,=0 on the boundary of the cross section. Singeandu, v (22—y?)
(k=1,2) satisfy Eq.(8) for Ty (k=1,2), the requirement that + E(z(‘,12+yz(‘22+ TC32 — Uy, |Siny. (20)
onn=0,m=0 on the boundary of the cross section is satisfied

automatically. This leaves,,=0 to be considered. Substituting Now consider the stress resultants and centroid displacements
Eq.(17) into Eq.(19) and settingr,, to zero defines the boundaryof the beam. Substitute,, from Eq.(12) into Eq. (9) and solve
condition for C;(x) to obtain the familiar relations

1
Ci(x)= K { Ny— jA(O'xxl'Fxo'xxz)dA}

Iy( —M,— f y(o'xx1+xo'xx2)dA) - Iyz( My_ f Z(Uxx1+XUxx2)dA)
A A

Ca(x)= (21)

Il,—17,
Iz( My_ fAZ(Uxx1+XUxx2)dA> - Iyz( —M,- fAy(Uxx1+XUxx2)dA>

Il

Cs(x)= Y
vy~ lyz

wherel, 1,, andl, are the cross-sectional bending moments dfons for oy, oy, 0,,, anda,,. Fifth, to calculatew, solve the
inertia. Since the beam lacks in-span supports and Id&ddpes Poisson equation irf18) with the boundary condition if20).

not vary with respect tox and M, and M, vary linearly with ~Finally, use Eq(17) to obtain the stress distributions fot,, and
respect tax. Hence the definitions o€;(x) in Eq. (21) are linear o,. This demonstrates how plane-strain theory can be used as an
functions ofx and do not violate Eq(13). The displacement end integral part of the thermoelastic solution of a straight beam.
conditions are applied to the centroid of the beam, which is at the

origin of they-z plane. Differentiating Eq(15) with respect tax  Comparison With Strength of Materials

and evaluating ay=2z=0 leads to By EQ. (30) 0= 1(0yyit 0,0 — aET, (i=12). AS u(aryy,
Cy(x) Cy(X) + 04,) approaches Qry,; approaches- aET; . By replacingoy
Uy x(X,0,0)= 7 Uy xx(X,0,00=— : with — «ET,; in Egs.(12), (21), and(22), they become identical to
E E (22) those for strength of materials. Hence the strength of materials
solution for the stress resultants, centroid displacements and nor-
U, ,(X,0,0)= — Cs(¥) ) mal bending stress is a special case of the thermoelastic solution
zocm E for small values ofv(ay,i+a,,). Note that if v is small then

. . . . strength of materials produces accurate results, but may not pro-

Note that the differential equations produced by substituting Egy,ce || the necessary results becausg and o;, which are
(21) into (22) are identical to those defined by strength of matg§gnored by strength of materials, may still be significant.
rials if oy is replaced by- «ET, (k=1,2).

If u,, andu,, (k=1,2) satisfy the plane-strain problem for the L
tempeyraturél' «» W satisfies Eq(18) and(20), andC; satisfies Eq. Application to Beam Structures
(21) and(22), then the displacements in E.5) satisfy equilib- As stated in the Introduction, the purpose of this thermoelastic
rium, material law, strain displacement, the traction-free boundadgrivation is to establish relationships on the cross section of a
conditions on the cross section, and the end conditions of thinple beam between stress resultants and centroid displacements
beam. It should be recognized that no effort is made to match thed between stress resultants and stress distributions, and then
stressesry,, 0yy, ando,, with the boundary conditions at the assume they hold for a more general case. Consider a beam struc-
ends of the beam. This is justified by Saint Venant’s principle dsre or frame with thermal loading. By assuming that the equa-
discussed by Boleyl]. Saint Venant's principle maintains thattions derived in the previous section hold at every cross section of
these effects on the stresses that are away from the ends of éllery member of the structure, a solution can be obtained. What
beam are small. The minimum distance from the ends of the be&miows is the resulting step-by-step technique to obtain the solu-
where the stresses are accurate is equal to the maximum widthiof for the beam structure.
the cross section of the beam. Step 1 Consider a member of the structure. Define a coordinate

Fortunately, the unknown components of the displacementssgstem such thatlies along the length of the beam and the origin
Eq. (15) do not have to be found simultaneously. The equatiorf they-z plane is at the centroid of the cross section. The thermal
that define the unknown components are uncoupled. First, obtédad of the beam expressed in this coordinate systenixsy,z).
solutions for the two traction-free plane-strain problems for th&t x=X,, the cross section of the memberAg. Calculate the
temperature distributio, that defineuy,, U,x, ouk: oyyk,  Solution of a traction-free plane-strain problem with a temperature
0,210 and oy, (k=1,2). Second, calculate the integralsaf,  distributionT(x,,y,2) on a region identical t@\, using the ma-
(k=1,2) in Eqg.(22). Third, solve the coupled ordinary differentialterial properties of the beam. Denote the stresses of the plane-
equations produced by substituting Eg1) into (22) to get the strain problem asr,,, 0yyo, 770, @nd oy,,. This should be
stress resultants and centroid displacements along the lengttdofie at every cross section along the length of the beanx,As
the beam. Fourth, use E(l2) and(21) to get the stress distribu- varies, the shape @&, and the plane-strain stresses vary. This step
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should be repeated for every member of the structure. These cal- Ly(= M+ M) =Ly My, + Moy

culations can be done by a general purpose finite element code. B, =12
Step 2 Evaluate the integrals that defihér,, My, andPy as yiz lyz (28)
_ | Z(My,x+ MTyp)_ Iyz(_ Mz,x+ Msz)
Pr=— f OxcdA; Mpy,=— J 20y dA; Bs= WY :
AO Ao y'z yz
andN,,, M, ,, andM,, are the derivatives of the stress result-

(23) ants found in Step 4. A two-dimensional steady-state thermal

conduction problem is defined by the differential equat@m ,,
MTZ:_J Y OyxodA +T'yy)+Q:O and .the boundary . conditian(T'X cosy
Ao +Tysing)=q wherek is the thermal resistanc® is the thermal

which vary with respect te. This should be repeated for eVery;ource, andj is the thermal flow. By comparing these equations to

ber of the struct A cal method b dt 26) and(27), it is clear that an analogical solution far can be
member of the structure. A numerical method can be used 1o Pekycyjated by a two-dimensional general purpose finite element

form the integration. : _ : g
Step 3 Define a fictitious temperature distributiofi;=a;(x) g%%egfgahfgginzondUCtlon H=1,q's equal to the right-hand

+yay(x) +zay(x), that satisfies

Tyxxp 1 21/) ( Prpt Ny«
= P Uy Uyt | —— — | — X L yB,+ 2
Q “ ypy T Uzpz | T A, yBy+2zBs

—f kaEdeA:J kowdA;,  (k=1y,2) (24)
A A

for each member of the structure. If thi@ndz-axes correspond to (29)

the principal axes, thea;=Pt/aEA,, a,=M+,/aEl,, andaz Step 8 Calculate the remaining shear stresses on the cross section
=My, /aEl, whereM+,, My, , andPy are defined in Step 2.  of interest by using

Step 4 Use a general purpose finite element program to analyze

the structure. Apply the boundary conditions and force loads to v PrptNyy (Y2—2)

the model. Instead of using the true temperature distributions iy = H{ Wy T Uyp~ E y A, + 2 BotyzB,

the beam elements, use the fictitious ones defined in Step 3. The (30)
solution will give the correct thermoelastic values for the stress v [ PrptNyy (Z2—y?)
resultants and centroid displacements along the length of edbr— #|W.z T Uzp~ £ ZA—O+VZBZ+ —5 Bs

member of the structure.
Step 5 Once the stress resultants have been calculated in Stepsﬁnply Connected Example
the distributions ofoy, oy, 0,,, anda,, on the cross section

A, of any member of the structure can be computed by Consider a free-free beam that lies along thaxis with a
square cross section. The height and width of the cross section is
Oy =0yyo:  027=0z700 Oy;=0yz0 (25) H=0.1 meters and the lengthlis= 10.0 meters. The thermal load
1 (= M4 Mo 1Mot Mro) is defined as
Uxx:Uxxo+A_(Nx+PT)+y . 2 |T|Z_|)2/Z . = x(z)\®
° vz yz T(x,y,z):Tct(ﬁ)

[(My+Mr) =l (=M, +M7,)
2=~ TTI jlzz ==, where T;=1K and the material constants arfg=70GPa,
zZly = lyz v=0.35, anda=23.6 E-6K.

Step 6 The two shear stresses, and oy, remain to be consid- trength of Materials Solution. The strength of materials

ered. In order to get these shear stresses, repeat Steps 1 andg Rkion. presented by Boleld] and Ugural and Fenstdd
a particular cross section of interest, but Usgx,,y,z) instead ieldls ' P y W] o ot

of T(X,,Y,2) as the thermal load. Denote the stresses of the plane-

strain problem asyp, oyyp, 2zp, andoy,,, the displacements x[3/z z\3
asuy, andu,,, and the values defined in Step 2Ms,,, My, o= TeeBE I\ g 7|/
andP,.
Step 7 Solve for the warpingw(y,z), on the cross section of E[22/3 22 H
interest by using the differential equation Oy aTCf al1o” W) %0 oyy=0.
g .. . .
Wyt W+ ﬂ+uyp,y+ Uzpz The remaining stresses are ignored. The maximum stress values
on the cross section at=0.1 calculated by this solution are listed
1 20| (Prp+Nyx in Table 1.
n E A, +yBy+2Bg| =0 (26) Proposed Thermoelastic Solution. The plane-strain solu-
N tions in Steps 1 and 5 use uniform 200 meshes of ANSYS
and boundary condition stif42 (plane-strain optionelements. The Newton-Cotes method
N . is used to evaluate the integrals in Steps 2 and 6. To solve for
W,y COSYtW ;SN w(Y,z) in Step 7, a uniform 5850 mesh of ANSYS stif55 ele-
v PrptNey (y2—29) ments is used. The maximum stress values on the cross section at
=g y pAo —~+ 5 Bz+yzBs) —Uyp|COSYy x=0.1 calculated by this solution are listed in Table 1.
> o Direct Three-Dimensional Thermoelastic Solution. As a
n v ZPTP+ NX’X+ysz+ (Z—y )B )—u sing check on the accuracy of the method presented in this paper, a
E A, 2 3 P three-dimensional finite element solution is performed. A 0.4-
7) meter length of the beam is modeled using ANSYS stif45 ele-
ments. The element mesh isX00X20 and spans the distance
where theB, andB; are defined as betweenx=—0.1 andx=0.3. This model will serve as a check
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Table 1 Largest Stress Values Calculated by Each Method aE a?—r2 b r
(Pa) at x=0.1 o= || 7= T,rdr+ [ T,rdr
" (1-w)r|ib*=a) ), * a2t
Proposed
3-D Thermoelastic Thermoelastic Strength of T p=0g=0.
Stress Solution Solution Materials Solution

Strength of Materials. By using the strength of materials so-

o 9386 9433 6608 (z= —H) :
U;; 8977 9054 ignored lution, the stresses are found to be
[ 4430 4525 ignored 2 b
o 1938 2066 0 = _
T 2981 3073 826 (z=0) e ) LTrdr T}
Ty, 1531 1582 ignored

aE[[a%—r2| (b

Opy=—
rx
r

b?-a?

;
fT,err+J’ Tvxrdr}
a a

for the stresses at=0.1. The maximum stress values on the cross o o=0.

section atx=0.1 calculated by this solution are listed in Table lThe remaining stresses are ignored

Summary. As can be seen by Table 1, the proposed ther- . .
moelastic golution technique prodsijced accurate Pnagimum stresgomparlson. .The ratios ofo, ando prpduced bY the ther-
values. Due to the large transverse normal stregs this prob- moelastic technique and strength of materials technique are
lem is outside of the usual range of problems that elementary o, (Thermoelastig o (Thermoelastig
strength of materials is intended to solve. Hence, it is not surpris- = -
ing th%t strength of materials calculates a maximum normal si)ress ox{Strength of Materials  or,(Strength of Materials
that is in error by 30 percent and a maximum shear stress that is in 1
error by 72 percent. 1=

The computational requirements of the proposed thermoelastic
solution technique to solve this problem were considerably le$8Us, if the stress is nonzero, the error of the strength of materials
than the three-dimensional thermoelastic solution. The ratio &®lution foro,, and o,y is
computer memory required to run both solutions is 90/1. The ratio Percent Erroe »100.
of computer time is 82/1.

Hence, ag—1/2 the error approaches 50 percent, and-a$ the
error approaches 0 percent.

Summary

Tubular Example
Consider a free-free tubular beam that lies along strexis

beé\_Nee_né:r:L andbe_L.Tr']I'he mne_rlradlus i and the c:juter 1. Strength of materials is inadequate to solve beam structures

radius isb wherea<b«L. The material properties atg vanda, with thermal loads that produce large transverse normal
anc12 the temperature distribution =T(x,r) where r°=y stresses. These types of problems require thermoelastic
+z°. Define @ as the circumference coordinate. solutions.

2. The technique presented in this paper solves the thermoelas-
tic equations in an efficient manner using numerical tech-
niques available on the commercial market. This is due to
the fact that the thermoelastic equations have been reduced
to a set of uncoupled problems that have been extensively
studied analytically and numerically.

Thermoelastic Solution. Step 1 becomes the solution of an
axisymmetric plane-strain problem presented by Timoshé¢Bko
By starting with Timoshenko’s closed-form solution, the remain-
ing steps of the solution technique can be calculated without nu-
merical techniques. All the differential equations are ordinary and
can be solved directly. This solution gives stress distributions of

oE  17/r2—a2\ (b r References
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An infinite bimaterial system made of two dissimilar, transversely isotropic materials
bonded together (with the lower material being mathematically degenerate) and subject
to remote loads is considered. An analytical expression for the complex stress intensity
factor of a finite crack along the interface between these two materials is obtained. This
result is extended to the case of an infinite array of collinear cracks along a similar
interface. Next, the finite element method is employed to analyze these geometries for
specific material properties. An area M-integral is used to extract stress intensity factors
from the finite element results, which compare well with those obtained from the analytic
expressions. Different types of loads are considef@DI: 10.1115/1.1459067

1 Introduction ematically degenerate, is considered. This configuration closely
In recent years, much research has been directed toward un IQrOX|mates an interface in a laminated composite Wlth ao
standing interfacé fracture. This is largely stimulated by the in- 9/90 deg ply layup. So the resuits presented herein find ready
. e . : . r:‘alpplication in understanding fracture of laminated composites.
creasing use of composite materials, which often fail by delam \nalytic expressions for the stress intensity factors are obtained
nation. Though Work.on interface fracture began more than thrﬁﬁ two crack configurations in this bimaterial system, nantely
d‘?CadeS ago, it re_celved a new_thrust from the seminal IC""1|Oers‘za¢c’ﬁnite crack along the interface between the two materials and
Rice[1] and Hutchinsori2]. The issue of crack face contact wasy,) ap infinite array of collinear cracks along such an interface.
sufficiently resolved by Ricgl] when he obtained bounds on the "e '\_integral method is used to determine stress intensity
phase anglg/ (mode mixity. It was found that there is a large,ctors from finite element results. This method requires expres-
range ofys for which the contact region is sufficiently small. — gjong for the asymptotic stress field in this bimaterial system
Interface cracks between anisotropic materials were studied Rjich are available if9]. Numerical results are obtained and
Bassani and Qi3,4] who derived a condition for nonoscillatory compared to values computed from the analytic expressions. The
behawc_)r. Later Sud5] _analyzeql an mt_erface crack for bOthM-integraI, developed by Wang and Y&1i2], allows for the de-
nonoscillatory and oscillatory singularities. He found that thgrmination and separation of the stress intensity fadtgrand
near-tip field for the oscillatory singularity is similar to that of ak, for interface cracks between two isotropic materials. Since the
crack between two isotropic materials. Working independentl¥tructure of the near-tip fields for cracks between two anisotropic
Ting [6,7] determined the singularity for both the oscillatory angnaterials is similar, the same integral formulation may be used.
nonoscillatory cases. In addition, he developed the asymptofiis method has been successfully employed in many problems
stress and displacement field8]). Recently, Banks-Sills and including isotropic bimaterial§12—14, orthotropic himaterials
Boniface [9] addressed the specific problem of a semi-infinitg15], and the present bimaterial systéf8]). Additionally, non-
crack between two transversely isotropic materials one of whighanar problems were addressed by Nakanji], Nahta and
was mathematically degenerate. They obtained the asympttNioran[17], and Gosz et al.18].
stress and displacement fields at the crack tip using the Stroht should be emphasized here that the goal of this paper is to
formalism([10]). An excellent treatise on these issues is providesbtain analytic expressions for stress intensity factors of finite
by Ting [11]. cracks in two geometries. The finite element method and
Stress intensity factors which characterize a given crack awintegral are used only for comparison, as this numerical ap-
important parameters in evolving an effective fracture desigiroach has been developed and validated earli€®dJin
methodology. The stress intensity factors along with their critical In Section 2, the bimaterial system is described, and important
values(which are measured experimentalan be incorporated parameters like singularity, stress intensity factors, interface en-
into an appropriate fracture criterion. This criterion is useful iergy release rate, and crack-face displacements are defined. The
predicting crack extension and hence assists in mapping a sgfeblem of a single finite interface crack is addressed in Section 3
operating envelope within which fracture is largely avoided. Thand the expression for stress intensity factors derived. Section 4
present work is directed towards obtaining stress intensity factdgsuses on stress intensity factors for an infinite array of collinear
for specific crack geometries along a bimaterial interface. interface cracks. Finite element results are compared with these
In this investigation, an infinite bimaterial system consisting cinalytical expressions in Section 5.
two transversely isotropic materials, with the lower half math-

- 2 The Bimaterial System
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF e . . .. .
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- An infinite bimaterial system consisting of two transversely iso-

CHANICS. Manuscript received by the ASME Applied Mechanics Division, Mar. 10tropic materials bonded together under plane-strain conditions is
2000; final revision, Nov. 14, 2000. Associate Editor: K. Ravi-Chandar. DiSCUSSiQfOnsideredFig. 1). In one of the materialéassumed here as the
on the paper should be addressed to the Editor, Prof. Lewis T. Wheeler, Depart ; : : Ay :

of Mechanical Engineering, University of Houston, Houston, TX 77204-4792, arn'gﬁtper.mate”al the axis O.f _symmetry IS.thﬁl axis and in th‘?

will be accepted until four months after final publication of the paper itself in mother(i.e., th.e lower materigiit is the x;-axis. The |at_ter r‘esu.lts n
ASME JOURNAL OF APPLIED MECHANICS. a mathematical degeneracy. Two crack problems in this bimaterial
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system are studied herét) a finite crack along the interface aslargely the result of the emphasis of this paper on the 0 deg/90 deg
illustrated in Fig. 2a), and(2) an infinite array of collinear cracks laminate composite. It should, however, be noted that dissimilar
along the interface as in Fig(8. Relevant mechanical propertiesmaterials can be analyzed by using the appropriate material prop-
(Young's moduli, shear moduli, and Poisson'’s ratiosthe axial erties.

and transverse directions at&, Er, Ga, Gy, va, and vy. Assuming that singular stresses at the crack tip are proportional
Since the material is transversely isotrop@®;=E/2(1+v7). tor® wherer is the radial distance from the crack {ipig. 1) and

For simplicity, the two materials are assumed identical althougbllowing [11]

their axes of symmetry differ. This assumption is also

5= ! d L 1

=—5 and—z~ie (1)

CoTTTTTTTTTTTTTT T N with the bimaterial constant

i

! 1 [1+pB

t Material 1 €= ﬂ'”( Iy @)

|

! where

! T2 112

! _ 1 . 5

! r B= —Etr(S) . (3)

|

: 0 The first value ofé in (1) leads to the nonoscillatory solution

while the second results in the oscillatory solution. Nonoscillatory

45

behavior is possible if there exists a nonzero vetgosatisfying
the condition([11], p. 428

VSto: 0.

Evaluatingé for this bimaterial system, as explained subse-

|

s

Material 2 quently, it is seen thab+ 0. Further this particulab leads tot,
atena =0 for the plane-strain condition considered here. So in this
analysis, oscillatory behavior is addressed and
bomomoooooToToommommmmmoees - s L. .
=—-+ie.
Fig. 1 Crack in a transversely isotropic bimaterial system 2 e )
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Fig. 2 A finite interface crack (a) schematic diagram, (b) finite element mesh
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Fig. 3 Infinite array of collinear interface cracks (a) schematic diagram, (b) finite element mesh

It is seen that it is immaterial if the conjugate of the above valuBhe material parametei3,; andD,, are components of the ma-
is used, provided one is consistent throughout the analysis. trix D in (6). The parametek is given in Appendix A. Substitut-

The 3x3 matrix S is given by ing « in the above relations, it is seen thag; and D,, always
. have the same sign. The constagts, j=1,2,3 are related to
S=D'w (3)  p{", the three complex eigenvalues for the upper matéfidl,
where pp. 121-128 wherepj(l):iﬁj for a transversely isotropic mate-
-1 -1 rial with this material symmetry.
D=L, +Lz", (6) If the upper and lower materials are exchanged, tBein (6)

W=s,L;l-s,L;! @) remain_s the_ same bW in (7) changes sign. In carryir_lg out the
1 2 analysis, this reverses the signwfin (10), and hences in (9).

The subscripts 1 and 2 i(6) and (7) represent, respectively, the Asymptotic stress and displacement fields in the neighborhood

upper and lower materials; and L; are Barnett-Lothe tensors. of the crack tip in Fig. 1 are given if9]. The stress intensity

Since these tensors are real and factorsK,; andK, may be combined as a complex stress intensity

_ 1 factor K given by
1_ 1 1
—AB; T=S§L[ +iL; ", (8)

knowledge of the left-hand side @8) is sufficient to determine K=Ky +iK, (13)

(6) and(7). Instead of presenting more general expressions for thgch that the stress components along the interface ahead of the
matricesA; and B; which may be found in[11], pp. 170-172  crack tip are related as

the specific matrices for the upper and lower materials are given

in Appendix A. Dy . Kri€
Using these matriceg; is obtained as D 022tion = (14)
11 g=0 N2mr
€=W/\VDuD2 ©) Further, the complex stress intensity facto13) may be written
where in nondimensional form as
(1+wvyp)vp LEr| 1 (1-2x) KLi€
W=—————+ BB\ 1= vp=— | ==t —4=— (10) K=
E Eal E 4G K= 15
A Al Ea T oL (15)
+ +
Dllzw(l_vii) + ! 2Kl (11) wherelL is an arbitrary length parameter amdis the applied
Ea Eal 4Gy stress. The nondimensional complex stress intensity factor may
b _B1Ba(B1t B2) ( 1—p2 E) N 1+2«k 12) also be expressed as
2 Ea AEa 4Gt -’ K=|K|e'" (16)
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so that the phase angle dL= Re{e”BKfo(Zil) ,e))Bl‘lh+e* ﬂ—eBl<f_0(zil) ’6»81—1?}

Im{KL'e Dy o =(1) _y_1*(1)
= arctarii{—é —arcta+ 11( 12) . (17) FXl T =Xty (25)
Re{KL'} D2l 022 0=0r=L . (1) (1) L .
! respectively. Vectord;'"™ and t;* contain information about
Crack-face displacements in the vicinity of the crack tip istresses at infinity in material 1, while strains at infinity are incor-
terms ofK are found to be porated ine; ™ ande;?) . They are evaluated as explained1d]
(pp. 378—38Dand are given later in this section. The bar over a
\ /D_ll AU, +iAuy= _2D11 R [T Kric  (18) quar)tity represents its complex conjugate._ The funetig{,e) is_
D,, (1+2ie)coshme V2 continuous everywhere exceptlatand vanishes at infinity. It is

obtained by solving a Hilbert problem. For the mathematically

whereAu;=u{"(r,7) —ul?)(r,— 7). The superscripts 1 and 2 ON gegenerate lower materigd]

u; refer to material 1 and 2, respectively. o o
The interface energy release raleis related to the stress in- (2= Re{e’“A’FO(z(Z) e)B§*1h+e”5AéFo(z(2),e)Bé’lh}
tensity factors by

X @ x,e@ (26)
_ 2 2 — —
Gi —ﬁ(K1+ K3) (19) ®D=Refe "By o(22),e)By T+ e™BFo(2?, €)B, 1)
where Xt @D — ot 72 @7
i: Dy, 20) where
H 4cosi me’ fo(z®,e) X142, €) 0
Note that the subscrifitin (19) represents interface ar@ has Fo(z?),e)= 0 fo(z?,€) 0
units of force per length. 0 0 fo(z?),€)

It should be noted that inherently for any interface bidthand
K, must be prescribed or equivalently and . In describing an and ( )’ represents differentiation with respectztas beforet;®
interface fracture criterion, one may prescribe either a relati@mdt;? are related to the stresses afé? ande; ® are related
betweenK; andK, or express the critical energy release réte to the strains at infinity in material 2, and are presented later in
as a function of the phase angle this section.

Using the traction continuity condition i23) as|x,|—c,

too(l):tW(Z).

3 A Finite Interface Crack
Defining these vectors using complex conjugate scalarand
The bimaterial system described above is considered. FLett as

denote a crack of lengtha2which is located at L
t;M=t;@=t_h+t,h (28)

and satisfying22) leads to

X,=*0, —a<x;<+a

as in Fig. Za). Following[11] (p. 140, a stress function vectap

may be defined with componends; such that €™gg (X1,€6)+€ Qg (X1,€) = —2t, (29)
a']-lz—CIJj’Z and (szzq)j’l (21) e*‘n’ega'(xlle)_i_e'n'ega(xl,e):_2t_7 (30)
where the comma denotes differentiation with respecd;tor X,.  \where
In terms of the stress function and displacement vectdrsa(d
u), boundary and continuity conditions for this problem are ﬁ
) Y v P 0o(z.6)= - fo(z.e). (31)

oL P

x| 0%, =0 forx==*0, [x|<a (22)  solving the Hilbert problem ir(29) and (30) as explained by
Muskhelishvili[19],

ad1) s
= — 1M=y®@ = —X(z,e e ", d\

= ek U= for x,=0, |x{>a. (23) Go(z.6)= 7(7i )L R E)Z)\_Z) POz
Here the superscripts 1 and 2 refer to materials 1 and 2, respec- (32)
tively. Equation(22) represents zero traction on the crack faces
and (23) is continuity of tractions and displacements across the —X(z,€) e7t _d\ L
interface. go(z,€)= : f ! +P(z,€)X(z,€)

Further, stresses(\", o1{?), o5,, and o7, are prescribed at l X'\ e)(A-2)

infinity. From force and moment equilibrium considerations, (33)

stressesry, and o}, are the same in both materials. The stresghere the Plemelj function

componenioy; is, however, different in the two materials{{" _ i oN—1i2tie

ando;{?)); these are related by equating the strajpacross the XMz.e)=(z+a) (z-2) ' (34)

interface as shown later in this section. One condition forgy(z,e) to be holomorphic at infinity is for
Displacement and stress function vectors for the upper materid(z,€) to be a polynomial irz of order less than 1, i.e., a con-

can be written using remote stresses and str@itl, pp. 378— stant. The first term if32) is defined as

380 as

- - —X(z,€) e ", d\
uM=Refe™A(fo(2",€))B; tht+e ™A (fo(z",€))B; Thy E rXt(ne)(\-2)
+x16, W+ x5 (24)  considering vanishingly small contours around the crack,
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1
(1+e 2™

—X(z,€)

i

e ", dn
XN, e)(A—2)"

1

Now for large values ofz|

3gr
a_p

z+|2ae+—+—+
z?

1
X(z,€)

where a_,, a_,, ... are appropriate constants. Applying
Cauchy’s formula and considering the pole/Zt=,

a
ﬁ‘ Anot—z 2™
—X(z,¢€)

i

1 .
Xze —(z+i2ae)

so that

ty
2 coshme

I,= —(z+i2ae)

71
™ Xze)

[ —

coshwe X(z,e)(z+i2ae)].

Substituting in(32),

[1 X(z,e)(z+i2ae)]+P(z,e)X(z,€).
(35)

9o(z,€)= COSh

Integrating the above expression

fo(z,e)=f Jo(z,€)dz

[2— Xy(z, e)]+f P(z,e)X(z,e)dz (36)

coshn-e
where
Xy(z,€)=(z+a)?'q(z—a)!" ', (37)
Similarly
Go(z€)= Co;h _[1-Xz.€)(z-i2a6)]+ P(z. ) X(z,¢),
(38)
_ —t. _ _
fo(z,e)=m[z—/’\,’p(z,e)]+f P(z,€)X(z,€)dz,
(39)
Xy(z,€)=(z+a) 2" ¢(z—a)V? e, (40)

u=Re{e™A(f(z1,€))B; td+e ™A (f(zV,€))B; 1d}

r Ef| 1
(1—1/2\51) £ oD —(1+VT)

a_x
12
Ga

+X, (44)

(1) 1
(1+ VT)_UM +(1- VT)_TUzz

0

and

@ =Re{e™By(f(2{",€))B; "d+e " By(f(z{",¢))B; 'd}

o1 011(1)
+Xq| 022 —Xo| 01 (45)
0 0
where
f(z,e)=(z—a)'*"'(z+a)"* '~z (46)
Along the x;-axis,
+x;—a’e' ¥ —x, for x,=0,+x;>a
f(xy,6)= _
(*a.€) +iJa?—xieT X—x, for x,==*0/x;|<a
(47)
where
X=| Xl_a
Xi+al’

The same function i46) was obtained by Tin§11] (p. 428, for

a finite length crack with tractions applied to it. The diagonal

matrix
(f(ZV,e))=diad (2" ,e), f(ZV,e), f(ZM,e)]

where z{V=x,+p{"x, and d is a complex X1 vector to be

determined. For the specific case at hand, transversely isotropic

material with the axial direction coinciding with the;-axis,

pM=ip; with j=1,2,3. The matriced\; andB; " are given in

Appendix A.

Imposing the condition of zero crack opening at the crack tips, For the mathematically degenerate lower material,

P(z,e)=0= P(z €), so that

fO(Z,E) m[z X, (Z 6)] (41)
and
To(z,6)= co;hm[z Xy(z,6)]. (42)
Defining
__ 4
 coshme (43)

and using strategies explained|[itil] (pp. 378—38Dto incorpo-

u®@= Re{eff"AéF(Z(z),e)B{ld+ e”AéE(Z(Z), E)Béfla}

r 2 2
T DE I e Y
ET EA 11 ET EA 22
+ X1 0
L 0
- 1 B
G_TU 12
+X2 ﬂ V'ZA 0_30(2) i_ V'%\ o_oo (48)
ET EA 11 ET EA 22
L 0

rate uniform stresses at infinity, the displacement and stress func-

tion vectors for the two materials become
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®D=Rele” "B,F(z?, B.1d+ e B 22, B.~Igl If the two materials are isotropi@nd not transversely isotropjc
o 2F(Z7,€)B, 2F(27,€)B; "d} Dy;=Dj,asB;=B,=1 in (11) and(12). Then the above expres-

1, U‘fl(z) sion for K agrees with Ricé1] for a finite crack along the inter-
" ” face of isotropic bimaterials.
TX1| O22| =Xz| O12 (49) Following Rice and Sith20] for isotropic bimaterials, displace-
0 0 ment continuity is imposed across the interface ag28 for
|X,|]—0, and stresses; ") and¢;{? are related as
where )
Eavt+Ef(vi—va—vpav
(22, xf' (20 0 o= o)y ATLER T I  (sa
A EA_ VAET
F(z?,e)= 0 f(z?,e) 0 . (50)
0 0 f(z?,e) 4 Infinite Array of Collinear Interface Cracks

Next, an infinite array of cracks of equal length 2long the
interface of the above bimaterial system is considered. They are
spaced at constant intervalb 2>2a) as shown in Fig. @&). Let

The functionf(z(?, ) is defined in(46) and () represents dif-
ferentiation with respect ta. For a transversely isotropic material

vlezt)h the aXIjl! direction coinciding with thes-axis, p;”’=i; hence " janote the cracks which are located at
z :Z:X]_ |X2.
Using (28) and (43) along with the following from[11] (p. X2==0, 2nb—a<x;<2nb+a, n=-«,...,0,...+>.
421, As before, stresses;", o{?, o5, ando;, are prescribed at
‘. — — - . (1) <(2) . .
&=-ipd and &d=igad (1) infinity. Again o;~ and 01;” are related using displacement
continuity across the interface ps|— . Boundary and continu-
so that the vectod is obtained as ity conditions in terms of stress function and displacement vectors

(® andu) are

oC—i D_Zza.w adL)  Hp?
[P, D, - =0

1_32 5X1 6’X1
d= D . 52
2 i\ /D_Jz'io-cfz_l,_ o (52) for x,=+0, 2nb—a<x;<2nb+a,
0 n=-ox,...,0,... (55)
adm) s
To determineK as defined in(14), stressesr,, and oy, on the —= , uW=y®@
interface ahead of the crack tip are required. These stresses, ob- Xy 9%y
tained from(21), are equal in the two materials as a result of the for x,=0, 2nb+a<x;<2(n+1)b—a,
first equation in(23). Using one of the materials, say material 1,
these stresses are given by n=-o,...,0,... /4o (56)
o o where superscripts 1 and 2 refer to materials 1 and 2, respectively.
12 PR 12 Since the bimaterial system is the same as in Section 3, stress
022 = =2 coshme Re[g(xy,€)d}+| 05, ]. function and displacement vectors given(R4), (25), (26), and
91 (27) are valid here though the functidig(z,€) is different. Pro-

=0
7324 p-0 0 ceeding as before and formulating the Hilbert problert2® and

Differentiating (46) to obtain g(x;,€) and substituting in the (30), the solution is obtained &82) and(33) where the Plemelj

above equation, function
e Xz,e)= || [z—(2nb—a)] Y2 'qz—(2nb+a)] V2"
T2 =2 coshme Re[[ (X, +i2ae)(x,+a) Y2 i€ n=-e
032 6=0 — H [(Z_2nb)+a]71/27ie[(z_2nb)_a]71/2+ie
o1 n=o
X (Xl_ a)71/2+i5_ 1]d}+ 0.°2°2 . (57)
0 andP(z,¢€) is a polynomial inz of order less tham. Evaluating

the first term in(32) by considering vanishingly small contours

Moving the coordinate system to the right crack tip by relating"ound the cracks leads to

X;=r+a and considering only singular terms foa,

0y(2,6) = — (1—)«(2,5)]—[ [(z—2nb)+i2ae]]

10 coshmre
02| =2 coshme Re(r Y2 ¢(2a)V2 1¢(1/2+ i €)d}. +P(z,€) X(z,€). (58)
0321y Integrating the above expression

Substituting ford from (52) in the above equation, singular com- fo(z.€)= (2,€)dz
ponents ofo,, and o4, are obtained which along witf14) relate olZ,€)= [ Golz,€
K to stresses at infinity as

7t'y
\/D\22 L —m[zf/’vp(z,e)]+f P(z,e)X(z,e)dz (59)
=0t 10,

K=(14+72ie)\ma(2a) ' . (53)
where
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Xp(z,€)= H [(z—2nb)+a]Y? [ (z—2nb)—a]*?*ie,
(60)

Imposing the condition of zero crack opening at the crack tips,

—t
fo(z.0)= o —[z=Xy(z.€)]. (61)
Similarly
_ ~t. _
fo(z,€)= Cosh;e[z—){p(z,e)]. (62)

Since the remote loads are identical to those in the previous sec-

tion, the last two terms ii24), (25), (26), and(27) are the same.
As before if

coshme

J12

| ma(l+i2e)
02 =2 coshme Re si ~—%p
7324 p—g
[ ma —1/2—ie T —1/2+ie
X|sIn T F d;.

Usingd from (52) in the above equation, singular components of
o,, and o, are obtained. They are substituted(i¥) to deter-
mineK as

1
K = \2b———{sin(wra/b)cosi 2 rae/b)

Vsin(2ralb)

+i cos(wa/b)sinT(ZWae/b)]xexp[ —ieln

D2
X\ == o5 tics.
[ D, T 10713

Again, if the two materials are isotropi@nd not transversely

b
;S|n(27ra/b)

|

(65)

the displacement and stress function vectors in the two materigdgtropig, D,,=D,, from (11) and (12). The above expression

are given by(44), (45), (48), (49), and(50) with

t(ze)= I] [(z—2nb)+a)¥? q(z—2nb)-a]*?"i*~z.
(63)

Also the vectord is the same as that if52).

then matches that given by Murakaf#l] which has been de-
rived from relations given ii20].
Stressesr 1\ ") ando;{?) are related by the earlier expression in

(54) since conditions at infinity remain the same.

Stressesr,, and o1, on the interface ahead of the crack tip ar® Finite Element Calculations

used to obtairkK. Proceeding as in the previous section,

012 o1
02 =2 coshme Re[g(xy,€)d}+| 05 |.
7324 y-o 0

Substituting forg(x, , €) by differentiating(63) and neglecting the
uniform stress terms,
012
022

=2 cosrmeRe{ IT [(xi—2nb)+i2ae]
n=-—ow

7324 y-o

X[(x,—2nb)+a] Y271 (x,—2nb)—a]~¥2*i<d | .

(64)
Following Rice and Sif20] and using

©

sinmt==t] ]| (1-t%n?),
n=1

%

H [(x;—2nb)+i2ae][(x,—2nb)+a] Y2 ie

n=—o

X[(x—2nb)—a] 2"t

. m(Xq+i2ae) || .| m(X,+a)
=SI Sl 2b

2b
) W(Xl—a) —1/2+ie
Xy SI T .

—1/2—-ie

The finite element method is exploited to numerically deter-
mine stress intensity factors for the geometries considered in Sec-
tions 3 and 4 and a specific material combination. To extracKthe
values from the numerical results a conservative area integral—
the M-integral—is employed. It was presented by Banks-Sills and
Boniface[9] and is described for completeness in Appendix B.

5.1 Finite Length Crack in an Infinite Body. The geom-
etry and loading exhibited in Fig(&) are considered. The infinite
body is approximated by considering one with width and height
equal to 20 times the crack lengthe., H=W=20a, see Fig.
2(b)]. Symmetry is exploited to model half the body. The finite
element mesh containing 1344 eight-noded isoparametric ele-
ments and 4195 nodal points is illustrated in Fi)2The mesh
is finer near the crack tip and quarter-point elements are employed
at the crack tip. A uniform remote tensile stress,=1 Pa is
applied on the upper and lower surfaces as shown. Assuming
oiP=1 Pa and using54), ¢7{?’=0.601 Pa. Finite element
analyses are carried out with ADINJ22]. Since this package
does not include transversely isotropic material behavior explic-
itly, the orthotropic scheme is used with material properties in two
perpendicular directions assumed equal. Wkileis the control-
ling shear modulus in the upper material, it@ in the lower
material. It is seen that a very accurate valueGyf=E/2(1
+v7) must be input to ensure transerve isotropy, failing which
errors creep into the subsequent processing of finite element re-
sults. Although the singularity at the crack tip is a combination of
square root and oscillatory, it was fouid 4]) that better results
are obtained for interface cracks in bimaterial isotropic bodies
when quarter-point elements are employed instead of regular
eight-noded isoparametric elements.

The analyses presented in Sections 3 and 4 are for homoge-
neous transversely isotropic materials. In this study, homogenized
effective mechanical properties of a graphite/epx$4/3501-6
fiber-reinforced material are employed. Some of these properties
are presented in Table (I23]). The volume fraction of the fibers

This result is substituted int¢64) and the coordinate systemis about 65 percent. In the upper material, the graphite fibers are

moved to the right crack tip by relating,=r +a. Considering
only singular terms for<a,b
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aligned with thex,-direction, while in the lower material they are
along the xs-direction resulting in a mathematical degeneracy
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(shown schematically in Fig.)1Parameters necessary for calcupared with analytical values frof®3) in Table 3. Excellent agree-
lation of the stress intensity factors and energy release rate arent is observed validating the expressior(58), as well as the

given in Table 2.

M-integral calculations. These M-integral results are obtained

For this configurationk; andK, are obtained by applying the from the third ring outside the crack tip. This ring was chosen on
area M-integral method to the numerical results. These are cothe basis of error estimates from the superconvergent patch recov-

Table 1 Effective mechanical properties of a graphite

(AS4/3501-6) fiber-reinforced composite  [23]

property value
Ey 138.2 GPa
Er 10.4 GPa
Ga 5.5 GPa
V4 0.3

vr 0.55

Table 2 Material parameters required for stress intensity fac-
tor and energy release rate calculations

parameter value
o 0.624
Jé)) 4.896
3 1.280
€ —0.028
D11 (GPa) 0.231

-1
Dy (GPa)™!  0.312

Table 3 Stress intensity factors for a finite interface crack

(units of K are Nm~(&/2+ie))

lepoxy

ery technique[24,25). While the maximum error in energy norm

in the first ring is approximately 35 percent, it reduced to about 7
percent in the third ring. However, on evaluating the area
M-integral in the outer ringggreater than B it is seen that this
value does not vary by more than 0.2 percent. Since it is advan-
tageous to minimize the number of elements in the M-integral
computation, the third ring is considered optimum.

5.2 Collinear Cracks Along the Interface. Next, the ge-
ometry and loading in Fig.(d) are considered. The finite element
mesh of this geometry is shown in Fig(b3. It has 1200 eight-
noded isoparametric elements and 3780 nodes, and corresponds to
the strip enclosed by dotted lines in FigaB Values ofb=2a
andH =10a are chosen. Three different cases of remote loads are
consideredia) tension only,(b) tension and shear, arid) shear
only. The bimaterial system is made of graphite/epdAB4/
3501-9 fiber-reinforced composite as in the previous subsection.
Effective mechanical properties and material parameters are the
same as in Tables 1 and 2. For this configuratikn, and K,
obtained using the area M-integral method are shown along with
analytical values frong65) in Table 4. It is seen that they compare
well confirming both the analytic expression given(@b), as well
as the numerical analysis. Again, the area M-integral values are
from the third ring from the crack tip. To study the effect of mesh
refinement, the number of elements was quadrupled by halving
the dimensions of each element in the coarse mesh shown in Fig.
3(b). Results from the fine mesh are also shown in Table 4. These
values show a closer match with the analytical result compared to
the earlier coarse mesh. However, the relatively coarse mesh used
initially also produces reasonably accurate results.

This paper presents analytical expressions of stress intensity
factors for two different crack geometries in a particular bimate-

K K, 6 Conclusion
Analytic 2.0638 —0.0749
M-integral 2.0683 —0.0754
Error -02% -0.7%

rial system. This bimaterial system is made of two dissimilar
transversely isotropic materialsvith the lower material math-

Table 4 Stress intensity factors for an infinite array of collinear interface cracks
(units of K are Nm~&2+/9 and percentage error is given in brackets )

K K>
Case (a) : 0% = 1.0 Pa, 03 = 0.0
Analytic 5.2124 0.0409

M-integral (coarse mesh) 5.2069 (0.1%)

0.0404 (1.2%)
0.0412 (0.7%)

M-integral (fine mesh) 5.2094 (0.1%)

Case (b) : 033 =1.0 Pa, 073 = 1.0 Pa

Analytic 5.1773
M-integral (coarse mesh) 5.1707 (0.1%)
M-integral (fine mesh) 5.1737 (0.1%)

4.5214
4.5138 (0.2%)
4.5187 (0.1%)

Case (c) : 035 = 0.0, of3 = 1.0 Pa

Analytic ~0.0351

M-integral (coarse mesh) —0.0362 (—3.1%)
—0.0357 (—1.7%)

M-integral (fine mesh)

4.4805
4.4734 (0.2%)
4.4777 (0.1%)
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ematically degeneratdonded together. Uniform loads at infinity (namely, Young’s moduli, shear moduli, and Poisson’s ratios
were applied. First, stress intensity factors for a finite crack alorsince the material is transversely isotrop®&;=E/2(1+ vy).
the interface between these two materials were obtained by sclire matrixB, is given by

tion of a Hilbert problem. This result was then extended to the
problem of an infinite array of collinear cracks along a similar
interface.

In addition, finite element analyses for a specific fiber rein-
forced material were carried out on these bodies. Stress intensity

[ iKY
kM
0

B,

factors were calculated by means of an area M-integral. Thegg inverse is given by

compared well with results obtained from the analytic expres-
sions. These analytic expressions provide a simple means to un-
derstandany problem pertaining to this crack configuration and
bimaterial system, without resorting to numerical analysisps-

cific ones. Also they can be used as benchmarks for more compli-
cated problems.

-1

1=

[ =ik
iKY
0

1
B2~ B1

—ikPB, 0
kf? 0 (74)
0 —k§H
Ba /K 0
— By /K 0 :
0 —(B2— BIKE
(75)

The accuracy of the finite element computations, together with, 1he |ower material, the axial direction coincides with the

the M-integral for determining the stress intensity factors has be
demonstrated earlier if®]. This approach will next be applied to
a Brazilian disk specimen composed of fiber-reinforced materi
in order to determine calibration equations for testing.

Qg‘-direction. The mechanical properti€s,, E1, Ga, Gy, va,

and vt are taken to be the same as for the upper material; but they
e in different coordinate directions. It turns out that this material

is mathematically degenerate. It has three identical complex ei-

genvaluep!?=i where the subscrigt=1,2,3. To determine the
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stress and displacement fields, matrices alternativ&,tand B,
re required; these a), andB,. Since

AB~

t=A'B’ 1 (76)

it is possible to calculate with the aid of(8). On the other hand,

Appendix A

one may determiné‘sz_l without calculating the individual ma-

trices ([11], p. 173. For brevity, only the primed matrices are

Some Important Matrices.
A;, Bj, and Bj’1 which appear in the paper are presented for the
specific transversely isotropic materials studied here. They are re-
lated to the material properties. The subscyiptpresents the up-
per and lower materials, 1 and 2, respectively.

Thex,-direction is the axial direction of the upper material. The
matrix A, is given by

kiPQ, kDQ, 0
Aj=— ik(ll)Qs/,Bl ik(zl)Q4 18> 0 (66)
0 0 — ik BsGr

and
wherek}l), j=1,2,3, are normalization factors for the upper ma-
terial and are given by

. _ B/*l
k(l):w M_ ﬁ_i 1— V2 E v (67) 2
! 2 B1Er Ea AEn '

; —y
k(l)zﬂ M_,B_ﬁ 1_,}25 e 68) where
2 2 BoEx Ea AEn '

; —12
kfo,l)=(1;') 2(;"‘EVT) (69)
3Er

In this Appendix, the matrices presented as

kK?  —ikPx 0
Ap=| ik kP 0 77)
0 0 k@
2iGk{® Gk 0
B,=| —2Gk® —iG.k{® 0 (78)
0 0 iG Ak
—i/(4GkP?)  —1/(4GkP) 0
=| U2GkP)  i1(2Gk{P) 0
0 0 —i/(Gk?)
(79)
3— v —4v2EL/E
o 2T PTTAVAETEA (80)

2(1+vy)

The orthogonalization employed to obtain the normalization fac-

The constantg;, j=1,2,3 are related to the three complex eitors k{2’ andk{? may be found if[11] (pp. 489—492 and[26];

genvalues of the elastic constapll@ ([11], pp. 121-128 where they are given by
pj(l)=i,8j for a transversely isotropic material with this material 1
symmetry. The constant3; are related to the material properties k(lz)= ’ (81)
as 4\E+(1—v2E1/Ep)
— 1 2 2 2 (l_l)
Q1==1B1(1=vaE7/Ep) +va(1+v7)], (70) kP =—1of. (82)
Ea 2\G,
1
Qa=g{B3(1—VAEr/En) + a1+ w7)], (71 :
A Appendix B
Qs=(1+v)[BZvalEp+(1—v1)/Eq], (72) Area M-Integral. In this Appendix, the path-independent
Qu=(1+ VT)[B%”A/EA+(1_VT)/ET]- 73) M-integral is described. The M-integral was introduced by Yau

The material parameteis,, E;, G5, Gt, va, and vy are the

et al.[27] for separation of mixed modes in homogeneous bodies.
It was converted to an area integral for isotropic bimaterials by

usual material properties in the axial and transverse directioBhih and Asard28]. It may be written as

238 / Vol. 69, MAY 2002

Transactions of the ASME



@ W
WM~ @ e
oaxy U axy b

J
TN
IX;

M(l,Z):f o
A

(83)

After calculating these integrald¢{") and K" are found by
equating(87) and (88), (89), and(90).

In (83), indicial notation is employed, the superscripts (1) and (2References

represent two solutions andlis the Kronecker delta. The mutual

strain energy density/(:? of the two solutions is given by

W= o1 (D= 52 D) (84)
The functionq, is defined for finite element analysis as
8
Q= 2 Non(€,7)0lam (85)
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1 Introduction 292 o J o, e X J°F
. . -2\ — + = +v)—=
Several researchers have established that the near-tip stress VAV —2h 0x(V FIANVIE=A(1+) ay? 0.
fields around cracks in functionally graded materi@&Ms) re- 2 P
tain the inverse square root behavipt,2]). Without assuming where V2= + 2
any specific form of property variation, Eischg€B| has shown ax? WZ )

that the angular functions associated with the first two t&rm&?  The solution to(2) is obtained in a series form through an
andr?) of the stress field in nonhomogeneous materials are n@ymptotic analysis discussed in the next section.

affected by the material property variation and the effect of non- . .

homogeneity reflects only in higher order terms. However, expligft Asymptotic Analysis

form of the higher order terms is not yet established for FGMs, The crack-tip coordinates are scaled to fill the entire field of
hence, one has to use the expansions available for homogeneshservation using the transformation

materials in order to extract fracture parameters from full field

experimental data. This could lead to serious errors, as the stress mzf and 7]2:2 O<e<1. A3)
field in FGMs is identical to that of homogeneous materials only g’ g’
very close to the crack tip. _ . In the scaled coordinatesy(,7,), (2) takes the form

In the present work, stress field for stationary cracks aligned 5
along the direction of property variation in an FGM with expo- V2(V2F)— 21 9 V2F) 4+ \262V2F — A262(1 4 E—O
nentially varying elastic modulus is developed through an® (v )~ 2Ae 37,1( )T\%e e*(1+v) i

asymptotic analyses coupled with Westergaard’s stress function ) )

approach([4]). The first six terms of the expansion for opening here v2=_"_ + (9_ 4
mode and shear mode loading are obtained. Using this stress field, where Vo= g,ﬁ gng' Q)
contours of constant maximum shear stress are generated for tw

different levels of nonhomogeniety and the effect of nonhomoge-ﬁ is assumed at this stage that the stress fundiiGsy,, £ 7,)
neity on these contours is discussed can be expanded in powers of the parametas follows:

F(eni,em)= EO eM 32 ( 711,772)+20 e ™2 y(n1,7m2).
m= ne
5)

Of the two series the first one correspondinggiq is the sin-
gular series and the second one containiygorresponds to that
for finiteness of the domaii5]). Substitution of this solution into
E(x)=E;expAXx) (1) (4) leads to a series of differential equations each associated with
a specific power of the parameteras given in(6).

2 Theoretical Formulation

The elastic modulus of the FGME(X)) is assumed to vary
exponentially along the line of the crack as given(in and the
Poisson’s ratiqv) is assumed to be constant.

E. is the modulus at the crack tipc€0) andX is the nonhomo-

geneity parameter having dimensidlength ~*. Defining the in * )
plane stress components(,i,j e{x,y}) in terms of the Airy’s > [s‘m*3’2>V2(V2¢m)—s<m*5’2>2)\ — (V¢
stress functiorF(x,y) and using Hooke's law, the compatibility m=0 M
equation takes the following form: P
+8(m+7/2)()\2v2¢m_)\2(1+y) Zm)]
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For (6) to be valid the differential equations corresponding to
...) should vanish independently.

each power ofg(e%?282,¢%2

This leads to the following set of differential equations:

m=n=0, V3V2¢,)=0, V2(VZ%4,)=0 )

m=n=1, VVZ%¢,)—2\ i(V2¢m—1)=0,
o ®

J
VA(V24n) =2\ — (V24 1) =0
dm
J
mn>1,  VA(V2¢q)—2\ a—m(V2¢m—1)+7\2V2¢m—2

‘92¢m—2 _
— =

2

—N2(1+v)

0,

d
VZ(Vzwn)_Z)\ a_m(vzwnfl)_’_)\zvzwnfz

(92%72 _

—N3(1+
(1+7) an;

0.

It should be noticed at this stage tHj} is identical to that for
homogeneous materials for which the solutions eidf). The

— 1 3
and H2:§ B3{ .

In (10) and(11), A,, andB,, are real constants. Switching back
to the(x, y) coordinates througtB) and(5), a six-term expansion
for the stresses can be obtained as

2
0= 2 {RZok =y IM{Z;}+2 R Yo =y Im{Y}}
1
> |32 RAZ} 4y Im{z,}~y? ReZ;} + 2 Re¥,}
n=0

(3—v)
24

— 4y Im{Y,}—y?Re{Y/}} | — \2{6y Im{Z,} + 6y?

Re{Zo} —y® Im{Z{}+ 6y Im{Y o} +6y? Re[ Yo} —y°

(1+v)
8

XIm{Ygoh}— A2 R Yol —4y Im{Y}

—y*Re{Yo}}

differential Egs.(8) and (9), corresponding to the higher powers
of g, are coupled to the lower-order functions. These are solved in 2 LN

i I i _ ’ ’ 2 ’
a recursive manner and the solutions for opening mode and she@yry,go {RE[Z}+y Im{Z}}+y |m{yn}}_§0 E{y Re(Z[}

mode are provided in the following sections.

4 Opening Mode Loading

Considering the symmetry of the normal stress components
about the line of the crack and the traction-free crack-face bound-

ary conditions, the first three terms in the expansion=(0,1,2)
are

bo=Re(Go}+ 7, |m{60},

= — A —
¢1=Re{Gy1}+ 7, Im{G1} — 5 75 Re{Go}

sy RV - ey Im(za) v

_ M)\ZyZ Re{YO}

2

Ory= go —{yRe[Z;} +y Re[Y ) +Im{Y,}}

1

+2

{2y RE(Z,} v Im(Zj}+ 2y RelY,}

- — N, = (B=wN\ =~
d2=REGo}+ 7, IM{Gy} - 272 Re[G,}— a2 Im{Go}
(10) —yZIm{Y;}}]

. 4 . 4 . 4

GO=§A0§3’2, G1:1_5A1§512 and 62:3_5/'\2{7/2: (3—v)
) + 2 N2{3y? Im{Zo} +y3 Re[Z)} +3y? Im{ Y}

—  9Gq
{=m+tin,, Go=—>r, i=y-1. / (1+v) -

9 +y* Re[Yolh+ —g— A2y Re{Yol—y? Im{Yo}}.  (12)

Gy, G;, andG, are the first, second, and third terms in the

series solution of the stress function for homogeneous materials ) )

([4]). Forn=0, 1, and 2 the solutions can be written in terms of The complex function&, andY,, which are counterparts of

the functionsHy, Hy, andH,, which are the first three terms of (€ functionsG, andH,, in the (x, y) coordinate system, are listed

the series solutio{5]) for homogeneous materials, as in the Appendix. Unlike homogeneous materials, E@8) for the

stress field contain functions of the Poisson’s ratio. This is due to

Vo= 1 |m{ﬁ0} the presence of Poisson’s ratio-dependent coefficients in the gov-

erning Eq.(2) as opposed to the bi-harmonic equation for homo-

geneous materials. Note that the stresses collapse to their homo-

geneous counterparts on setting the nonhomogeneity parameter

to zero.

_ A _
1=moIm{Hq}— 5 75 Re{Ho}
(11)
(83— v)\?

_ A _
o= 1 IM{H,} — 2 77% Re[H}—

5 Shear Mode Loading

Following the same procedure, outlined in the previous section
and keeping in view the inherent nature of the shear mode prob-
lem, the first six terms of the expansion for the stress field are
obtained as

(1+ v)A? -
- niRelHo)

-1 , = — 1 )
and HOZEBOZ, Ho=Bo{, H1:§Blg
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2
To= 2, {2IM{Z}+y REZI}+Im{Y,}+y Re[Y/}}
n=0

Loy - L
- ZO 512 1m{Z}+ 4y Re{Zo} —y? Im{Zg} + 2 Im{Y o}

(3-—v)
24

+4y Re[Y - y2 Im{Yg}}t + \2{By Re{Zo} — 6y?

XIm{Zo}—y® Re[Zg} + 6y Re{ Yo} — 6y? Im{ Yo} —y°

(1+v) - _
XRe{Yo}} — —g— A2 Im{Zo} + 4y Re{Zo} —y*Im{Z,}}

2
yy= ;O {~yRe[Z/}+Im{Y,} -y Re[Y/}}

-3 S miz -y mvi)

(3-v)
+ = Ny Re(Z}+y* Rel Yol

(1+v)

NHy? Im{Zo}}

N
5 {2y Im(z,}

> 1
o= 2, (RelZoh=y Im(Zg) —y Im{Y;}}+ 3

+y? Re[Z{}+2y Im{Y,} +y2 Re[Y[}}

- B N3y Relzo) - y* Im{zg) + 3y Re{ Y]

3 , (1+v) ) — )
—y Im{Yoi}+ —g— N2y Im{Zo} +y“ Re{Zo}}.  (13)

6 Discussion on Solutions

In order to visualize the influence of nonhomogeneity on the
structure of crack-tip stress fields, contours of constant maximum .
shear stres@sochromaticswere generated for different levels of Rin SR y
nonhomogeneity usingl2) for opening mode. The contours are
generated using two values pf(A=0.7 and\=—0.7), for which
the elastic modulus varies by a factor of 2 and 1/2, respectively,
over a distance dfi=1 m. The constanf, is expressed in terms
of the stress intensity factok,, asAy=K,/\27. The constants
A1, A5, By, By, andB, are usually obtained by fitting the stress
field to experimental data. For generating the contours the coeffi-
cientsA;, A,, B;, andB, are set to zero, however, the nonho-
mogeneity specific parts of the high-order terms corresponding to
A, are retained.

Figure 1 shows the opening mode isochromatics corresponding
to aK,; of 2 MPay m for the two values ok and for homogeneous
material (\=0). The isochromatics very near the crack tip are 0. i j
identical to those in homogeneous materials. However, as we -%.2 -0.1 0 0.1 0.2
move away from the crack tip the shape of the contours deviate xh
from their homogeneous counterparts substantially. The deviatidrig- 1 Opening mode isochromatics for a functionally graded
are in the fringe tilt angle and the fringe apogee pdjmint of material (FGM) with exponentially varying elastic modulus
maximum radius The fringes tilt towards the stiffer side, i.e., a
positive value o\ results in a forwardaway from the crack fage
tilt where as a negative leads to a backwar@towards the crack 7 Closure
face tilt. The apogee is seen to increa@mte the second order Higher-order terms in the expansion for crack-tip stress field in
fringe) as the magnitude of the nonhomogeneity parampter FGMs are derived for Mode | and Mode 1l cracks. Using this
increases. stress field, contours of constant maximum shear stress are gener-
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ated for two different levels of nonhomogeneity. The contours are _ 1
observed to deviate from those for homogeneous material and the Y1=§ Blzz, Y,=B,z, Y;=B;
deviation increases as the distance from crack tip increases.

) — 1
Appendix y2:§|3223, Y,=B,72, Y,=2B,z

. 4 -
Zo=3 A2 Zo=2Ai2"%  Zo=Aiz %,

z=x+iy, i=y-1

1
Zy=—5A0z ¥
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The Interface Crack Problem of
Bonded Piezoelectric and Elastic
s.a.meguic § Half-Space Under Transient
-2 § Electromechanical Loads

Engineering Mechanics and Design Laboratory,
Department of Mechanical agg;?ndelfrmgl The interface crack problem of bonded piezoelectric and elastic half-space under tran-
o ' sient electromechanical loads is considered. Both the permeable and impermeable
University of Toronto, i . . .
5 King's College Road boundary qondltlons are examlned and dlscgssed. Baseq on thge use of |nteg.ral trans
' form techniques, the problem is reduced either to a singular integral equation for
Toronto, ON M5S 3G8, Canada -, ; . .
the permeable boundary condition or to two coupled singular integral equations for
the impermeable boundary condition, which can be solved using Chebyshev poly-
nomial expansions. Numerical results are provided to show the effect of the applied
electric fields, the electric boundary conditions along the crack faces and a free surface
on the resulting dynamic stress intensity factor and electric displacement intensity
factor. [DOI: 10.1115/1.146091]0

1 Introduction Meguid[13], Wang and YU 14], and Shin et al[15] considered

With the increasing usage of piezoelectric materials and cor%h-e dynamic crack problem in a piezoelectric strip under electro-

osites as actuating and sensing devices in smart structures Wmechanical impact. Wang et dlL6] analyzed a cracked piezo-
P 9 9 » Wiki&tric laminae subjected to electromechanical impact loads.

?hy;?:?ﬁ;?n?glfr: gclusjrgobrzlhng,r;gr rgl;?r? dgt;rgjtlgr; @hasirl;f?nr:/ep:}'d OFrom the analyses concerning the transient response of cracked
. y : A . iezoelectric materials and composites, it can be seen that there at
tigated the steady-state dynamic response of cracked piezoelectric : ; o

- ! A : east exist three concerns that require further study. The first is
materials under the action of incident plane harmonic waves. T

d . ) . . S . " Bncerned with the effect of the applied electromechanical loads
ynamic Green’s functions for anisotropic piezoelectric materials

: - n the crack tip fields. Analogous to the analyses in elastic theory,
Gynamic representation formuias.and fundamental sotions (g7 and YU11], Chen and Karinalog12], Chen and Meguid
piezoelectricity. Shindo et 4] studied the dynamic response o 3], Wang and Y{{14], and Wang et al{16] assumed that both

a cracked dielectric medium under the action of harmonic Wavmechanical loads and electric displacements are applied to the
; X o . . de,?ack faces, and that the loads @mdependenbdf the externally
in a uniform electric field. In their recent works, Narita an

) . X . . applied electric fields. However, this assumption is inappropriate
S_hlndo[5,6] |nvest|ga}ted the dynamic aqtlplane shear of a crack? r piezoelectric materials. In fact, the application of electric fields
piezoelectric ceramic and the scattering of Love waves by a

. . . ; . V\iw induce stresses in a piezoelectric material. When a crack is
surface-breaking crack in a piezoelectric layer over an elastic ha

plane. Meguid and Wang] studied the dynamic anti-plane inter_present, the_ stresses will be applied as external loads to the crack
action. of two cracks in a piezoelectric medium under inciderf1 ces. That IS to say, t_he loads on the crack faces are dependent on
shear wave loading using the conducting crack assumption Watne applied eIecFrlc f|e_Ids. Therefore, t_he results in t_hose refer-

' entes may be misleading. The second is concerned with the effect

[8] further investigated the interaction of multiple interface crackgf the electric boundary conditions on the crack-tip fields. The

beme;ntévgoagf\/z;%eeﬁggn@gdrgjfgse'nCes are concerned with t odeling of electric boundary conditions along the crack faces is
. . . dfill an open problem. Generally, there are two well-accepted elec-

steady-state dynamic responses of cracked piezoelectric materjd Sboundary conditions, namely: the permeable and impermeable

and composites. However, piezoelectric materials and compos%e%ndary conditions F’rom the. physical viewpoint, those two

are oft_en su_bjected_to t_he action of transient dynamlp loads as WSectric boundary conditions are the two extreme cases, with the
in engineering applications. It is, therefore, of great importance 10

. . ! . . ermeable boundary condition representing the case where the
investigate the transient response of crack_ed piezoelectric matgf'é\ck faces are in complete contact and the impermeable bound-
als and composites. Li and I\/!ataﬁ_jhlo] studied the problem of a ary condition representing the case where the crack is open and
sgml-lnflnlte. crack_ propagating in an infinite plez.oelectrlc. mef'yled with vacuum. Most of the existing works address the imper-
dium. They investigated the effect of the propagating velocity Theable boundary condition. Although Wang and[Y4] have also
the crack on the crack-tip fields. By the use of integral transformqsI :

g . scussed the permeable boundary condition, and concluded that

Flngl %?/%ict)inftg] ds trstzgi’si?fnr::dgg %Pe;n f?nr:?nggZﬁl?r? trrl]e two boundary conditions lead to the same results, the current
infinite iez%electric medium undefthe action of antiplane me-lJthorS have doubt about the validity of this finding. The third is
p P concerned with the effect of the presence of a free surface on the

chanical loads and in-plane electric displacements. Chen a - e . .
P P rack-tip fields. Crack-tip fields will change due to the arrival of

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF Lhe _reflectl_ng WavefS fron; a fr.ee. Surfacde.‘ bult Onfe Cahnn()t see this
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- asic requirement from the existing studies. It is for those reasons
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Mar. 1that we offer the present study.
2001; final revision, Nov. 26, 2001. Associate Editor: K. Ravi-Chandar. Discussion |n this paper, we consider the problem of bonded piezoelectric
on the paper should be addressed to the Editor, Prof. Lewis T. Wheeler, DePa”m%HbI elastic half-space with an interface crack subjected to tran-
of Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and. X .
will be accepted until four months after final publication of the paper itself in th&!€Nt eIECtromeChan!qal loads. BOth the permeablg and Imperme-
ASME JOURNAL OF APPLIED MECHANICS. able boundary conditions are discussed. The main purpose is to
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Ty wherep is the density of the piezoelectric material.
Substituting Egs(1) and (2) into (3) and (4) results in the

a a l following governing equations:
Elastic material

— X ’ VZW: CEZ&ZW/&tZ, KMVZd): e15V2W (5)
in which
Piezoelectric material h Co= \//T U= Cagt eislkll- (6)
The constitutive relation for the elastic material can be written

Y
D(x, t W, W,
.8 sz1:(3441W1 Tyzl:C44lW (7
b b wherer,,; and 7y, are the shear stress componemts,andcya;
are the displacement and the elastic modulus, respectively. The
governing equation is given by

le »le »l
< > >

Fig. 1 Geometric configuration of the problem
V2w, = Cy P d?wy [ 9t? (8)

provide an analytical treatment to investigate the transient behé&é‘t’g:i'gr C21=\Cas1/p1, and p; is the density of the elastic

ior of piezoelectric composites under different boundary condi- . .
tions, which is important for the design and numerical simulation In the theoretical studies of crack problems, the permeable and

of smart structures. Based on the use of integral transforms, f%gg"?te?sblgsgggﬂgo?ﬁata:ﬁeeﬁﬁ;‘:é\éeIé/f l:ﬁgdélggcﬂg,leat%rﬁ;e?st
problem is reduced either to a singular integral equation for HyE>e:

permeable boundary condition or to two coupled singular integr%founded‘ so that the boundary conditions for the permeable crack

equations for the impermeable boundary condition, which can BEOblem can be written as

solved using Chebyshev polynomial expansions. Numerical re- TyX,—h)=7(x,t), —ce<x<w® (9a)

sults are provided to show the effect of applied electric fields,

electric boundary conditions along the crack faces, and a free Dy(x,—h,t) =D(x,t), —oo<x<o® (9b)

surface on the resulting dynamic stress intensity factor and elec-

tric displacement intensity factor. Ty AX,00) = 7y 1 (X,01), —oe<x<e0 (9)
TyZ(XvO!t):O! |X|<a (9d)

2 Formulation of the Problem

Suppose that a crack of lengtla 2 present along the interface W(x,00) =wy(x,08), [x|>a (%)
of a piezoelectric layer and the elastic half space, as shown in Fig. H(x,01)=0, —co<x<o. (9f)
1. A set of Cartesian coordinates,y,z) is attached to the center
of the crack. Thec-axis is directed along the crack line apaxis The boundary conditions for the impermeable crack problem
is perpendicular to it. The poled piezoelectric strip, with traxis  can be expressed as
being the poling direction, occupies the regiohh<y<0, —

<x< +). At the timet=0, both the antiplane load and in-plane TydX —h)=7(x1), —oe<x<e (10a)
electric _dlsplacerr_lent _suddenly be_gln to act on the Ipwer surface Dy(X,~h,)=D(x,t), —e<x<ox (100)
of the piezoelectric strip, resulting in a coupled electric and stress
wave field. _ _ Ty X,01) =Ty n(X,01), —oo<x<o (10c)
In this configuration, the piezoelectric boundary value problem
is simplified considerably because only the out-of-plane displace- 7,Ax,01)=0, [x|<a (10d)
ment and the in-plane electric fields exist. The constitutive rela-
tion for the piezoelectric material can be expressed as w(x,01)=wy(x,01), [x[>a (10e)
aw 2] W ¢ Dy(x,01)=0, [x|<a (20f)
Txz= Cad - + G5 Tyz~ Cargy + 5oy (1)
y y $(x,00)=0, |x|>a. (10g)
and The analysis is performed using Laplace and Fourier transforms
aw do W do over time and space, respectively. The Laplace transform over
Di=eis— i Dy:elw_ Kirgy (2)  time, t, and its inverse are defined by

wherer,, andr,, are the shear stress componebtgandD, are

* 1
the electric displacemente; and ¢ are the mechanical displace- | (P)= fo f(hexp—pydt,  f(H)=5— fBrf (p)exp(pt)dp

ment and electric potential, whikey,, e;5, andky; are the elastic (11)
modulus, the piezoelectric constant, and the dielectric constant of
the piezoelectric material, respectively. in which Br stands for the Bromwich path of integration gmis

The equilibrium equation and the Maxwell equation for théhe transform variable. The time-dependency(5h and (8) are
piezoelectric material under antiplane loading are given by eliminated by the application of E@l1). The Fourier transforms

are then applied, resulting in
Ity I1y;  PPW PP 9

+ =p—= (3 1 (=

x ooy Tt W*(x,y,p)=5f [AL(€,p)exp — yy)

Dy Dy _ 4 o

T @ +ALEpexpyy) Jexp—i£0dE  (12)
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e c - )
FXYP= W RYP P Y) (1) Fakyp) =50 f As(£,P) v1 €XP(— y1y)exp( —i Ex)dé.
1 (= (21)
P (XY,p)= py f [As(€,p)exp( —[£ly) In the above formulationA;(¢,p)(j=1,2,3,4,5) are unknown
- functions, which will be determined from boundary conditi¢@s

+AL(Epexpl|Ely)lexp —iéx)dg  (14) and(10), and
- y=\E+p%c,?%  y=\E+pZc,h (22)

1
w¥(X,y,p)= =— Ac(€,p)exp(— exp( —iéx)dé.
100Y.P) 2w ffw s(&:plexpl( = yay)exp(~14x)dd 3 Solution of the Permeable Crack Problem

(15) In this section, we consider the permeable crack problem. The
The stresses and electric displacements in Laplace transfdraplace transform of boundary conditio®a)—(9f) can be ex-
are found to be pressed as
i [~ (X, —h,p)=7(X,p), —o<x<® 23
2xY.P)=— J ELAL(E PIexE— 7y) A TR O0p) " )
- Dy (x,—h,p)=D*(x,p), —oe<x<w® (230)
+A(E p)expyy)lexp(—iéx)dé TAX,0P)= T3 4(X,0p), —oo<x<o (230)
ed (~ * _
22 [ anemen-iay X 0P)=0. [x<a (230
o w* (x,0p)=w3 (x,0p), [x>a (23¢)
+Ay(Epexp(|gly)exp(—iéx)ds  (16) #*(x,0p)=0, —xm<x<o. (23f)
" mo( Substituting(12)—(15), (17), (19), and (21) into the boundary
TAXYP)= 50 J ATAdE e yy) conditions(23a)—(23c) and (23f), we find
h) /[__ _
+ Ag(€,p)explyy) lexp —i £x)dé Auep=exn e+ SE (7 25 o
11
€5 |7
+o= | [El—As(épexp —[£ly) _ edltexp2yh)]
+A4.(§yp)eXF(|§|Y)]eXF(_lfx)df (17) eXF(|§|h)5 8159XF(‘yh)
D (x.y.p)— %'j LAL(Ep)exp—|ly) ruf €[ 1+exp2[ €[] kypuyl1+exp2]¢h)]
- — €5
+—D 25
FALEPIexplély) lexp—i80de  (18) (7 2ol =
w €5 1+exp2yh)]
Dy (Y. == 5= | [€ll~As(&pIexn~lély) AER) == e o PR A AL ER)
FALEP)exply)lexp—i60d¢ (19) __ex(gnp exsexl(y+2|¢)h]
o [~ w1+ exp2[[] kay[1+exp2]éh)]
Tea(XY,p) == EJ As(£,p)& exp(— yry)exp(—iéx)d¢ e
- X T+—D) (26)
(20) K11

g oy AL X2y L+ ex 2]l )+ ey i el L+ expr2yh exp2lel )11
5(§,p)= Canryi[1+exp(2]€lh)]

1(§vp)

2eidélexp|€D  exp(yh) [ eldéllexp2]¢lh) ~1] ](ﬂ e_lsa) o
K11Cas1 &l ya[1+exp(2[é[h)] * Cagryr | kmy[1+exp(2[élh)] K11
I
where the mixed boundary condition®3d) and (23e). To reduce the
mixed boundary conditions into an integral equation, we first de-
I . fine the following new dislocation function:
T= 7 (X,p)exp(i éx)dx (28)
- (X/P)= == [} (x,0p) ~W* (x,0p)] (30)
_ X,p)=—[wi(x,0,0)—w*(x,0,p)].
D=j D* (x, p)expli éx)dx. (29) POLP)= G W1 (XOP P

The remaining unknowA(&,p) may then be determined from Then, from(23e) we have
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Fi(&,p)=[1+exp2[¢[) {uy[1-exp2yh)]
2

Ja ¢(a,p)da=0. (31)

€15
Substitution of(12) and (15) into (30) yields ~Cagryal 1+ eXp2y) [+ |1+ exp(2yh)]
1 * _
om== 5= | 1EAER-AER) A ER) Hlextzielm =] (35)
_ S I S efd &l[1-exp2|¢h)]
X exp -1 Ex)de. (32) S KY  Camyr  KuCasmyyil1+exp(2[é[h)]
From the above equation and the definition of Fourier transform, —
we obtain x exp(+h)| T+ G55 2e;sexp(|£h)D .
1 (a K11 K11Caa1v1[ 1+exp(2[£[h)]
AS(glp)_Al(§7p)_A2(§1p):_E B @(axp)exliifa)da- (36)

(33) By using EQq.(23d), it is shown that
Further, from(24), (26), and(33), we have

a = yF(&plexp—iéx) (@ .
A(£p)=— C441'}’1i[;-;‘?;(i§|§|h)] ol pexpli £a)da me iz fﬁ;p(a,p)exrl(lfa)dad&
1\Ss —a
Caarvi[ 1+exp(2|&[h) 1F,(£,p) =f Fa(&,p)yiexp—iéx)dé,  |x|<a (37)
F.(&p) (34) B
where where

|
po1+exp2|¢[h))[1-exp2yh)]+ely kil £[[exp2|¢[h) — 1][ 1+ exp(2yh)]

F(é&p)= Fi(é,p) o
 2expyh)[1+exp2|£h)] (_ %—) _ 2essexpl|€]h)[1+exp(2yh) D
Fa(é.p)= F.(&p) - KllD k1aF1(&,p) )

crack faces. Fron39), one can see that the load depends on the
electric displacemenD. We further notice that whemp—0,

The right-hand side of37) represents the load acting on the a o(a,p) a
f da+f k(a,x,p)e(a,p)da
- -a

a

F3(&,p) is independent ob. From the initial-value theorem con- _ CyatCygy [ .

cerning Laplace transform, this indicates that only in the static n 2Cyy 4':3(5’[))71 exp(—i&x)d¢,  [x[<a
case will the load become independent of the electric field. There-

fore, the assumption that the mechanical loads acting on the crack (41)

faces are independent of the applied electric fields is inappropfinere
ate. It is also shown that the dynamic response of cracked piezo- .
electric materials and composites will present different behaviors |, p):f (Cagt Caa) v1F(£,P) 1|sin &(a—x)]d¢
from the static solution. In the static case, the electric field has no " 0 Casé '
influence on the crack-tip fields when the permeable condition is (42)
considered.

P L It is clear that Eq(31) is satisfied.
The kemel of the infinite integration in Eq37) tends to a Equation(41) is a singular integral equation of the first kind, its

constant wh_erj§|—>oc, which cor(esponds to the §ingu|ar part O_tsolution includes the well-known square-root singularity and can
the integration. After performing the appropriate asymptotigg expressed as

analysis, we find
B;(p)

elap)=2 =y

whereT;(a/a) are Chebyshev polynomials of the first kind and
B;(p) are unknown functions. From the orthogonality conditions
of Chebyshev polynomials, E¢B1) leads toBy(p) = 0. Substitut-
ing Eq. (43) into (41), the following algebraic equation fd;(p)

is obtained:

In order to extract the singular part from the integration, we em- «

ploy the termc,,Sign(£)/(Caat Caaq) in the kernel. By interchang- B.(p)U. .(x/a)+ Bi(p)L:(x,p)=7(X,p), |x|<a
ing the integration order in Eq37) and after the appropriate 121 (Y- () 121 i(PIL (X P)=T2(xP) X

T(ala) (43)

~ yiF(é,p) Cas
lim =
g € Ca4t Caa1

sign(¢). (40)

treatment, the governing equation for determining the unknown (44)
function ¢(a,p) is obtained in terms of the following singularwhere U;(x/a) represent Chebyshev polynomials of the second
integral equation: kind, with
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|_j(x,p)=J_aa ﬁk(a,x,p)ﬂ(ala)da (45) f_aqol(a.p)da=0 (56)

and a
f, ¢o(a,p)da=0. (57)

+ o0
(%, p) = S f Fa(£.p)y, exp —i£)dE.  (46)

2’7TC44
Truncating the Chebyshev polynomials in E¢3) to theNth  BY using Eqs(54), (55), (12—(15), and the definition of Fourier

term and assuming that E@i4) is satisfied aN collocation points fransform, we obtain
along the crack faces,

a

1
As(£,P)—A(&EP)—Aép) =~ | eila,plexpifa)da

mar -
xm:acos(m), m=1,2,...N. 47) iéE) 4
Equation(44) can be reduced to a linear algebraic system of equa- (58)
tions of the following form: e
N mjr ma N —[A1(&,p) +Ax(&,p) ]+ As(&,p) +Au(é,P)
E Bi(p)sin —) sinl —— +E B.(p)Li(Xn,p) fu
= N+1 N+1) = o hmm 1 (a
=— , iéa)da. 59
(%), mM=12,.. N. (48) |§f_a‘°2(“ p)expiéa)da (59)

OnceBj(p) are determined froni48), the stress components o ) )
can be obtained. Then, the dynamic stress intensity factor cangostitution of(51)—(53) into (58) and (59) yields
evaluated using the following expressions:

Casrvi[ 1+exp(2|élh

2 j_ e1(a,p)expiéa)da

CasCasnVTa __
K3 (p)= lim \2a(x—a) 7 x 0p) =~ 2223 gy(p). AP EFa(£p)
wat 4417 Caa1 31
(49) B eis €[ 1—exp(2|£[h)]
4 Solution of the Impermeable Crack Problem 1EF1(6,P)
Consider now the impermeable crack problem. Performing a . Caa171
Laplace transform to the boundary conditiori&0a)—(10g) XJ'a‘PZ(a’p)emea)daJr[ 1+ ay )
leads to
%, —h,p)=7*(x,p), —w<x<os (50a) X[1+exp2[¢h)]
D;‘(X,—h,p):D*(X,p), — o< X< 0 (50:)) T ei;lfl[l—eXKZ'f'h)]} eXFﬁ’h) (? e_].S_)
 x.0p) =751 (x0p) e (500) K11y Fi(&p) K11
TyAX,UP)=7,,(X,0p), —ooI X< .
’ e _ 2e5exqi|¢[h)D i
#x09)=0, |x|<a (s00) TRFAER) ©0)
w* (x,0p)=w3 (x,0p), [x|>a (50e) 1 2vh a
' X Ao(,p)= BNV % ) exptia)da
D} (x,0p)=0, |x/<a (50f) 1k16F(€.P) -a
¢*(x,0p)=0, |x|>a (500) n my[1—exp2yh)]—cCaarya[ 1+ exp2yh)]
. i€F1(&p)
From (50a)—(50c), it can be seen that
h) [ — a .
Ay(£,p)=A(&,p)exp(2yh) + exzy )(T+ i—“’D) (51) XJ po(a,p)explifa)da
€11 -a
h)D
A4(£.p)=Aqg(£,p)expt2]]h) — % (52) _ 2essexp(yh) (; G5 +[1
wy 1 k11 F1(&,p) K11
As(£.p)= o [1-expa2y)JAy(£.p) . 2e§5|g|[1+exp(2yh)]} exp(| €lh)D
€15 €| ol élh x11F1(€,p) ry1 €[ 1+exp(2[¢[h)]”
+C44171[1*9XF( |§| )]A3(§rp) B (61)
_exp(yh) (?+ 35) | esex|¢[h)D (53  From(50d) and(50f), we have
Caa1v1 K11 K11Ca4171 o expyh) [ ey —
Let us again introduce the following dislocation function: f_ [Y[GXD(ZVh)—l]Al(fvp)JF M (T+ P )]
J
<P1(X,IO)=5[WT(Xy01p)—W*(Xy0,I0)] (54) Xexp(—iéx)dé=0, |x|<a (62)
and the following definition: o exp(| €lh)D
) [ tetexmzlein - 1agep - SEE2
a¢* (x,0,p) o K11
@a(X,p) =~ o (55)
Xexp(—ié&x)dé=0, [x|<a. (63)
According to Egs.(50e) and (50g), those two functions must
satisfy By substituting Eqs(60), (61) into (62) and (63), we obtain
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where

1 (= a
I‘f all(gvp)exiififx)‘[i o1(a,p)expliéa)dadé

1(~ ) a ) _0441771[1+exq2|§|h)][exq2yh)f1]
+= | ap(&plexp—igx) | @u(a,p)expifa)dadé an(é,p)= (66)
i) . EF1(£,p)
:TZ(le)! |X|<a (64)
1 (= a _ ewéy[1—exp(2[¢h)J[exp2yh) — 1]
= f 8 €,p) eXpl — 1 £X) f ¢1(a,p)expliéa)dadé 212 £,P) EFL(Ep) (67)
1 (= a
+-—f azz(§,p)exrt*i§><)f @a(a,p)expiéa)dadé €15Caq1 €| yi[€xp(2|£|h) — 1][exp(2yh) + 1]
g -a ax(é,p)=
k116F1(€,p)
=73(x,p), [x|<a (65) (68)
|
El[exp2|élh)—1 1-exp2yh)]—c 1+exp2yh)
azz(é,p)=| I[exp(2] ¢ HuoA gprg,;) ]—Caarya[1+exp2yh)]} (69)
) 2|&lh) ]+ 2¢€? —exp(2|&lh —
TZ(X’p):_'L Caarya[1+exp(2| €| ;]F";(;Ls;Klﬂﬂ[l exp(2|£h)] exp(7h—i£%) 7"'%?'3)(15
* 2e5y[exp(2yh) — 1]exp|élh—iéx)D
ffw k11F1(€,p) dé (70)
) 2l¢h)—1 - _
7'3(X,p):f7 815|§’|<[j§i§|§)) L expyh—igno| 7+ i—io)dg
? 2puy[1—exp(2yh)]—2C1y.[1+exp2yh)] N
+J,m F1ED) exp(|&lh—iéx)Ddé. (71)

One can see that the right-hand side(?®) and (71) depends Cass a o,(a,p) €5 a g,(a,p)

on both7 andD. This again indicates that the assumption that the Coaat C441f a—X dat Cast C441f de
loads acting on the crack faces are independent of the applied

electric fields is inappropriate. However, by the use of the initial- a a

value theorem as applied to Laplace transform, we can deduce +f kn(a,X,p)QDl(a,p)daJrJ Kiol e, X,p) @a(a,p)da
that in the static case the electric field does have influence on the -a -a

crack-tip fields when the impermeable condition is considered.

—a _a a—X

Performing appropriate asymptotic analysis leads to =3 (&p), [x|<a (76)

. Caa1 €15C441 2 ¢1(a,p) els

lim a(é,p)=— Si 72 - da+|1+ ————
|¢]—oe nl&p) Cagt Caa one) 72 K11(CagtCaar) ) 4 @—X ¢ K11(Cas47 Cas1)

a a
Xf QDZ(%a;(p)da"'f Kaa(@,X,p)@a(e,p)da

. €15 . -a -a

lim a p)= Si 73

Im anlgp)= o sion(s) (73)

a 1
+J‘7 k22(aixlp)()02(avp)da:ET?’(gvp)! |X|<a (77)

€15Ca41

lim a,(é,p)=——si 74) where
e 21(€,p) K12 Caat Can) gné) (74)
- Cas1 | .
Ky, X, p)= ayn(ép)+ sifé(a—x)]dé§
el 0 CaatCyy
;;Twazz(flp)_[lJr PRCETIN sign(é). (75) (78)
* €15 .
Kig(a,X, ):f a(é,p)— ‘]SI E(a—x)]dé
In a similar fashion to Section 3 and from E{64), (65), and e P 0 &P CastCyy "t !
(72—(75), we have the following singular integral equations: (79)
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(7 €15Ca41 . B
k21(a’rxvp)_J0 azl(&p)er sifé(a—x)]dé
(80)
" efs
kzz(a,X,p)—Jo axé,p)— 1+m
x sin &(a—x)]dé. 81)

The functionsp,(a,p) ande,(a,p) are defined in terms of the

Chebyshev polynomials:

©

y(a,p)= E B

\/ﬁ

Ej(p)
0 V1-a?/a?

Ti(ala),

oo a,p)= 2 _Ti(ala).

From (56) and(57), it follows thatB,(p) = Eq(p) =0. By truncat-
ing the series to a reasonable number of terms and by using a

(82)

L2gj(Xm,P)

_ Kk11(Cagt Ca1)

€15Ca41 kZl(alexp)Tj(a/a)da

(87)
Log(Xm,P)
K11(Cag™t Caa1)

€15Ca41

Koo @, Xm, ) Tj(a/a)da.

Jla 7T\/1— 2/ 2
(88)

Based on the solutions dB3) and (84), the dynamic stress
intensity factor and electric displacement intensity factor can be
obtained, as follows:

K% (p)= lim y2m(x—a)7},(x,0p)

x—a’

C a -
=_M B;(p)

CasgtCya1 51

simple collocation technique, we can determine the remaining un-

knowns using the following algebraic equations:

[ mjm
EN: SN N+ 1 ] .
& [ mx 12j(Xm, P) (p)
SN NF1
mjar
% elssmm L .
=1 mar 12](Xm1p) (D)
CaqgSIN —— NP1
Ca4t Caa1
= 2w 72(Xm,P) (83)
mjmr
N Slnm
—le .—mﬂ_)_l-ﬂj(xmfp) Bj(p)
SN N+ 1
2.0 M
N [ K11(Caq7Cya1) +E75]SIN N+1
r2 o
915C4415|n( N+ 1)
K11(Caat Casy)
+ L5 (Xm,P) Ej(p):mTS(Xmap)
(84)
m=12,...N
where
L1gj(Xm,P)
C44+C441f
ki(a,Xm,P)Ti(a/a)da (85
Ca ﬂﬁm ul@ X PITi(/@)dac (85
L15(Xm,P)
C44+0441f
Kida,Xm,p)Ti(ala)da (86
| e T el @9
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n persma <

CagtCaa1i=1

K5(p)= lim y2m(x—a)Dy(x,0,p)

x—at

e a ”
_ 150441\/77_2 B,(p)

CaatCaar =1

Ej(p)*—K (p) (89)

+1ma

2 Eij(p).

5 Numerical Results and Discussions

Numerical calculations have been carried out to show the influ-
ence of the pertinent parameters. In the following calculations, the
piezoelectric material is assumed to be the commercially available
piezoceramic PZT-4, and the elastic material is assumed to be
aluminum. The elastic, piezoelectric, and dielectric properties of
the materials are as follow17]):

C44=2.5610' N/m?,
k1;=64.6°10"1° C/vm, p=7500 kg/ni;
Cay1=2.6510° N/m?, p,;=2706 kg/ni.

For the sake of simplicity, the electromechanical loads are as-
sumed to act uniformly over the rangeb<x<b and in the form
of a Heaviside step function; namely;(x,t)=7roH(t) and
D(x,t)=DgH(t), wherery andD, are constants. In this case, we
have 7= 27, sin(&)/(pé), D = 2D, sin(é)/(pé).

To check the convergence of the expansiongB) and(82), a
number of runs with varying number of terms were used. We
found that good convergend@ percent difference between two
successive runscan be reached when the number exceeds 15
terms. In all our calculations, we used 20 terms.

Both the dynamic intensity factor and the electric displacement
intensity factor in the physical plane are obtained by the numerical
inversion of Laplace transform. Numerous numerical techniques
have been developed for the inversion. Naraynan and B¢4&bs
made a comparison study of those techniques and found that the
Durbin’s method([19]) can give reliable results even for compli-
cated functions. In the present analysis, we tried two techniques:
the Durbin’s method and the method developed by Miller and Guy
[20]. Due to its simplicity, Miller and Guy’s method has been used
in most of the existing studies concerning the transient response
of cracked piezoelectric materialsee, e.g., Chen and 1],

Kyt ——/——

90
C44+ C441 (°0)

e;s=12.7 CInt,
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Fig. 2 Normalized SIF versus normalized time for various elec-

tromechanical loads and the permeable boundary condition Fig. 3 Normalized SIF versus normalized time for various  a/h
and the permeable boundary condition

Chen and Karihalod12], Chen and Meguid13], Wang and

Yu [14], Shin et al.[15]). However, we found that this method ©f the incident stress wave, only the electric field is present. At

gives diverging and inaccurate results. This is because the mettgd®: the SIF has a jump. Then, a small overshoot takes place.
om Figs. 6 and 7, one can deduce the influenca/bfand the

uses very little information of the transformed domain, as cr:{:nr . .
also be seen from the work of Naraynan and Begk@ There- 0ading range on this process. . . .
fore, only the results of the Durbin's method are presented here! he variation of the electric displacement intensity factor with

(Figs. 2-1}. In these figures, normalized parameters are us‘g@riousa/h atDh=0.5 is_depicted in Fig. 8. From this figure we
with SIF=K(t)/(7oy7a), EDIF=Kp(t)/(Doyma), T=cot/h can observe the dynamic overshoot phenomenon. Moreover, the

andDh=e;sDo/(k1170). phenomenon is intensified with the increaseadlii. This is quite

Figures 2—4 are concerned with the results of the permeafgiiferent from the earlier results obtained in Chen and[Y],
crack problem. Specifically, Fig. 2 shows the influence of thghen and Karihalog12], Chen and Meguid13], Wang and Yu
applied electromechanical loads on the dynamic stress intensiytl, @nd Wang et al.16], where the electric displacement inten-
factor. It is seen that iT <1, the incident stress wave does nob!ly factor is in the form of a Heaviside step function. .
arrive and the medium is completely at rest if no electric field is Figures 9—11 compare the solutions of the dynamic stress in-
applied Oh=0). This is reflected by the fact that the SIF is zerdenSity factor for the permeable and impermeable conditions.
in that period of time. In the presence of the electric field, the S|¥hena/h=0.2, the difference between the two solutions is neg-
increases or decreases gradually with increasing time, dependgip'e- However, when the ratio ai/h becomes large, the differ-

on the direction of the electric field. The positive electric fiel®MC€ IS appreciable. This indicates that for smaller cracks, the
(Dh=0.5) induces negative SIF, and the negative electric fieRgrmeable and impermeable conditions provide comparable re-

(Dh=—0.5) causes positive SIF. Whan=1, the incident stress sults for the local stress fields. For larger cracks, the two boundary

wave arrives. Thereafter, the SIF rises rapidly with increasirfd)nditions lead to different solutions for those local stress fields.

time, and reaches a peak, then decreases until the arrival of the
first reflecting wave from the free surfac&= 3). It is shown that

this process is intensified by the presence of the positive elect~ |
field, and alleviated by the presence of the negative electric fie
The same phenomenon can also be observed, if we consider !
first reflecting wave (3T<5) and the second reflecting wave

(T=5). In the calculation of this figure, we also checked th ) N\
accuracy of the Durbin’s method. From the physical viewpoint, : \—\//

is expected the SIF to be zero befofe=1, since there is no

electric field applied. The calculation shows that the error is le: \/\, e, 4T .

than 1 percent. The physical model indicates that the times
which the first and the second reflecting waves arrive should @ 05
T=23 andT =5, respectively. However, our calculations show the
they areT=2.9 andT=4.9. This discrepancy is due to the ap-
proximation used in the model.

Figure 3 displays the variation of the SIF with varicah at 0
Dh=0.5. Due to the arrival of the incident stress wave, the di ~-—-b=a,a/h=0.6,Dh=0.5
crease ofi/h results in an increase in the SIF. However, whenth | | je-eee b=2a,a/h=0.6,Dh=0.5
reflecting waves arrive at =3 and T=5, the decrease dad/h ——b=20a,a/h=0.6,Dh=0.5
results in a decrease in the SIF. The effects of the loading range -0.5 ] 1 ,
the dynamic stress intensity factor are shown in Fig. 4. 0 1 2 3 4 5 6

Figures 5—8 are concerned with the results of the impermeal
crack problem. Generally, similar observations can be deduced
from Figs. 5-7. However, the effect of the electric field is morgig. 4 Effects of loading range on the normalized SIF for the
pronounced, as depicted in Fig. 5. It is seen that before the arripaimeable boundary condition

T
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Fig. 5 Normalized SIF versus normalized time for various elec-
tromechanical loads and the impermeable boundary condition
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Fig. 6 Normalized SIF versus normalized time for various alh
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Fig. 7 Effect of loading range on the normalized SIF for the
impermeable boundary condition
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Fig. 8 Normalized EDIF versus normalized time for various
al h and the impermeable boundary condition
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Fig. 9 Comparison between solutions of the permeable and
impermeable boundary conditions for alh=0.2, Dh=0.5, and

b=12h
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Fig. 10 Comparison between solutions of the permeable and
impermeable boundary conditions for alh=0.6, Dh=0.5, and
b=12h
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4 For a crack of small lengttfor the present cas@/h<0.2),
both the permeable boundary condition and the impermeable
boundary condition give comparable results for the local stress
fields. When the crack length is relatively large, the difference
between the two cases becomes evident.

0.5

SIF
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Numerical Simulation of Pulsed
x.r.znang | LA@SEr Bending

G. Chen1 The aim of this work is to develop an efficient method for computing pulsed laser bending.
During pulsed laser bending, thousands of laser pulses are irradiated onto the target.
X. Xu2 Simulations of the thermomechanical effect and bending resulted from all the laser pulses
e-mail: xxu@ecn.purdue.edu would exceed the current computational capability. The method developed in this work
requires only several laser pulses to be calculated. Therefore, the computation time is
School of Mechanical Engineering, greatly reduced. Using the new method, it is also possible to increase the domain size of
Purdue University, calculation and to choose dense meshes to obtain more accurate results. The new method
West Lafayette, IN 47907 is used to calculate pulsed laser bending of a thin stainless-steel plate. Results calculated

for a domain with a reduced size are in good agreement with those obtained by computing
all the laser pulses. In addition, experiments of pulsed laser bending are performed. It is
found that experimental data and computational results are consistent.

[DOI: 10.1115/1.1459070

1 Introduction greatly simplified. Relations between bending angles and pulsed

L bendi | forming i v develobed. flexib aser parameters were determined by both computational and ex-
aser bending or laser forming is a newly developed, flexi grimental methods.

techni.que yvhich modifies the curvature of sheet metal or ha. Little work has been done on pulsed laser bending using a
material using energy of a laser. The schematic of a laser bendifigee-dimensional model. In a common pulsed laser bending op-
process is shown in Fig. 1. The target is irradiated by a focusgghtion such as the one used for curvature adjustment in hard disk
laser beam passing across the target surface with a certain s¢agnufacturing, thermal and thermomechanical phenomena in-
ning speed. After laser heating, permanent bending is resultedived are three-dimensional. Laser pulses with Gaussian inten-
with the bending direction toward the laser bedtine positive sity distributions and high repetition rates are irradiated along the
z-direction shown in Fig. L Laser bending has been explained bycanning line, as shown in Fig. 2. The main difficulty for simu-
the thermoelastoplastic theoffyl —4]). During the heating period, lating pulsed laser bending is that thousands of laser pulses along
irradiation of the laser beam produces a sharp temperature grdfe laser scanning direction need to be calculated. For example, at
ent in the thickness direction, causing the upper layers of tReScanning speed of 10 mm/s and a pulse repetition rate of 10 kHz,
heated material to expand more than the lower layers. This ndpére Will be a total of 2000 pulses iradiated on a 2-mm wide
uniform thermal expansion causes the target to bend away fréjﬁget' Also, the numbers of nodes and elements in a three-

the laser beam. In the meantime, compressive stress and straircARENSional model are much more than that in a two-dimensional
model. Direct simulations of any actual pulsed laser bending pro-

produced by the bulk constraint of t.he surrouncjmg materlgls. Bgéss are impractical in terms of both the computation time and the

cause of the high temperature achieved, plastic deformations 88’mputer resource.

cur. During cooling, heat flows into the adjacent area and the | this paper, an efficient calculation method is developed to

stress changes from compressive to tensile due to thermal shriginylate pulsed laser bending. Instead of calculating bending re-

age. However, the compressive strain generated during heatingdged from all the laser pulses, bending due to a fraction of the

not completely cancelled. Therefore, the residual strain in thetal laser pulses is computed. Then, the calculated strain distri-

laser-irradiated area is compressive after the target cools, caudiogion at a cross section perpendicular to the scanning direction is

a permanent bending deformation toward the laser beam. imposed onto the whole target as an initial condition to calculate
A large amount of experimental and numerical work has bed&ending. A computational algorithm is developed. The accuracy of

conducted to study CVitontinuous wavelaser bending of sheet this method is verified by both numerical calculations and experi-

metals ((5—10]). Applications of laser bending include formingMmental measurements.

complex shapes and straightening automobile body shells. Laser

bending is also being used for high-precision curvature modifica-

tion during hard disk manufacturing, in which low energy pulsed Numerical Procedure

lasers are used4]). Chen et al[11] studied bending by a line-

sha(g)el pg_lsed [[f;l]serl bearrt; using ? tW(_)t-dltmhensmne:jl finite ele_fm ost pulsed laser bending processes, constant stress and strain
model. >ince the laser beam Intensity they used was Uniioffg|qs along the laser scanning direction are obtained. Although a
across the target surfacalong they-direction shown in Fig. L gjngle laser pulse generates nonuniform stress and strain distribu-
the effect of bending was calcula_lted using a two-dlmensmr_lal hegdns, in practice, laser pulses with same pulse energy, separated
transfer model and a plane-strain model, and the calculation W@ a very small distance compared with the laser beam radius are
used. Thus, the laser-induced stress and strain vary little along the
;_le‘urrer:wt address: Cl\(le Globﬁl Nl\é, bBurrdlsldge, (I,L' scanning direction. With this in mind, it is only necessary to cal-
0 whom correspondence shou € addressed. 5 f - .

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF culate sevgral laser pUIseS until the stress and strain fieldsxrean
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- cross-s_ecnonal area are not changed bY_ a new |as¢" pulse. Then,
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Novemthe residual strain field in this cross section can be imposed onto
ber 9, 2000; final revision, May 8, 2001. Assaciate Editor: K. T. Ramesh. Discussighe whole domain to calculate the deformati{tyending. In other

on the paper should be addressed to the Editor, Prof. Lewis T. Wheeler, Departmgra s f f _
of Mechanical Engineering, University of Houston, Houston, TX 77204-4792, an rds, a strain fle|C{8r}, which can be used to calculate dlsplace

will be accepted until four months after final publication of the paper itself in theN€NtS Qf the target aﬂer pulsed laser scanning, is generated by
ASME JOURNAL OF APPLIED MECHANICS. calculating only a fraction of the total pulses.

.1 Calculation of Deformations From the Strain Field
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This equation determines the relationship between an initial stress
field and the resulted strain field after stress relaxation. It can be
seen that, if an initial stress fieldr;} = —[E]{e¢,} is used in the
stress relaxation calculation, the resulted strain field will be iden-
tical to the strain field e, }.

z Therefore, in a brief summary, the computation starts with cal-
T Bending angle X culating a strain fielde,} from several pulses and impose this
L strain field to the entire domain. Then a stress figlg} is ob-
tained by computing-[E]{e,}. This stress field is applied to an
beam scans along a fine in the y-direction, causing residual un_deformed _dom_ain followed by a stress relaxation c_alculation.
stress and strain in the laser irradiated area’and permanent This Calcule_ltlon yields both the strafe,} as well as the displace-
bending. ment(ber_ldlng._ _ _ _

To verify this simulation method and use it to compute the
pulsed laser bending process, a three-dimensional model is built
and simulations of pulsed laser bending are conducted. In the first

Before discussing the method of calculating displacementgse, a full-hard 301 stainless steel sample that is4@0ong,
from a strain field, it is worth mentioning that the residual stresgy( wum wide, and 10Qum thick is irradiated by a pulsed laser.
field qouldn’t be used to calculate displacements. The reasonyige scanning speed of the laser beam is set to be 195 mm/s,
that displacements are dependent not only on the stress but aIS(Pégi‘Jlting in a total of fourteen pulses along the scanning line; and

the load path when the plastic strain is involved. Different dis; g ,m step size between two adjacent laser pulses. Although the
placements will result from different load paths; even the res'd“%main size used here is smaller than many of those used in
strrerss f'erllcés ﬁre tgetvsvamr?'ﬂ? n E?enmhnedr g_an(lj, thfnrer:tsfa I%ne%t_?]' ftice, the reduced domain size makes it possible to calculate
corresponadence between the strain a ISplacement lielas. “temperature, stress, and strain distributions produced by all the

fore, the disp'ace'.“e’.“ field of the target can be completely det(ird laser pulses. On the other hand, to test the new calculation
mined by the strain field. ’ :

The finite element solver, ABAQUGHKS, Inc., Pawtucket, Rl ng‘oi’q ;r;teersg.am lglsérlbutiog in .t:f'g g:joisntgiﬁéon hécl)?,e do-
is used for the numerical calculation. In ABAQUS, only the stress ~.- » 9 SEr pulses IS Impos w
ain, and the procedures outlined above are used to compute the

field can be used as an initial condition for computation. Therd? .
fore, an initial stress field, which can produce the strain field equifformation caused by all the pulses. Results from the two ap-
to the laser produced strain fiefd,}, needs to be obtained first. Proaches are then compared. In the second case, a full-hard 301
The method for calculating this stress field is described below. Stainiess steel sample that is 8 mm long, 1.2 mm wide, and 0.1
Consider an undeformed domain without any external force®Mm thick is irradiated by_a p_ulsed laser. The laser scanning speed
but with an initial stress field;}. In order to satisfy force equi- 1S 8lSo 195 mm/s, resulting in a total of 134 pulses. In this case,
librium, this initial stress should relax completely. For stress rénly the new method is used since it is impossible to complete the

Clamped end Focused laser beam

Scanning line

Fig. 1 Schematic of the laser bending process. The laser

laxation, the stress field in the domain can be written by computation of all the 134 pulses within a reasonable amount of
time. Experiments are conducted on samples with same dimen-
{ot={oi}+[E}e} (1) sions and processing parameters, and the results of experiments

where[E] is the matrix of elastic stiffnesgg} is the strain field and simulations are compared. The laser parameters used in the
due to stress relaxation, add} is the stress field. After stressSimulation and the experiment are summarized in Table 1.

relaxation,{o}—{0}. The strain field can be obtained by The computational domain and mesh for the first case are
shown in Fig. 3. Only half of the target is calculated because the
{et=—{a}/[E] (2)  central plane is approximated as a symmetry plane. A dense mesh

is used around the laser path and then stretched away in length
and thickness direction& and z-directiong. In the dense mesh
- region, eight elements are used in thdirection, 33 elements in
| Scanning line the z-direction, and 24 elements in tlyedirection. A total of 9944
; elements are used in the mesh. The same mesh is used for thermal
analyses and stress-displacement calculations. The mesh tests are
conducted by increasing the mesh density until the calculation
result is independent of the mesh density.
Laser pulses Tl," Dissipation of energy by the plastic deformation is negligible
compared with the high laser energy density during bending.
Therefore, it is assumed that the thermal and mechanical problems
Fig. 2 Irradiation of laser pules on the target surface. The la- are decoupled, so that the thermal analysis and the stress and
ser scans in the positive  y-direction. strain calculation can be conducted separately.

Target

CEELECEty

Table 1 Pulsed laser parameters

Laser wavelength 1.064 pm
Laser pulse full width 120 ns
Laser pulse repetition 22 kHz

Laser pulse energy 44-64wW
Laser beam diameter 50 um
Laser scanning speed 195 mm/s

Pulse step distance 9 um
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a=——-o0-:. (5)

The imaginary part of the refractive indexof stainless steel 301

at the laser wavelength 1.0@4m is unknown, andc=4.5 of iron

is applied. Properties used in the calculation are considered as
temperature-dependent, and are shown in Fig. 4.

Sensitivity of calculated bending with respect to optical reflec-
tivity has been studie 11]). It was found that a 10% change of
optical reflectivity value would cause a 23% difference in the
Fig. 3 Computational mesh  (x:200 um, y:120 um, 2z:100 um)  bending angle. Therefore, the uncertainty in reflectivity does in-

fluence calculation results significantly. In this work, the reflectiv-
ity is measured to be 0.66, which has an uncertainty less than 5%.

2.2 Thermal Analysis. The thermal analysis is based on The thermal analysis is carried out for laser pulse energy of 4.4
solving the three-dimensional heat conduction equation. The inid, 5.4 xJ, and 6.4uJ, respectively. The maximum temperatures
tial condition is that the whole specimen is at the room temperabtained are all lower than the melting point of st&E850 K).
ture (300 K). Since the left and right boundaries as well as the . )
bottom surface are far away from the laser beam, the boundar?-3 Stress and Strain Calculation. For each laser pulse,
conditions at these boundaries are prescribed as the room tfi transient temperature field obtained from the thermal analysis
peratures. The laser flux is handled as a volumetric heat Soul‘éélsed as thermal loading, and residual stress and strain fields of
absorbed by the target. The laser intensity at the target surfacéie previous pulse are input as initial conditions to solve the
considered as having a Gaussian distribution in betland quasi-static force equilibrium equations. The material is assumed

y-directions, which can be expressed as to be linearly elastic-perfectly plastic. The Von Mises yield crite-
rion is used to model the onset of plasticity. The boundary condi-
X2+ (y—Yyo)? . ) . o .
— _ 0 tions are zero displacement in thxedirection and no rotations
Is(x,y,t)=lo(t) exp —2 7 ®3) :
w aroundy andz-axes in the symmetry plane, and all other surfaces

wherelo(t) is the time-dependent laser intensity at the center 8¢ st.ress free. Details of the equations to be solved have been
the laser beamx(=0;y=y,) andw is the beam radius. The tem-described elsewher¢10)). o ) o

poral profile of the laser intensity is treated as increasing linearly AS shown in Fig. 4, material properties including density, yield
from zero to the maximum at 60 ns, then decreasing to zero at §féess, and Young's modulus are considered temperature-
end of the pulse at 120 ns. The local radiation inteni{iryy,z,t) dependent. However, the strain rate enhancement effect is ne-
within the target is calculated considering exponential attenuatigiected because temperature-dependent data are unavailable. A
and surface reflection as constant valug€0.3) of Poisson’s ratio is used. Sensitivity of un-
known material properties on the computational results has been

— _ —az . . .
l(xy.zt)=(1-Rplsxy.t)e ) studied ([11]). It was found that possible errors resulting from
whereR; is the optical reflectivitya is the absorption coefficient extrapolating material properties at high temperatures and using a
given by constant Poisson’s ratio were within a few percent.
S(Xm T 7 1 71 L2 I I I T T T I T 17 | — llm : T T T T I T T I LI G § ! LIS | 35 _‘
7900 - J X E—x——Thermal conductivity 3 z
—_ E .
”E L. n 2 1000 F—®— Specific heat E 30 §
Sk 4 Swp 28
2 7oL 1 = 80 b ¥ Eq
> 7600 [~ 1 9 3 1,38
2 r 1 <= 70 £ 420 % 2
§ mwl 1 g™ ¥x8
§ 7400 [ R Bl J15 2
Q 300 [ J ! | 7 g 50 ¢ 1 | ] E 5-
72w ) N . G S Y | N it 4] w 4(X) ] T L1l 3 I | I . 10
0 500 1000 1500 2000 0 500 1000 1500 2000
Temperature (K) Temperature (K)
1§ T Ty T T T T ] 1200_ny LI S ) A A R A Bl O £ r‘250§
Ce~ F E L —*— Young's modulus ] c
o¥ ¢ 1w E ]
B 171 q g S Yieldstess 3203
€o ¢ 1 E s0f ]
n_: 16 — —: s £ — 150 3
) = C 4 @ 600 P -]
o s - 3 Q [ ]
S8 5F ERE- IS J100 &
EE 1 = F i. E
=4 - i T L 4 ]
Q9 l4r . S 200 4 50 —_
£ 0 E < P t B (o)
- © :1 TR T BT G S B BT U S B B A Y L: > :1 I BN A A T + )
13 0 0 &
0 500 1000 1500 2000 0 500 1000 1500 00
Tempertuare (K) Temperature (K)

Fig. 4 Thermal and mechanical properties of full-hard 301 stainless steel
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Fig. 5 Experimental setup for pulsed laser bending and for
measuring the bending angle  [1-ND:VA laser, 2-shutter,
3—polarizing beam splitter, 4—mirror, 5-beam expander, 6—X&Y 1200 [T T T T T T T ]
scanner, 7—specimen, 8—beam splitter, 9—position-sensitive e =168 nsec 1
detector, 10—lens, 11-He-Ne laser ] 1000 —+—t=34.6 nsec
< —e— t=87.7 nsec |
;’ ——— t=331.9 nsec
- 5 800 [ ——a— t=2200 nsec
3 Experimental Measurements ® - .
Experiments of bending of stainless steel are performed to & 600 7]
verify the calculation results. The laser used in experiments is a § ]
pulsed Nd:VA laser with the same operation parameters shown in r 400 7
Table 1. Figure 5 illustrates the experimental setup for performing
pulsed laser bending as well as for measuring the bending angle. gop e L 1
The Nd:VA laser beam scans the specimen surface along the 0 2 4 6 8 10
y-axis (Fig. 1) at a speed of 195 mm/s. The scanning speed is z (um)

accurately controlled by a digital scanning system and the pulse

step is 9um at this speed. An He-Ne laser beam is focused at ti#®y. 6 Temperature distributions induced by the seventh
free end of the target to measure the bending angle in thelse (pulse energy 5.4 uJ; pulse center at y=54 um) (a) along
z-direction. The reflected He-Ne laser beam is received by a gbe scanning line, (b) along the z-direction

sition sensitive detectaPSD with 1-um sensitivity in position

measurements. The accuracy of the bending angle measurement is

about+1.5 urad when the distance between the specimen and the

PSD is set to 750 mm in the experiment. After laser scanning, tﬁéound 4um at 2.2us and the temperature gradient during heat-

target bends toward the laser beam, causing the reflected He! period is as high as 350 jém. This sharp temperature gradi-

laser beam to move across the PSD. The position changee fi:ﬁ%?nnoggfr(')':ggig*a;'érsltgzg‘fdgggﬁ target and the perma-
He-Ne laser beam can be converted to the bending angle of 9 9.

specimen using geometrical calculations. The whole apparatus i€ Sidual straire,, and stressr,, distributions along the laser
set on a vibration-isolation table. Polished full hard 301 stainleg$2""NY path obtained from calculating all the fourteen pulses are

steel sheets are used as targets plotted in Fig. 7a) and Fig. Tb), respectively. Only the compo-
' nentse,, ando,, are plotted since they are more important to the

. . bending deformation than other components. It can be seen from
4 Results and Discussion Fig. 7(a) that after four pulses, the strain field in regions about 15

Results calculated using a reduced domain size are presentegid behind the new laser pulse is no longer changed. In other
illustrate the temperature and residual strain and stress distri@rds, in they-direction, each pulse only affects the stress and
tions induced by laser pulses. Bending deformations obtained $iyain field within 15um from its center. It is also seen that after
the new calculation method and by computing all laser pulses dFe laser pulses pass the whole target width, the residual stress and
then compared. Bending deformations resulted from different Iatrain fields of the target are independent of yreoordinate with
ser pulse energy are also presented. For the second case for wHiéhexception near the two edges, which is caused by the free
a larger sample is used, the calculated bending angles using $€ss boundary conditions. The uniform stress and strain along
new method are compared with the experimental data. th(Ty-direction are consistent with the assumption used in the cal-

culation.

4.1 Results Calculated Using a Reduced Domain Size Residual straine,, and stresso,, distributions along the
Temperature distributions alongandy-directions and at different x-direction at the upper surface are shown in Figa)&nd Fig.
times are shown in Fig. 6. The laser pulse energy is8.4nd the 8(b), respectively. They are obtained after eight laser pulses in the
pulse center is located gt=54 um. Figure a) shows the tem- cross sectiory=60um. It can be seen from Fig.(& that the
perature distribution along the scanning littee y-direction. It  strain ,, is compressive within 15um from the center of the
can be seen that the maximum temperatlifg,, is reached at the laser pulse. This agrees with the theoretical prediction that the
pulse centerT ., increases once the laser pulse is irradiated aompressive residual strain will be obtained near the center of
the surface and reaches its peak value 988.1 K at 87.7 ns, and tlaser-irradiated area where the temperature is the highest and the
drops slowly to 365.5 K at 2.2s. It can be estimated that theplastic deformation occur§4]). The residual straim,, becomes
laser-heated region is around g in radius. Figure @) is the positive (tensile straih at locations more than 1aBm away from
temperature distribution along the depth directiofthe the center. The tensile strain in this region is due to the tensile
z-direction, beginning from the upper surface of the target. Thiorce produced by thermal shrinkage during cooling. The total
maximum temperature is obtained at the upper surface asitained region is about 30m from the center of the laser beam
reaches 988.1 K at=87.7 ns. The heat propagation depth ignd is slightly larger than the radius of the laser b&aBwum). In
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Fig. 7 (a) Residual strain (e,,), (b) residual stress (o) dis- X M)
tributions along the scanning line induced by each laser pulse Fig. 8 (a) Residual strain (e,,), (b) residual stress (o) dis-
(pulse energy 5.4 uJ; scanning speed 195 mm /s) tributions along the  x-direction (y=60 um and z=0 um) after
eight pulses

center of the scanning line is produced by thermal expansion

Fig. 8b), the stressr,, is tensile and its value is around 1.1 Gp@long _the positive-direction because of the free-surface boundary
in the region within 15um from the pulse center. This largecondition.
tensile stress cancels more than 90% of the plastic strain produceffigure 11 shows the off-plane displacementof the central
during heating in this region. The tensile stress drops quickly ®9int on the free edge of the surface=(200um,y=60um,z
zero at about 25:m from the center of the laser beam. =100um) produced after each laser pulse with pulse energy of

The strain distributior ., calculated from the initial stress field 4-4 #J, 5.4uJ, and 6.4uJ, respectively. As expected, laser pulses
{o;} using the new simulation method is shown in Fig. 9. Th¥ith high energy produce more bending. It is also seen that
average value of,, obtained from the new method is 3.47 Increases almost linearly with the number of pulses for all the
x10"*, comparing with the value of-3.42x10°* calculated three cases.

from all the 14 pulses. The two strain values are in very good 4 2 Comparison Between Experimental and Numerical
agreement except at two edges. Again, the difference is causediysuits. Bending angles obtained experimentally are compared
the free boundary conditions at the edges. __with calculated values as shown in Fig. 12. Laser energy of 4.4
The off-plane displacement is of prime interest since it re- ;3 54,3 and 6.4uJ is used in the experiment. On the other
flects the amount of bending. The comparison between the dEf/éL&‘nd, calculations are carried out using the new method, in which
mation calculated from the initial stre$s;} and that obtained by the strain distribution obtained after eight laser pulses is imposed
calculating all the pulses is shown in Fig. 10. Results at the crogsto the entire computation domain. The size of the computation
sectiony =60 um are plotted. It can be seen that displacemants domain is 0.2 mnx 1.2 mmx 0.1 mm, which is identical to the
of the two approaches are consistent and the bending angles sple size used in the experiment in yrendz-directions. Using
almost identical. The difference between the two curves is locatgtsmaller size in the-direction does not affect the computation
around the transition mesh region. This is because that the elemeRiults, since regions at greater than 0.2 mm undergo a rigid
size and the shape in the transition region are not all the same, agtion only. From the figure, it is seen that the experimental
errors are produced when the residual strain of ®fe cross results agree with the calculated values within the experimental
section is imposed to the whole domain. It is seen from Fig. thcertainty. Both the experiment and simulation show the bending
that a “V” shape surface deformation is resulted after laser scaangle increases almost linearly with the pulse energy.
ning, with the valley located at around 10n from the center of = The agreements between the results of two numerical methods,
the scanning line. The positive off-plane displacement near thad between the experimental and numerical results show that the
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Fig. 12 Comparison between the measured bending angles
and the simulation results obtained using the new method

newly developed method is indeed capable of computing pulsed
laser bending. As indicated previously, the advantage of the new
method is that the computation time is greatly reduced. For each
laser pulse in the first case, about two hours are needed for the
temperature calculation and four hours for the stress calculation
using an 800 MHz Dell PC Workstation. It takes about 84 hours to

obtain the bending deformation resulted from all the 14 pulses,

and 50 hours when the new method is used. On the other hand, for
the second case, it would have taken more than 10,000 hours to
obtain the bending deformation if all the pulses were to be calcu-

lated. Using the new method, it only takes about 100 hours to

complete the calculation. Thus, even for a sample as small as a
few mm in size, bending can only be calculated with the use of the

new method.

One concern of using the new method for calculating pulsed
laser bending is when the laser beam scans the surface at a very
high speed, thus the pulse step-size becomes large enough to
cause nonuniform stress and strain along the scanning line. How-
ever, if the laser-induced stress and strain distribution is periodic,
i.e., produced by high-speed scanning of the laser beam with con-
stant energy per pulse, this method still works. The strain distri-
bution within a period along the-direction can be imposed to the
whole domain, and the remaining steps follow those described
previously in Section 2.1.

5 Conclusion

A new efficient method for computing pulsed laser bending is
developed. The total computation time is greatly reduced and re-
sults are found to agree with those obtained using a conventional
computation method. Experimental studies are also carried out to
verify the simulation results. It is found that the calculated results
agree with the experimental values. For most pulsed laser bending
processes, the newly developed method is the only possible way
to compute bending within a reasonable amount of time.
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of a Shaft-Disk System Driven
n.aoesmat | Through a Universal Joint

Graduate Research Assistant
Understanding the instability phenomena of rotor-shaft and driveline systems incorporat-

K. W. Wang ing universal joints is becoming increasingly important because of the trend towards
Willian €. Diefenderfer Chaired Professor light-weight, high-speed supercritical designs. In this paper, a nondimensional, periodic,
in Mechanical Engineering, linear time-varying model with torsional and lateral degrees-of-freedom is developed for
Fellow ASME a rotor shaft-disk assembly supported on a flexible bearing and driven through a U-joint.
. The stability of this system is investigated utilizing Floquet theory. It is shown that the
. E. C. S'mllh interaction between torsional and lateral dynamics results in new regions of parametric
Associate Professor of Aerospace Engineering instability that have not been addressed in previous investigations. The presence of load
inertia and misalignment causes dynamic coupling of the torsion and lateral modes,
The Pennsylvania State University, which can result in torsion-lateral instability for shaft speeds near the sum-type combi-
157 Hammond Building, nations of the torsion and lateral natural frequencies. The effect of angular misalignment,
University Park, PA 16802 static load-torque, load-inertia, lateral frequency split, and auxiliary damping on the

stability of the system is studied over a range of shaft operating speeds. Other than
avoiding the unstable operating frequencies, the effectiveness of using auxiliary lateral
viscous damping as a means of stabilizing the system is investigated. Finally, a closed-
form technique based on perturbation expansions is derived to determine the auxiliary
damping necessary to stabilize the system for the least stable case (worst case).

[DOI: 10.1115/1.1460907

1 Introduction through the U-joint. It was determined that static load-torque can

Universal joints, commonly known as U-joints, are used ihnduce parametric instabilities at the sum-type combinations of the

many power transmission applications when power must be traﬁ@nsverse natural frequencies. Additionally, it was shown that

mitted across noncollinear shafts. U-Joints are widely used dg?sdi;;(i)lgruteoa[li]o III;]/IC;uzCzeesi 2?;?&553?2(%323 d a flexible shaft
cause they are relatively inexpensive and easy to maintain co = 5int svstem \,Nithout the rotbr disk. The effect of static load-
pared with many other types of shaft couplings. Furthermore, th ) Y " S ) .

design allows them to accommodate relatively large angular m orque on the stability of a misaligned, slender, flexible shaft sup-

alignments. Additionally, U-joints have high torque capability angv%r::dnzygggl'gﬁltcze?rféngsmﬁvggﬁgggfaid\}vﬁﬁrsr:gnrgﬁag?;f
can withstand relatively large axial loads. 9 )

Despite the advantages of the U-Joint, their nonconstant veloS 'E-r;,:i'(ljalr(;[g drigglﬁepriznged d[a]égrizte%[ﬁlze;nzi[alzlj]iI];?urr;i;?ith;hium-
ity nature can lead to undesirable vibration and even instabili -torque p P . Y :
e combinations of the lateral bending natural frequencies of the

under certain conditions. Since the joint rotations are about S aft as well as flutter instability. Als62] compared the stability

successive axes, there is a nonconstant velocity relationship BF2 flexible shaft U-joint system to a rigid shaft U-joint system.

tween the driving and the driven end of the U-joint. This dlﬁe;l]gey showed that the instability zones of the flexible shaft model

ence between the driving and driven shait speed is common sociated with modes involving mainly rigid motion were very
known as the Cardan Error. When the driving and driven sha ilar to the instability zones predicted by the rigid shaft model.

are not collinear, the driven shaft speed fluctuates at a freque Us, the presence of shaft flexibility only adds additional insta-

twice the driving shaft speed, even if the driving shaft speed |s,. : . ;
constant. This fluctuation can excite torsional vibration of the sy flity zones associated with the flexible modes, but does not fun-

tem and can lead to instability. Furthermore, torque transmitt (ﬁlmentally alter the instability zones predicted by the rigid model.

through a U-joint in the presence of angular misalignment gen Rosenberd 3] considered the effect of static misalignment on

ates lateral moments that fluctuate at twice the driving shaft spei X stability of a f_IeX|bIe shatt driven b_y a U-J.O'm' Here the mis-
(1)gnment angle is modeled as a static nominal angle plus a dy-

These lateral moments can excite lateral motion of the shaft afido e & o ) ;

o namic misalignment due to shaft vibration. Here again, torsional

can also destabilize the system. cgl amics are neglected, and only lateral shaft flexibility is con-
Several researchers have investigated the dynamics and stal Nared. Compared to the effect of static load-torqulig] the

. . . L. . Sl
ity of rotating shafts driven through U-joints. Iwatsubo and Salg% sults from[3] show that angular misalignment only weakly af-

1] have studied the effect of load-torque on the transverse vibla: - C
Eio]n of a nominally aligned rigid rot%r disk driven through afgcts the stability near the sum-type lateral combination frequen-

ges of the shaft.

U-joint. They derived the expressions for the parametric and se u and Marangoni4,5] examined how static angular misalign-
exciting transverse moments created by torque transmitted>< g ' g g
ment between two shafts affects the lateral moments created by a

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF U joint. In this ana.IySIS’ they considered Only the Statl(.: po_rtlon of
MECHANICAL ENGINEERSfor publication in the ASME GURNAL OF ApPLEDME-  (N€ @ngular misalignment. Thus the effect of the misalignment
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Feb. 15was modeled by time periodic transverse moment forcing terms
2001; final revision, Oct. 3, 2001. Editor: N. C. Perkins. Discussion on the papgfhich contain integer multiple harmonics of twice the driving

should be addressed to the Editor, Prof. Lewis T. Wheeler, Department of Mechani, (r., . . . .
Engineering, University of Houston, Houston, TX 77204-4792, and will be accepte§ aft speed. However, since dynamic misalignment due to shaft

until four months after final publication of the paper itself in the ASMEXanaL o Vibration was neglected, the potentially destabilizing parametric
APPLIED MECHANICS. terms were not included in the analysis.
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Kato and Ota[6], studied U-joint frictional effects for a stati- :
cally misaligned shaft. Here, they derived expressions for late] Bi- Mz View Plane )
moments generated by viscous and coulomb friction between 1 ) Driven ) Load Torque, T,
yokes and cross piece of the U-joint. They concluded that interr b, Shaft & Disk
friction in the U-joint generates harmonic lateral moments th:
occur at even multiples of the shaft operating speed, (¢, 42},

., etc. Additionally, they demonstrated that the viscou
friction-induced lateral moments are suppressed if the friction c ¢
efficients at the driven and driving yokes are equal. --4- 2

Asokanthan and Hwarlg] and Asokanthan and Wai§] both & /7777777 0 n; k,
studied the stability of two torsionally flexible, misaligned shaft:
coupled by a U-joint. In their analyses, the shafts were driving an
inertia load and the orientations were fixed, thus lateral motionrig. 1 Misaligned shaft and disk driven through a U-joint
was neglected and only torsional dynamics were considered. Aso-
kanthan and Hwanf7] concluded that shaft speed variation kine-
matics due to static angular misalignment caused fundamental
sum type parametric instabilities. They also showed that the wi
of the parametric instability zones increased with increasing mi&;
alignment angle.

Driving

dto understand the interaction between lateral and torsional dy-
mics and explore the bounds of the torsion-lateral instability
gions. Specifically, the dynamic stability of a torsionally flex-
ible, misaligned, U-joint driven shaft-disk assembly mounted on a
2 Problem Statement and Research Objective compliant bearing/damper is examined.

For a shaft/U-joint system carrying an inertia load, it has beef  System Description and Model
shown that angular misalignment causes periodic speed variation ) ) ) . )
of the driven shaft and induces torsional dynamics. Furthermore,Equations of motion are derived for the system illustrated in
other studies have shown that load-torque transmitted acros§'@ 1. The torsionally flexible shaft, carrying a rotor disk, is sub-
U-joint generates lateral moments that excite lateral dynamid@?ted to a follower torque load and mounted on a spring bearing/
However, since these two phenomena have been investigafi@mnper while being driven through a U-joint coupling. The driv-
separately, the important interaction between the torsion and [Kd shaft speed), and the magnitude of the follower load-torque,
eral dynamics has not been addressed in previous investigatiohs: &€ assumed constant. Since the driven shaft is considered to
Because the effective misalignment is the sum of some nomirf§ 1gid in bending and pinned at the U-joint, the orientation can
static misalignment plus the dynamic slope of the shaft at tf¢ completely described in the fixed franfie}, by two orthogonal
U-joint due to lateral vibration, the misalignment-induced spedif0iécted slopes in the,-n, and n;-n; planes. The statically
variation and resulting torsional dynamics are a function of tH@isaligned equilibrium operating condition of the driven shaft is
lateral dynamics. Thus, lateral shaft dynamics induce torsiorfafined by static misalignment anglés and 53 in the n,-n; and
dynamics. On the other hand, torsional dynamics generate a 8y=N2 planes, respectively. The dynamic portion of the misalign-
namic load-torque proportional to the inertia load. This torsiof!€nt is then measured from the static misaligned operating con-
dynamics-induced dynamic load-torque is transmitted through tA&ion by projected slopes;” and «', which correspond to the
U-joint and generates lateral moments, which means torsional diz=ns andn;-n; planes, respectively. Figure 2 shows the rotation
namics excite lateral dynamics. Therefore, the torsion and latefgduence from the fixed franie}, to the body fixed frame of the
modes of vibration are dynamically coupled, and due to the nat#gven shaft{b}. ) ) )
of the U-joint, this dynamic coupling is periodic. From the f|>_(ed{n} frame, the intermediate fram_ér,l’} which

As will be seen in the next few sections, this torsion-laterdpllows the driven shaft, is defined by the combined static and
coupling phenomena is important for supercritical rotor-shaft aglynamic projected slopes’ +d; and '+ 8,. Next, the body
plications since it creates shaft speed regions of parametric insiged frame,{b}, is obtained by the driven shaft spin ang;,,
bility not previously identified in the literature. The objective ofabout the intermediate]-axis. The coordinate transformation ma-
this research is to address this critical but unexamined issue, that from the {n} frame to the{b} frame is shown in Eq(1).

(83+v")2 (8+w')?

5 3 S3+v’ S+ W'
o] (L 9 0 (55402 (Bat+v)(Sprw) || ™
by|=| 0 cosg, sing, —(83+v") - 32 3 5 2 n| (@
bs 0 -—sin cos N3
¢ 2 , (83+0")(S+W) (8,+wW')2
—(8+W') - 5 1-—

Since the shatft is torsionally flexible, the total spin angle of thgpeed,(), is a given constant, the spin angle=Qt, is also
disk, ¢»q, isAthe sum of the driven yoke spith,, plus the elastic known. Thus¢, can be determined as a functiong@yfv’, o', 65,
twist angle,¢,q. Due to the kinematics of the U-joint, the spinand ;.

angle of the driven yokeg,, is a function of the driving yoke In order to determine the above relationship @y, the coor-
spin angleg, and the misalignments,’ + 6; andw’ + 8,, of the dinate transformation frorfn} to {b} is represented in terms of the
driven shaft relative to the driving shaft. Since the driving shafiriving yoke spin angleg, about then;-axis, followed by two
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n;

Q
Q=0+ 5 cOS 2[ (v + 692~ (W' +6,)%]

1 . .
+Q sin2¢(v' + 3) (W' + 55) + E[b‘zv’— 63w’ ]

n2¢
2

COS 2¢

[(v'+83)v" —(W'+ 5)W']

[(W+8,)v"+(v'+ 83)W'] (5)

Note that the above expression ffr, is more comprehensive
than expressions used by other researchers since terms involving
time derivatives ob " andw’ are included in the expression. Since
the elastic twist of the shaft at the U-joint end is zero, and since
Fig. 2 Projected slopes v’'+8; and o'+ 48, and driven shaft ~ the polar inertia of the disk is much greater than the shaft polar
spin angle, ¢, from {n} to {b} inertia, it is assumed that all of the torsion dynamics are lumped at
the disk. Thus, only one elastic twist degree-of-freedom is needed
to describe the torsion dynamics. The functional relationships of
the spin,¢,q, and spin rate(),,, of the disk about thd,-axis

due to the driven yoke sping,, and spin rate{),, and elastic

twist ¢,4 are shown in Eq(6).
baa= ba( v W',87,85)+ hq(t)

_ ©)
Qog=0o(Q,0" W' 0" W', 85, 85,1) + hog(t)

The body fixed angular velocity of the disk can be expressed as
n3

1. .
N,B=| Qo+ = (v'W —w'v") by

a}” b3 2
Fig. 3 Driving shaft spin angle, ¢, and Euler angles « and B +[Sm(¢2d)v —cog ¢2d)W 1b,
from {n} to {} [SIn )W’ +COS b5 )i Tbs. @)

The total kinetic energy of the system is

Euler angles@ and 8, about successive axes, andag, defined T= I_m(i,'2+w'2)+ J_m(92d+92d[w'i,'_\,'v'v']) (8)
by the U-joint center cross piece. See Fig. 3. 2 2
The resulting coordinate transformation matrix fr¢m to {b}

. > where the total moments of inertia about point O are
is shown in Eq(2).

Im=lmstlgtmgld and J,=JnetJq. ©)
b cosacosfB  sinB  —sina cospB N
1 ) ] ] Here,l s andJ,,s are the transverse and polar moments of inertia
b,|=| —singcosa cosB  singsina of the shaft about point Q4 andJy are the transverse and polar
bs sina 0 cosa moments of inertia of the diskny is the mass of the disk, ard,
is the axial location of the disk measured from point O. The total
1 0 0 n, potential energy of the system is
x| 0 cosp sing ||n, 2) K, ~ k, L2 Ky L2
— _‘/’ 2 v 12 w 12
0 -—sing cos¢/ LNs V=75 bt vt W (10)

By equating the two coordinate transformation expressions giv¥¥jth the lumped torsion spring stiffness; is defined as
in Egs.(1) and(2) and dropping higher order terms, the two Euler

anglesa and 8 and the driven yoke spin angleés,, are deter- k(b:%' (11)
mined as functions o#, v’, o', §,, and §; for small misalign- Lg
ments. See Eq¢3) and(4). Also, k, andk,, are the transverse bearing spring stiffness values
. _ , corresponding to the’ and w’-directions, respectivel\. is the
al sing  —cosg |y’ + 53} +0(0'25) (3) Shaft length, which is also the axial location of the bearing mea-
B cos¢ sing ||W'+d sured from point OG J is the torsional stiffness of the shaft. The
virtual work due to the follower torque load, is expressed as
sin 2¢ Cos 2 N B 11T
:+_5+72_6+!2_ Satv’ . 8(t)b
$o= bt =[5 v) = (St W)= —5—= (55 +v7) SW=Qq_ 38q=-T. 56, , with 50L=—[ 7 1] S
X (834 W)+ 5 [0 — S0/ ]+O(u"8 4 2
(O W)+ 5[ 020" = 0w ]+ O(v ") “) where Qq, is the generalized force vector and the degree-of-

) _ ) . ) ~ freedom vectorq, is defined as
Differentiating Eq.(4) with respect to time yields the expression

for the driven yoke speed}, in Eq. (5). q=[v’ W ¢pal". (13)
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Also to account for viscous damping, a Rayleigh dissipation fun@he nominal system consists bfC.q, G, and A, which are the

tion, D, is defined as

nondimensional mass, structural damping, gyroscopic, and stiff-

ness matrices, respectively. The matf,,, accounts for the

1 . . A . . - .
D= E(CULZU'2+CWL2W’2+ C¢¢§d) (14) damping provided by an auxiliary viscous damper. See(EQ).
Wherec,, c,, andc,, are viscous damping terms. Using the 100 24,1, 0 0
above expressions derived for the kinetic and potential energies =0 1 0|, Cy,=| O 2Lufw 0o |,
along with the virtual work and dissipation terms, the equations of
X . L : 0 0 1 0 0 204ty
motion are obtained from Lagrange’s equations. Furthermore, rec-
ognizing the fact that cg 0 O 0 fp 0
i &de _ and =0. (15) Caux: 0 Cq 0 , G=| — f n 0 0 ,
dtl 99 | dq 0 0 0 0 0 0
The resulting nonlinear equations of motion are shown below in )
terms of (), . fo 0 0
d[oT] aT v oD A= fu 0 (20)
—|=|- =+ =+ =0 5
dt{dq| dq g dq L 0 fy
[1n 0 0 cl? Jn O with x=[v' W' ¢q]"
=0 Tm 01q+Qp —Im Cul 0lq The matrices in Eq(19) that account for the static angular mis-
L0 0 J, 0 0 Cy alignments,s, and 63, and static load-torqud,, , are defined in
Eq. (21).
i dQ0oq W'
kLZ 0 0 PR . 0 ©0 8,1
+| 0 kyl? O [g+(InQgtTL) aQZd_ i |\/|o_E 0 0 —é7|,
0 0 Keg &Wll 2 0, —63 0
0 0 0 837 0 0 -6y
d 1
2 Mo==| 0 0 —&7|, Mu==| 0 0 =&y
3 v 2 2
+7m(wrl‘}r_\','vrvr) &QZd :0 (16) 53 _52 0 _52 _53 O
ow’ 0 0 o0 0 0 o0
0 Co=| O 0 0f, c,=| O 0 0|,
By using the expressions given in EqS) and (6) for ),4, and 2t5, 2f5. 0 215, —2f5, 0
taking the necessary partial and time derivative€)gf, the full 2 s s 2 21)
nonlinear equations are derived.
Since the torque load;, , is constant, the equations of motion 0 - 0 0
can be linearized about a static twist angle. Thus, the total elastic
twist angle can be written as Ko=| =7 0 0f, Ke= 0 -7 0,
A T 0 0 O —-2f28; 2f%5, 0
Baq=ths+ g With Yrg=1— (7
o kg 0 -7 0
wherey is the static part of the elastic twist dueTp, andyy is K.=| —r 0 0
the relatively small dynamic portion of the elastic twist. After c2 ) )
linearizing about the static twist operating condition, the equations 2f%5, 2f%5; 0O

of motion still contain many higher order terms. An orderlngl-he forcing terms due to misalignment and load torque on the

scheme, based on the order-of-magnitude assumptions Show'?id'ﬂt—hand side of Eq(19) are shown in Eq(22).

Eq. (18), is used to determine the dominant terms.

0(85)=0(8,)=0(¢he)=1e 2~1 deg ) (=% 2, [ 5g5s+§
=7 & — +
O(v")=0(W')=0(¢y)=1e *~0.01 deg Fo=r 03 T 535% 20
After dropping terms with order of magnitude smaller tha §, i i
and nondimensionalizing, the result is the nondimensional linear [ — 8] (2 8%6,— &3
periodic system shown in Eq§19) through(21). Here the *” Fo=1 & |+ n 5553_§3 (22)
operator indicates differentiation with respect to nondimensional s2 2 2 51
time L 0 | 205=20)
_ ok 5, — 8355
[I+My+Mg, sin2¢p+ M, COS 2] X Foo=1| 83| +127 5552
0 —268,04

*

+[Cgsqt Cauxt G+ Cs, Sin 2¢p+ C, COS 2p X

+[A+Kp+Kg, Sin 2+ K, €OS 25X
=Fg+ Fg, Sin 2¢+ Fp cOS 26+ 0(v' 62,0'2)
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(19)

The equations have been nondimensionalized with respect to a
reference frequency{),, such that the nondimensional shaft
speed isf=Q/Q, andf,, f,, andf, are the nondimensional
natural frequencies. The modal damping ratios due to structural
damping are denoted ki , {,,, and{,, and the nondimensional

Transactions of the ASME



damping coefficient of the auxiliary damperdg. # is the tor- X=A()X, with X=[x x]T and A(T+t)=A(t)
sional to lateral inertia ratio ané is the nondimensional load- ' (28)

torque parameter, see EQJ). ] ] ) ) ]
whereA(t) is 2nX2n system matrix, withn=3. T is the period,

B [(k, + k) L2 _CdL2 e T which in this case isT=x/Q, and in the nondimensional case,
Qo= 21, Cd_|mQO’ K 21,02 *=a/f. Next, the FTM matrix, denoted b (T*), is gener-
(23) ated, where

2 2
R = e e e ST =[(TOL DT}, - DT (29)

mo and [{x.(t)},{x2(1)}, . .. {x2n(t)}] are the 2 linearly indepen-
The static torque load, , creates the stiffness coupling matricesgent solutions obtained by numerically integrating E2§) from 0
Ko, Ksp, andK,, and the dynamic torqud, (2,4, creates the to T* with the following initial conditions:
inertia coupling matricedMy, Mg,, andM,.

Several more physically significant nondimensional parameters 10 -0
are defined for a solid circular crosssection shaft. First, the inertia 0 1 0
ratio, », is rewritten in terms of the following nondimensional $(0)= (30)
parameters. 0
| _Ld _rS _Jd _md 00 0 12n><2n
AT BT YT o KTy The FTM matrix,® (T*), maps the state of the system from some
3 21 ) initial state, X, to the state at timé=kT*, such thatX(kT*)
p= M= (It ye 24) =P(T*)"X,. Thus the eigenvalue, , of d(T*), which govern
,, 4 the stability of the mapping, also determine the stability of the
(1+y)e +§+4|d,u system.
|4 is the nondimensional axial distance of the disk from point O.In \; stable if ;<0

&5 is the shaft slenderness ratio with shaft radiyisyis the polar = =@it]oi o0 >0 for [i=1,2...2n]
inertia ratio between the disk and the shaft, and the mass ratio : 31)
between the disk and the shaft. Also, the torsion-lateral stiffness ) ) ) ) )
ratio, A, and nondimensional torsion natural frequenty, are Wherea; is the effective damping of the time varying system.
defined as Furthermore, the equivalent modal damping ratio ofithenode,
z;, is defined as
Kg

A= fzfA (25)
e Ty z=-21 (32)
(ky k) 5

Wi '
As discussed if10], it is expected that parametric instabilities

two lateral frequencies, the two nondimensional lateral freque 1ay occur _W_hen the parametric _excitation f_requency, which is
cies,f, andf, , are always evenly split about 1. Thus, the nondiVice the driving shaft speed in this case, is in the neighborhood
men’sivonal Ia?e’ral frequencies can be written as ' of the principle, sum combination and difference combination fre-

quencies. Thus, the potential parametric instability zones are writ-
f2=1+\ and fi=1-\ (26) tenas

Also, since the reference frequené€yy, is the root mean of the

whereN is the lateral mode frequency-split parameter. Since only 2f= \fniifn,l +p, [i,j=123...]. (33)
rigid lateral modes are considered, the shaft bending stiffness : . . o )
must be higher than the bearing support stiffness. Also the lokigre thef,;'s are the natural frequencies of the linear, time invari-
torque, 7, should be less than the load torque that exceeds tABt portion of the system and is a small frequency detuning

shear yield strain of the shaft material,,.. These two require- Parameter. ) o )
ments are summarized below. In this portion of the investigation, the effects of static load-

torque, lateral frequency-split, and static operating misalignment

1 3Elcs 5 angle on the stability of the system are examined. In terms of the

1 E[kv+kw]< L3 =3(1+v)lq4fyn>1 nondimensional parameters, the individual and combined effects
(27)  of 7, A, d,, and 83 are studied. The damping is assumed to be

|dffbﬂ purely structural with¢,=¢,={4=¢=0.01 and no auxiliary
2) 7<Tmax Where 7= '}’yieldT damping,c4=0.0.

The 7-f stability boundary calculated for the system with no

Herev is the Poisson’s ratio, which relates the elastic moduiis, static misalignment, i.ed,= d;=0 deg is shown in Fig. 4. Other
to the shear modulus, and yyieq is the shear yield strain of the researcher$1,2] have shown that the constant skew-symmetric
shaft material. matrix, K,, due to the follower torque load, causes flutter in-
stability for sufficient torque and shaft speeds. The flutter stability
boundary is a continuous curve that bisects thé parameter
- . space into a stable and an unstable region. It was shoyuq that
4 Stability Analysis the lateral frequency-splib, increases the critical torque required

Since the equations of motion shown in E#9) are linear and to induce flutter. Additionally, the parametric stiffness matrices
periodic, Floquet theory is used to assess the stability of the sylste to torque transmission through the U-joilt, and K5,
tem[9]. The stability is determined numerically by examining thénduce parametric instability in frequency range I. Specifically the
eigenvalues of the Floquet transition matfiTM). This tech- torque-induced parametric instabilities occur near the frequencies
nique is numerically intensive, but deemed necessary to captdiyg f,, and ¢, +f,)/2.

all the instability behavior of the equations of motion. Figure 5 depicts how static misalignment between the driving
With equations in Eq(19) cast in first order form and the and driven shafts affects stability. As shown in EG) through
forcing terms set to zero, the system is written as (21), the static misalignment angle$, and 53, give rise to inertia
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f2=1+\ and f2=1—\, combinations involvingf, are called
stif-mode combinations and those involvirig are called soft-
mode combinations. Since misalignment only affects stability near
the torsion-lateral combination frequencies, a more detailed plot
of the 7-f stability region over frequency range Il is shown in
Fig. 6.

The stability for several static misalignment angles is examined
for both positive and negative values of the follower torquei
positive 7 is a load-torque that resists the rotation, and a negative
7 is a driving torque that is applied in the same direction as the
rotation. In most practical situations;>0, since this corresponds

N.D. Load Torque, T

@
=
T

4

to power being transmitted from the driving shaft to the driven
shaft.

Misalignment is stabilizing for shaft speeds near the torsion-
lateral difference combination frequencidg,andf,, and is de-
stabilizing for speeds near the torsion-lateral sum combination
frequenciesf; andf,. Specifically, misalignment can be stabiliz-
ing since it increases the magnitude of the critical load-torque
required to causes instability neé=f, and nearf=f, on the
upper and lowerr-f stability boundaries, respectively. On the
other hand, misalignment can be destabilizing since it lowers the
magnitude of the critical load-torque néfar f3 and nearf =f, on
the lower and upper-f stability boundaries, respectively. Fur-
thermore, even wher=0, misalignment alone can be sufficient to
cause instability. This is shown in Figs. 5 and 6, where instability
zones of finite width are present fer=0 near the torsion-lateral
coupling matricesMg, Mg,, andM¢,, which couple the torsion sum combination frequencief; andf,.
and lateral degrees-of-freedom. The two parametric inertia cou-Figure 7, shows the stabilizing effect of the lateral frequency-
pling matricesM¢, andM_,, alter the stability in the neighbor- split, A, on the uppers-f stability boundary,=0, with &,
hood of the torsion-lateral combination frequencies in range K2 deg over the shaft speed range of the torsion-lateral combina-
however, the torque-induced parametric instability zones in rangen frequencies\ has a stabilizing effect since increasingn-

I are not affected. The four torsion-lateral combination frequerreases the critical destabilizing load torqueacross the entire
cies in range Il are defined as shaft speed range. Misalignment causes the minimum destabiliz-
fo—f fof fof ing load-torque to occur near the sum-type, torsion-lateral combi-

¢ w o 'w o .

5 oo fam—— fam——. natlon_frequencyf4, regardless oh. ThL_Js the least stable con-

figuration is when the lateral frequencies are equai0.0, and
Here f;<f,<f;<f, where f, and f, are the difference-type the least-stable operating speed is in the vicinity of the sum-type
combinations andi; andf, are the sum-type combinations. Sinceorsion-lateral combination frequendy when 7=0.

Stable Region

0.05 [

Torque Induced
Parametric Instability
Dueto K, & K,

00.5 1 15 2 25 3 35 4 45 5 55 6

Range 1
N.D. Shaft Speed, f

Fig. 4 -f stability boundary with no misalignment. 6,= 03
=0 deg, A=0.4, A=3, £,=0.05, /;=0.5, u=0.1, =10, c,=0.0.

:f(/)_fv

(34)

f1

0'25 /\ T T T T T T T T T T
Static Misalignment Conditions
8,=0,=00°
2 T (P 8, = 2.0° 8,=0.0° ]
b —_— 3,=235%8,=00°
=
E 01s b N 100 % of Yield Torque -
=
3 Unstable Region
A i ]
z 0.1
[ Stable Region
0.05 [ f
Misalignment Induced ¢
Parametric Instability —» ,". ;
Dueto M, & M,, "
0 ' 1 1 1 A Il i L l'l
05 1 15 2 25 3 35 4l 45| .
lfl f2 f3 4
Range 1 Range 11
N.D. Shaft Speed, f
Fig. 5 =-f stability boundary for several misalignments. A=0.4, A=3, &

=0.05, /;=0.5, u=0.1, y=10, c4,=0.0.
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0.15 T T T T

Upper Unstable

0.1 Region

005

Stable Region

Lower Unstable
Region

N.D. Applied Torque, T
o
=)
W

Static Misalignment Conditions

015 ] e 8,=8,=00° 4
——— 0,=2.0°8,=00°
02 8,=4.0°8,=00° |]
_025 ] L] 1 ] [ | I
35 | 4] 45 | s 5.5 6
£, f, fy £,
N.D. Shaft Speed, f
Fig. 6 =-f stability boundary for several misalignments. A=0.4, A=3, &4

=0.05, /;=0.5, u=0.1, y=10, c,=0.0.

investigated. The system is augmented with an auxiliary viscous
damper that dissipates energy from lateral motion of the shaft and
{1 has a nondimensional damping coefficiegt See Eqs(20) and

Unstable Region (23). The total system damping is due to both the inherent struc-
tural damping and the damping provided by the auxiliary damper.

Figure 8 shows the required auxiliary nondimensional damping
coefficient,c,oq, Necessary to guarantee stability for several com-
binations of load-torquez, and static misalignmeng,, over the
shaft speed range covering the torsion-lateral combination
frequencies.

When misalignment is present with no load-torque, only para-
metric instability occurs, hence auxiliary damping is only required
for shaft operating speeds near sum-type torsion-lateral combina-
tion frequenciesf; and f,. When both misalignment and load-
torque are present, parametric and flutter instability occur, hence
auxiliary damping is required across the entire shaft speed range

0.09 T T T T

0.08]

0.07]

0.06[

0.05f

0.04

N.D. Load Torque, t

0.03T

0.02[

A=0.0
| shown. The stabilizing effect of the misalignment néarf, is
0.01 Stable Region shown by a reduction in required auxiliary damping near the shaft
. ' . speedf,. The maximum required auxiliary damping coefficient,
05 4 45 5 55 6 Cmaxreq OCCUrS at the torsion-lateral combination frequehgfor

all 7=0. Thus, the damping coefficient of the auxiliary damper,
Cq, Must be at least as high as the required auxiliary damping at
f=1f, in order to guarantee stability for all shaft operating speeds.

N.D. Shaft Speed, f

Fig. 7 =-f stability boundary for several AN. 6,=2.0deg, &5

=0.0deg, A=3, £,=0.05, /,=0.5, u=0.1, y=10, c,=0.0. This condition is summarized in E¢35).
Cmax-reg— ma{crecﬁf)]zcreq(fﬁ
- . . - . f=0
5 Stabilization via Auxiliary Lateral Damping (35)
In the previous section it is shown that misalignment causes for stablilty C4=Cmax.req

instability whenf is near the torsion-lateral sum combination fre-

quencies,f, and f3, for positive and negative values of load- Figure 9 shows hove.,.qVvaries with the degree of angular
torque, respectively. Therefore, if shaft alignment cannot be guanisalignment,s,, for several values of load-torque,

anteed due to external factors such as foundation deflection, etcThe auxiliary damping coefficient required to guarantee stabil-
then it is important to avoid these frequency zones during shitfy increases rapidly with the degree of angular misalignment.
operation. However, avoiding these zones maybe too restrictiVhis is because the dynamic load-torque terms, accounted for by
for certain supercritical shaft applications, especially if the shatfie inertia coupling matrice®, Mg,, andM,, are proportional
operating speed must be variable. Therefore, in this section, tieethe angular misalignment. Additionallgyay.req: alSO increases
use of auxiliary damping as a means of stabilizing the systemvisth load torque,r.
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______ 1

N.D. Shaft Speed,f 13

Fig. 8 Required auxiliary damping for stability versus shaft speed for several
7. {=0.005, A=0.4, A=3, £,=0.05, /,=0.5, u=0.1, y=10.

Finally, Fig. 10 shows hove,,.eqVaries with misalignment 6 Perturbation Analysis of Least Stable Case

for several disk-shaft polar inertia ratioy, with 7=0. As the Si determini tability b luating the Fl ft "
disk-shaft polar inertia ratioy, is increased, more damping is ©'Nc€ Getermining stability by evaluating the Floguet transition

required to stabilize the system for a given angular misalignmem.atrix is computationally intensive, a stability criteria based on a

Physically, this is because the dynamic torque load generated R§/turbation approach is derived for the least stable casest
misalignment-induced speed variation is proportional to the polease, i.e., f=f, and A=0. Since the governing equation-of-

inertia load carried by the shaft. motion, Eq.(19), is linear and periodically time-varying, the deri-
0.16 v T T v T T T
0.14 N.D. Shaft Speed: f = f, = (f,+£,)/2 1

Lateral Frequency Split: A=0.4

e
-
S

e
o

0.08

0.06

0.04

0.02

N.D. Auxiliary Damping Coefficient, Cmax-req

0 0.5 1 1.5 2 25 3 3.5 4

Angular Misalignment d,, Degrees

Fig. 9 Maximum required auxiliary damping for stability versus misalignment
for several 7. f=f,, AN=0.4, {=0.005, A=3, £,=0.05, /,=0.5, u=0.1 y=10.
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N.D. Load Torque: t= 0.0
0.16+ Lateral Frequency split: A = 0.4 4

0.141

0121

0ar

0.081

0.061

0.04f

N.D. Auxiliary Damping Coefficient, Cmax-req

0.02F

0 05 1 1.5 2 2.5 3
Angular Misalignment 8, Degrees

Fig. 10 Maximum required auxiliary damping for stability versus misalign-
ment for several y. f=f,, A=0.4, {=0.005, A=3, £,=0.05, /,=0.5, u=0.1.

vation is based on a technique developed by Hsu in references "
[10], [11]. In order to apply Hsu’'s method, the equation must be in X =Y,
the following form:
d?x dx , 3 .
IWJreC(t)a-FK(t)x:O, ) i+ of xi=—szl [Co, T Cez, COL2¢) +Csp, SIN(2) ]y
36 i=
C(t)=C(t+T) and K(t)=K(t+T). , (40)
However, the system in Eq419) does not have the same form as —e >, [ko,, + Kz, COS2¢) +kgg, SIN(26b) 1
=1 i i i

Eq. (36) becausd&19) contains inertia coupling term#,, M,
and M,, that result in an additional periodically time-varying
inertia matrixM(t). In order to eliminateM (t) and get the equa- for j=1, 2, and 3, wherew; are the nominal system natural
tions into the same form as E@36), Eq. (19) is multiplied  frequencies
through by an expression foM(t)~. The expression for
M(t) "1, which is valid to the first order, is given in EB7).
(,U]_:fv, wzsz and w3=f¢
M(t)=[1+sM(1)]
Thus
eM, (1) =My+ My, Sin 2¢p+ M, COS 20 (37)

M(t) " t=[1+eM (1) ] t=1—eM,(t)+O(&?) f3:w3—;w2 and f4:“’3J2r“’1_ (41)
Multiplying Eq. (19) by the approximate expression fibt(t) 1

yields Eq.(38). Following Hsu’s approach and taking the form of the solution to

be
I x +M(t)"*C(t)x+M(t) K (t)x=0 (38)
Which can be rewritten as Xi=Ait)cos wit) + By(B)sin(wit) +exi(t) (42)
I X +Ax=—g[Co+Cc2 COS2¢) +Csp SIN(2) ]x yi=wi[_Ai(t)Sin(wit)+Bi(t)cos(wit)]+8;:(i(t)

—e[kotker c0g2¢) +kgp SiN(2¢p)]x  (39)
the first two terms involving\; and B; on the right-hand side of

where the perturbation termg, c.», Co, Ko, Keo andkg, are  Eg. (42) are the variational terms. The remaining terms involving
defined in the Appendix. Next each row of the matrix equation ia are the perturbation terms. Substituting the assumed solution of
Eq. (39 is written in first-order form Eq. (42) into Eq. (40) gives
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* * * *
A, coq w;t) + B, sin(w;t)=0 A;codwt) +B;sin(wt)=0, k=1

(47a)
* * . *:: on * * e
B cos(w-t)—A- sin(wit) +e( X i+ X)) —A;sin(wt) +B; cofwt)=— w—l[xglcos(wlt)erglsin(wlt)
= ;2 [XIJ cog t)+X” sin(w;t)] +X%ZCOS{w2t)+Xézsin(w2t)]
ij=1
~ & [HBcog wt+2pt)
. 3 2w1 2 1 P
_& i _ i o
5o 121 [HY cog wjt+2ft)+ HY cog wjt—2ft)]  (43) HEsin gt + 2p1)]
3
€ i o i i p 5
- 2—%21 [HY sin(w;t+2ft)+HY sin(w;t—2ft) A, cog w,t) + By sin(w,t) =0, k=2 )
Fori=1, 2, and 3, where * *

&
—A, sin(w,t) + B, cog wot) = — w—z[xglcos(wlt)+xglsir(wlt)

Xi:j:koijAj+ij0iij and XIJ ko — Wi CO A]

+ X% coq wyt) + X2 sin(w,t) ]
i — - o o : e

Hl kczijA] kszijBJ + wJCCZijBJ+ wlcszijA] _ —[H§3C0$w2t+2pt)
2(1)2

kc2 A +k52 B+ w; iCe2; Bj—wjCs, A, (44) —H§3sin(w2t+2pt)]

HI3:kCZiij+kSZijAj_wJCCZijAj+ij32iij * *
A3 Coiw3t)+B3 Sir1(w3t)=O, k=3

: (47c)
H4 = kczij B] - kszijAj - chczijAj - chszij B] .
* *
The key step in determining the stability of E@3), as done in —AszSiNwst) + B cof wst)
[10,11), is to examine the stability of the variational and pertur-
bation equations separately. To do this, all terms on the right-hand
side of Eq.(43), except those that would lead to a resonance or = — —[X33cos( w3t)+X33SIn(w3t)]— —[(H31+ |-|32)

near resonance solution, are associated with the perturbation part. w3

By treating theA;s andB;s as constant, the perturbation part be- g3l 32

comes a linear constant-coefficient differential equation, whose X Codwgtt2pt) =~ (Hy+ HaYsin(wst +2p1) ]

stability is completely determined by the sign of thes, the sys-

tem natural frequencies. Sineg>0, the perturbation equation is This is a more complicated situation than showii@] since Hsu

stable, hence the overall stability of E@3) is governed by the studies the case where all the eigenvalues are distinct, thus only

stability of the variational part. two pairs variational equations are needed to determine the stabil-
In order to proceed with the stability analysis of the variationaly around any particular combination frequency. In this case,

part, all the resonance producing terms on the right-hand sidesdficer=0 leads to the multiplicityw; = w,, three pairs of varia-

Eq. (43) must be identified. Since we are interested in determinirigpnal equations are needed.

the stability in the vicinity of the least stable shaft spegd,f, The variational equations in E¢47) are solved by averaging

with least-stable value of lateral frequency-spli0, we have  and then transformed to a set of complex coordinates. Specifically,

(47) is rearranged so thattA; /dt anddB; /dt are on the left-hand

sides and then both sides of the equations are integrated from O to

> > 2. The resulting averaged variational equations are shown in Eq.

(45) (48).

w3t w;  wzto;

fOI’ )\=0, (1)1=(1)2=1, and f3=f4=

It is apparent that if is nearly equal to @;+ w)/2, then certain *

1 1 s 1
=— |5 (g X3 — HZsin(2pt) - —H%ﬁ’coﬂptﬁ

terms on the right side of Eq43) become resonance producin 4
terms for several sets pfandk, see Eq(46). (483)
k=1, j=3 5 el iy, Las 1 s }
witw . B;=——|z(X;+ X9+ - H3z’cog2pt) — —H;"sin(2pt
f= 12 k+P with k=2,j=3 (46) 1 wl[z( c c) 42 3 P) 24 r( P)
k=3, j=1 and 2

Wherep is a small real number that acts as a frequency detunlmg {1 (X214 X2 — H235|n(2pt)— 1 H23cos(2pt)}
parameter. Next, substituting E@6) into Eq.(43) for each of the wy |2

three separate sets pandk and taking only the resonance pro-

ducing terms on the right-hand side, we obtain three pairs of 1 1 1

coupled variational equations which govern the stability about t € 21 22 23 _ = ;

shaft speed =f;=f,. See Eq(47). @e w2 2 (Xt Xe )+ HZ cod2pt) 4 H sin(2pt)

(480)
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* g1 1 1 7 763 ;]
3= |3 %8 g (M HE)sin2pt) Tp(Ct20 mg(AHft2p) — gl
1 o
1 _| 7 =z 7% 42
Z(HilJinz)COE(Zpt)} P= z@*T,+2p) 5(Ca+20) 5 1
(48c) 55 , 5, ,
. —ar- (fs2p)% o= (f4+2p) —fyl
el s, a1 e L 8fy 8fy -
By=——|5 X"+ (H>+H5%)cog 2pt)
w3|2 4 B T n6s
_ _ T2
1 31 32\ i g 2 8 ¢
— z(Ha +Hg)sin(2pt) . 05
+]j > p - ?31:(215 (53)
Next the averaged equations in E48) are transformed to the
following complex coordinates: 85 ; , 03 ¢ )
X1=A+]B; Y1=A,+]B, Z;=A;+]B -8T¢( #+20) %( #+20) o
1— M 1 1— M2 2 1— /M3 3
(49) Therefore, the determination of the stability about the worst-case
X,=A;—jB; Y,=A,—jB, Z,=A;—jB3;. shaft operating speed=f,, with A=0 is reduced to solving for

the eigenvalues of thex3 the matrixI'. This procedure is much
The transformed, averaged, variational equations become more computationally efficient than generating the Floquet transi-
tion matrix, ®(T), via numerical integration and then evaluating
* s 0, s _ its eigenvalues. A comparison between the numerical and pertur-
. Xi— —[wzcouﬂkou]Yl bation method is shown in Fig. 11.

Xlz_i[%nﬂa}_ 20 | . -
1 The difference between the two methods increases with mis-

P ) alignment angle. Since the time-varying portion of the system

+ me’lzlj‘[wgcczn+ Ksa,, T i (@3Csp ,—Kea ) 127 matrices in Eq(20) are proportional to the misalignment angles,

1 8, and &3, as the misalignment increases Bée) assumptions

(50a) made in Eqs(37) and(42) become less appropriate. Despite this
difference between the two methods, the perturbation method is

still a useful design tool since it always over predicts the severity

Y, of the instability, and hence offers a factor of safety.

*

R ) & 0
Yi=- Z_wz[wlcoﬂ"‘lkoﬂ]xl_ 5

Co,, 1) oy

7 Summary and Conclusions

& ozt i —
i 4w2e [0aCoy; ezt 1 (w3Csz,,~ kezyy) 122 This research investigates the interaction between lateral and
(50b) torsional dynamics and explores the bounds of the torsion-lateral
instability regions of a torsionally flexible, misaligned shaft-disk
system driven through a U-joint. Nondimensional equations-of-

Z,= e]Zpt[w1CC231+ k3231_1 (01C0, — k0231)]X1 motion are derived and the effects of angular misalignment, static

dwg load-torque, load-inertia, lateral frequency-split, and auxiliary
. damping on the stability of the system over a range of shaft op-

+ 20 oo 4 Ko —i(wsCer —Kk Y erating speeds is investigated. By including both torsional and
4o [w02Ceag, tksay, ™1 (@2Cs20, ™ Keag,) 1Y lateral degrees-of-freedom, it is discovered that, when misalign-

ment is present, the lateral and torsional degrees-of-freedom are
dynamically coupled by periodic terms in the inertia matrix. Fur-
thermore these periodic inertia-coupling terms are proportional to
the misalignment angle and the torsional inertia load. Physically,
Note, a similar set of three equations involvikg, Y,, andZ, is misalignment causes speed variation of the driven shaft, which in
also obtained, but the stability properties are identical so only ongn excites elastic twist dynamics of the driven shaft. If the
set is shown, see E@50). Finally, due to the special structure ofdriven shaft is carrying a significant torsional inertia load, the
the above equations, the time dependence can be eliminatedspged variation and elastic twist dynamics induce a dynamic
assuming a solution with the following form: torque load at the U-joint. The dynamic torque load, in addition to
_ ) ) any static load torque, generate lateral moments at the U-joint
X=Xy 8" Y =Y, eIVt 7,=7, e"FIP (51) which excite lateral shaft motion resulting in dynamic misalign-
ment. Both the dynamic and the original static misalignment in
Here,r is an unknown complex number called the characteristieturn cause shaft speed variation. Hence, a dynamic coupling
exponent. Sincgp is purely imaginary, the sign of the real part ofmechanism exists between the torsional and lateral degrees-of-
r completely determines the stability of the solution. The stabilitireedom. This torsional-lateral coupling results in periodic inertia

+£
2

033

- 0033+ j w—3 Z,. (50c)

condition is summarized in the following equation: coupling matricesMg, Mg, andM¢,, which vary with twice the
driving shaft speed and are proportional to the angular misalign-
stable if Rér]<0 ment and the inertia load.
(52) The analysis shows that the torsion-lateral inertia coupling ma-
unstable if Rgr]=0. trices, My, Mg,, and M,, induced by misalignment, signifi-

cantly affect stability when the shaft speddis near the torsion-
To solve for the characteristic exponemntssubstitute the assumedlateral combination frequenciely, f,, f;, and f,. When the
solution in Eq.(51) into Eq. (50) and then solve the resulting shaft speed is near the difference-type torsion-lateral combina-
algebraic eigenvalue problem. The characteristic exponerdse tions, f; and f,, misalignment has a stabilizing effect. On the
just the eigenvalues of thex® complex characteristic matriX, other hand, wheff is near the sum-type torsion-lateral combina-
shown below in terms of physical parameters. tion frequenciesf; andf,, misalignment can destabilize the sys-
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Fig. 11 Numerical and perturbation solution. f=f,, £=0.005, A=0.2, A=3, &
=0.05, /,=0.5, u=0.1, y=10.

tem. Furthermore, for sufficient misalignment, parametric instabil- The perturbation approach stability calculation is much faster
ity zones of finite frequency width occur near both sunthan the numerical Floquet-based calculation since no time inte-
combination frequencie$g andf,, for all values of load-torque. gration is involved, however, there is some difference between the
Therefore, if shaft alignment cannot be guaranteed, it is importaisults especially at high misalignment angl@sdeg or 4 deg
to avoid the sum-type torsion-lateral combination zones duririthis difference could be due to the inverse approximation or the
shaft operation. assumption that the time-varying terms are all orglém the per-

Since avoiding the sum-type torsion-lateral combination zonésrbation expansion. Despite this, the method appears to always
may be difficult for certain applications, it is shown, in this studypver predict the severity of the instability, thus it is still a useful
that such a restriction can be relaxed and stability can be guardesign tool for estimating the necessary lateral damping required
teed if the inherent structural damping is augmented with an aux- suppress instability.
iliary lateral damper with sufficient damping. To determine the
amount of damping necessary for stability, the minimum, nondi-
mensional damping coefficient required for stabily,, is com-
puted over the shaft speed range for several values of misalign-
ment and load-torque. For>0, and nonzero misalignment, the/\Cknowledgments
required damping reaches a maximuDyaxreq When f=f,. This research is sponsored by the U.S. Army Research Office
Thus, the worst-case operating speed with respect to stabilityM&JRI program and by the NASA Graduate Student Research
f=f,. Itis demonstrated th@t,,«.eq iNCreases with load-torque, Program with NASA Glenn Research Center.
7 and with misalignmentg$, and §3. Also, by increasing the lat-
eral frequency-split parametex, one can reduce the required
dampingc,.q across the entire shaft speed range.

Finally, an efficient method for determining the stability at the
least stable operating conditiofi=f, and A=0, is developed. .
Following Hsu's work [10,11], the method is based on anAppendlx
asymptotic solution of transformed averaged variational equa-Using the inverse approximation, the perturbation matrices on
tions. Since the variational equations are obtained from a perttine right-hand side of Eq39) are shown in EqsAl) and (A2).
bation expansion about some nominal shaft speed, the stability
analysis is only valid in the vicinity of this nominal shaft speed.

After several transformations, the time-dependence of the varia- 2¢f,+cy fn 0
tional equations is eliminated and the stability determination re- _ _f 20,4 ¢ 0
duces to a complex eigenvalue problem in terms of the system Co= n whd

parameters. The order of eigenvalue problem depends on the num- 0 0 27t (AD)
ber of system modes involved in the instability.
With \=0, i.e., no lateral frequency-split, the lateral modes

have a multiplicity of two hence both lateral modes and the tor- 0 0 0 0 0 0
sion mode are involved in the torsion-bending stability calcula- | o 0 0 | o 0o o
tion. Since three modes are involved, the stability calculation is Ce2= v Ce2=

reduced to a 83 eigenvalue problem. 2f63 —2f5, O 2f5, 2f6; O
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Hangzhou 310027, P. R. China and governing the conditional reliability function and a set of generalized Pontryagin equa-
State Key Laboratory of Nonlinear Mechanics, tions governing the conditional moments of first-passage time are established. Finally, the
~ Institute of Mechanics, conditional reliability function, and the conditional probability density and moments of
Chinese Academy of Science, first-passage time are obtained by solving these equations with suitable initial and bound-
Beijing 100008, P. R. China ary conditions. Two examples are given to illustrate the proposed procedure and the

results from digital simulation are obtained to verify the effectiveness of the procedure.
[DOI: 10.1115/1.1460912

Introduction than the original equations since there is only one time scale in the
former equations while there are two time scales in the later equa-

Yions. Thus, the stochastic averagi i
. . Pt . . , ging method is a powerful ap-
hamics, usually wo failure models are studied: first-pas¢suge I_proximate procedure to deal with quasi-Hamiltonian systems.

eXCL.'rS'O') failure and fatigue fa_ulure. In recent years, fatigue fai The first-passage failure of mechanical and structural system

uirze |s_|_t}r]eat¢a]cd t?S th? ﬁr?p%gat'%' of a domiln;allr(mitn(éracfﬂ;irtota Cm'?@ually occurs rarely. It is a long-term behavior and the stochastic
size. Thus, Taligue tailure becomes a specia ot hirs 'passazg?eraging method is suitable for studying it. The classical stochas-
failure. The first-passage failure is among the most difficult prOl?i- averaging method has been applied by many researchers to
lems in the theory of random vibration or stochastic Str“Cturiudy the first-passage problem of single-degree-of-freedom oscil-

dynamics. At present, a mathematical exact solution is possu? ffors with linear restoring force and with nonlinear restoring

only if the random phenomenon in question can be treated ag,fce ([7-17)). Recently, the stochastic averaging method for

diffusive Markov process. Still, known solutions are limited to th%uasi-HamiItonian systems has been develdpeg—20). Except
one-dimensional casgl,2)). _ ar response prediction, it has been applied to study the stochastic
The state space of a mechanical or structural system mode

tability and bifurcation([20-23), the first-passage failure of

generally two-dimensional or higher. For such a system subject{,j. non-integrable Hamiltonian systefig4]) and the nonlin-
Gaussian white noise excitation, the response is a vector diffusi¥g <iochastic optimal contrdl25—29).

Markov process, and a backward Kolmogorov equation goveming| the present paper, the stochastic averaging method for quasi-
the conditional reliability function and a set of generalizeghoqraple Hamiltonian systems is first reviewed briefly. Then the
Pontryagin equations governing the conditional moments of fir§ia ckward Kolmogorov equation governing the conditional reli-
passage time can be set up. However, these equations can usugfiiiy function and the generalized Pontryagin equations govern-
be solved only numerically. For this purpose, a variety of numefig the conditional moments of first-passage time are derived
cal m_ethods, such as finite element procedure and generalized gg{h the averaged equations of quasi-integrable Hamiltonian sys-
mapping approach have been develofj&d-6]). Unfortunately, at tems, and the initial and boundary conditions are formulated. Fi-
present, the problems can be solved in this way are limited to tWg,ly, two examples are worked out and the results obtained by
or three dimensional. i o ) using the proposed procedure are compared with those from digi-
The response quantities of a quasi-Hamiltonian syseefimear (5| simulation and with those obtained by using the procedure for

or nonlinear conservative system subject to light dampings agflasi-non-integrable Hamiltonian syste(fiz4]).
weakly random excitationscan be divided into two categories:

rapidly varying processes and slowly varying processes. Usual . . . . .
the slowly varying processes are much more significant for chapiochastic Averaging of Quasi-Integrable Hamiltonian

acterizing the long-term behavior of the system. Stochastic av&ystems

aging is a method to derive the equations governing the slowlyThe stochastic averaging method for quasi-integrable Hamil-
varying processes from the original equations of the system. Thjan systems has been developed for nonresonant and resonant
vector of slowly varying processes after averaging @@proxi- cases, and for white noise and wide-band excitati¢ts,23).
mately diffusive Markov process and the dimension of the avefyere only the method for nonresonant case and for white noise
aged equations is usually much less than that of the original eqig&citation is briefly reviewed. Consider a quasi-Hamiltonian sys-
tions. Furthermore, the averaged equations are much more regui# of n-degree-of-freedom governed by the following equations

of motion:

In the theory of random vibration or stochastic structural d
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ij=12,...n; k=12,...m H,. It is seen from these equations tt@t are rapidly varying
processes whilél, are slowly varying processes. According to the
where Q; and P; are generalized displacements and momentghasminskii theorem ([30]), H, converge weakly to an
respectively; H=H(Q,P) is twice differentiable Hamiltonian; n-dimensional vector diffusion processessas0 in a time inter-
cij =Cj;(Q,P) are functions representing quasi-linear damping caal 0<t<T, whereT~0(s1). For simplicity, the same symbols
efficients;f; = f;(Q,P) are functions representing excitation amH, are used to denotecomponents of this diffusion process.
plitudes; ¢ is a small positive parameteWy,(t) are Gaussian The Ito stochastic differential equations for thisdimensional
white noises in the sense of Stratonovich with correlation fungector diffusion process can be obtained by applying time averag-

tions Ef W, (t)W,(t+ 7)]=2D,6(7).
Equation(1) can be modeled as the following set of #imchas-
tic differential equations:

do-M 4 ,
Qi_ﬁ t (2a)
ip aﬁJr aH I -
i~ | g0, TeCigp. ~ePuligp At eToidby
Qi P P )
ij=12,...n; k=12,...m

whereB,(t) are the independent unit Wiener processes aod

=2fDf". The double summation terms on the right-hand side of
Eqg. (2b) are known as the Wong-Zakai correction terms. These
terms usually can be split into two parts: one having the effect of
modifying the conservative forces and another modifying the T

damping forces. The first part can be combined withH/9Q); to
form an overall effective conservative forcesdH/dQ; with a
modified HamiltonianH=H(Q,P) and with gH/dP;=dH/JP; .
The second part can be combined witlec;; dH/JP; to constitute
an effective damping forces —em;jgH/dP; with m;
=m;;(Q,P). With these accomplished, Ec(Qa) and(Zb) can be
rewritten as

d —(?H d 3
Qi—ﬁ t (33)
oH JH
dPi: aQI“FSm”o,’P dt+8 (ledBk(t) (Sb)
i,j=1,2,...n; k=12,...m

Assume that the Hamiltonian system with Hamiltonilnis

integrable and nonresonant. That is, in the Hamiltonian system

there existn independent first integraléconserved quantiti¢s
Hi,Hy, oo
tion”
H11H21 P

frequencies,w;
relation:
k:Ja)i =

O(e)

wherek{ are integers witl={_, | k{'| <4.
Introduce transformations

H=H/(QP), r=12,...n (5)

The 1to stochastic differential equations fét, are obtained from
Egs.(3a) and(3b) by using lfodifferential rule as follows:

(4)

dH - oH aH,+ 1 &°H, it
el TMigp, ap, T 2 7k7IGR P,
JH,
+81/2(9 0'|kdBk(t)
(6)
ri,j=212,...n;, k=12,...m

whereP; are replaced by, in terms of Eq.(5). Now the system
is governed by Eqg3a) and(6) and the state variables & and

Journal of Applied Mechanics

,H,, which are in involution. The words “in involu-
implies that the Poisson bracket of any two of
,H,, vanishes. In principlen pairs of action-angle
variablesl; ,6; can be introduced for an integrable Hamiltoniarwhere$[ JIT7,_
system ofn-degrees-of-freedom. Non-resonance means that the
=d@g;/dt, do not satisfy the following resonant

ing to Eq.(6). The result is

dH, =a,(H)dt+ o (H)dB(t) @
r=12,...n; k=12,...m
where H=[HH,...H,]"; Ek(t) are independent unit Wiener
processes;
ar(H)=8< - mij;_g_ (;_I:,r + %Uiko'jk%>
J ! ! 1t

9H, oH.
> (8)

Py oP;/

1 to+T
TL [ ]dt.

Note thatH, are kept constant in performing the time averaging.
The time averaging in Eq8) may be replaced by space aver-
aging. For example, suppose that the Hamiltonian is separable and

equal to the sum ofi independent first integers, i.e.,

brs(H)_ak(H);sw(H)_8<UikUjk

lim

(L D=

H(q,|o>=zl H.(dr,p,) ©)

and for eactH, there is a periodic orbit with period, . Then the
averaged drift and diffusion coefficients of E@) can be obtained
as follows:

&
a ()= %(
. H,
Xgl(l/ P )dq#
oH, &HS)XH

&
brs(H):f %(Urwska—Prﬂ—Ps 11

dH; dH, 1

I°H,
™igp. 7P, 2

5 OrkOrk Ip2
r

dH,,
(1/ a—m)d%

1( )dg, represents an-fold loop integral and

/%

In the case where action-angle variablgsé; are availableH,
can be replaced bl and averaged Tt&q. (7) by

dl,=a,(1)dt+ & (1)dB(t)

(11)

n
T=T(H)=Hl T,= “ldq,, .
b

12)
r=12,...n; k=1,...m
wherel=[I4l,...1,]%;
gr(|)=LJ’2ﬁ< oH I 10’- o _&ZI )d0
2m"J, ”aP ap, 27k KoPoP;

(13)

27 al, dlg
b= ‘Trk(l)o'sk(l) (27T)nJ’ (Uiko-]k(;_piﬁ_pj de

in which 6=[016, ... 6,1"; f3"[ 1d@denotes am-fold integral.
Note that averaged E¢7) or (12) is much simpler than original

Eqg. (1). The dimension of the former equation is only a half of

that of the later equation. Equatioig) and (12) contain only
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slowly varying proces$i(t) andl(t), respectively, and they are c

suitable for studying the long-term behavior of the system, such as mi(Ho)= [ T'p(T[H)dT, 1=12,.... (20)

the first-passage failure. 0
The equations governing the conditional moments of first-passage
time can be obtained from E€L5) in terms of relationship$19)

Backward Kolmogorov Equation and Generalized 2and(20) as follows:
Pontryagin Equations 1 Py 1 Iy s1

For most mechanical/structural systems Hamiltortimepre- 2 brs(Ho) dH,odH o *+ar(Ho) dHo I+ Dm
sents the total energy of the system, &hdthe energy of theth
degree-of-freedom of the systeid, may vary betweett,, and rs=12,...p; 1=0132....
o, whereH,, is a constant, such &sfor a Duffing oscillator with |t is easily seen from Eq(20) that uy,=1. The boundary condi-
hardening spring, between andH,,, such asH for a Duffing  tions associated with E¢21) are obtained from Eqg17) and
oscillator with softening spring, or betweéfy, andH,,, where (18) in terms of Eqs(19) and (20). They are
H., is a constant, such ad for a pendulum. The state of the .
averaged system of a quasi-integrable Hamiltonian system varies mi(I'o)=finite (22)
randomly in then-dimensional domain defined by the direct prod- (T)=0 (23)
uct of theH, intervals and the safety domaii is a bounded Fiile '
region with boundaryl’ within the n-dimensionalH, domain. Note that both boundary conditiori$7) and (22) are qualitative
Suppose that the lower boundary of a safety domain for eeda  rather than quantitative. They can be made to be quantitative by
at zero(it is always possible to make so by using coordinatgsing Eqgs.(15) and(21), respectively, based on the limiting be-
transformation Then the boundary consists of, (at least one havior of the drift and diffusion coefficients in Egd5) and(21)
of H, vanisheg and critical boundanf'.. The first-passage fail- at boundaryl’y and it will be illustrated with the followingj ex-
ure occurs whei(t) crossed’. for the first time, and it is char- amples.
acterized by the conditional reliability function, the conditional The conditional reliability function is obtained from solving
probability density or conditional moments of first-passage timbackward Kolmogorov Eq(15) together with initial condition
where the word “conditional” means under the given initial con{16) and boundary conditiond7) and(18). The conditional prob-
dition in the safety domain. ability density of first-passage time is obtained from the condi-
The conditional reliability function, denoted I8®(t|H,), is de- tional reliability function by using Eq(19). The conditional mo-
fined as the probability ofi(t) being in safety domaitf) within ments of first-passage time are obtained either from the
time interval (0t] given initial stateH,=H(0) being in(}, i.e.,  conditional probability density of first-passage time by using defi-
nition (20) or directly from solving generalized Pontryagin Eq.
R(t|Ho)=P{H(7) e Q,7e (0t][Hoe Q}. (14)  (21) together with boundary conditior@2) and (23).

It is the integral of the conditional transition probability density in

(). The conditional transition probability density is the transition

probability density of the sample functions which remair{lrin Examples

time interval[O,t]. For an averaged system, the conditional tran-

sition probability density satisfies the backward Kolmogorov Example 1. Consider linearly and nonlinearly coupled two
equation with drift and diffusion coefficients defined by E(®, linear oscillators subject to external and parametric excitations of
(10), or (13). Thus, the following backward Kolmogorov equationGaussian white noises. The equations of motion of the system are

(21)

can be derived for the conditional reliability function: of the form
R a1 Loy é’HaZSH Xy X+ anXo B0+ XX+ 03X = Wa(t) + X, Wa(t)
ro rooTiso (15) i . . . (24)
r,s=12,...n Xo+ arp Xy apXot Ba( X5+ X5) Xo+ w5 X, =Wo(1) + X Wy(t)
wherea, (Ho) andb,¢(Ho) are defined by Eq$8) or (10) with H ~ Where a;;, B;, and wi(i,j=1,2) are constantsW(t)(k
replaced byH,. The initial condition is =1,2,3,4) are independent Gaussian white noises with intensities
2Dy; ajj, Bi, andDy are assumed of the same ordersofThe
R(0[Hg)=1, HoeQ (16) response of systerf24) in both nonresonant and resonant cases

)Q/ith external excitations only has been studied by using the sto-
chastic averaging method for quasi-integrable Hamiltonian sys-
tems([19]). Here we study the first-passage failure of systam

which implies that the system is initially in the safety domain. Th
boundary conditions are

R(t|Tg) =finite (17) in a nonresonant case. _
Let X;=Qq, X,=Q,, X;=P4, X,=P,. Equation(24) can be
R(t|I'¢)=0. (18) recast in the form of Eq(1) as follows:
Equations(17) and (18) imply thatT'j is a reflecting boundary Q -p
while T is the absorbing boundary. 1=t
The first-passage timEis defined as the time when the system sz P,
reaches critical boundarly, for the first time giverH, being in . (25)
Q. Noting that the conditional probability of the first-passage fail- P1=—03Q;—[an+ B1(Q3+Q3)P1— ai,P,
ure F(t|Hg) =1—R(t|H,), the conditional probability density of
the first-passage time can be obtained from the conditional reli- + Wy (1) + Q1 Ws(t)
ability function as follows: :
Y P,= — w3Q,~ [zt B2(Qi+QDIP,
—JR(t|Hg)
p<T|Ho>=% (19) = aP1t Wa(t) + QoWa(t).
t=T

Equation(25) can be modeled as’listochastic differential equa-
The conditional moments of first-passage time are defined as tions of the form of Eqs(3a) and (3b). Since the Wong-Zakai
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Following Eg. (15, the conditional reliability function
“ H: R(t|H10,Hy0) of system(24) is governed by the following back-
ward Kolmogorov equation:

IR aR+ 3R+1b 32R+1b J°R 2
T Mo, B2, 2 D H2, T 2 P, (32)

o
AN Ie wherea,, a,, b;;, andb,, are defined by Eq29) with H;, H,

replaced byH o andH,g, respectively. The initial condition is Eq.

(16) with Hy=[HgH50]". One boundary condition is Eq18)
safety domain O with ' defined by Eq(30). The other qualitative boundary con-
dition, Eq.(17) with ' defined by Eq(31), can be transformed

i into a quantitative one by using E¢32) and considering the
/ \r limiting behavior of drift and diffusion coefficients in EQ9) at
163 02 boundaryl', defined by Eq(31). It is
Fig. 1 Safety domain € and its boundary on plane H,; and H, JR IR B> ) D, IR
for system (24) o le?Hlo D,— ayHog ng H5g w% Hzo) P
H3,| 0°R
+{ D2H20tDams | —me (33)
correction terms in this case vanish, the modified Hamiltonian 2 20
as_sociated Wi_th the ltequations is the same as that associateg, boundarnyTo; ;
with Eq. (25), i.e.,
_ JR B> 3 JR
. H=Hy+H, (26) o Dl_allHlo_z_wiHio"'w_%HlO H oo
Hi=§(P$+w?Q?), i=1,2. (27) IR HZ,\ R
FDogp— +| DiHiot Dom 5~ (34)
The Hamiltonian system with Hamiltoniakl is integrable. 20 @1/ 7M10
Th_us, system(25) i_s a quas_i-integrable Hamiltopi_an system. BWﬁ)r boundarylgy;
using the stochastic averaging method for quasi-integrable Hamil-
tonian systems, the following averaged Hquations can be ob- IR IR IR
X ; : .
tained in the nonresonant case: B = DlaHlO DzﬂHzo (35)
dHr:ar(Hl1H2)dt+al’k(HlvH2)dBk(t) (28) for boundaryr03
r=1,2, k=1,2,3,4 Equation(32) is a two-dimensional parabolic partial differential
equation and can be solved numerically together with the initial
where and boundary conditions by using the Peaceman-Rachford scheme
By B1 Ds of the finite difference method to yield the conditional reliability
a;=—ayH;— ——5Hi— —5HH,+ D+ —H, function of systen(24). The conditional probability density of the
201 w2 w1 first-passage time of syste(@4) is then obtained from the condi-
B B D tional reliability function by using Eq(19).
ay= — agHy— =5 H2— “oHiHy+ Dyt —5 Hy Similarly, the generalized Pontryagin equations for the condi-
205 w1 w2 tional moments of the first passage time of syst@#) can be
2 derived from the averaged Iteq. (28) as follows:
— — 1
b= =2D;H,;+Ds— 29
11~ 01k0 1k 1M1 Swi (29) Eb 02#|+1+1b (72'“'*1_,_51 P
- H2 271 gH3, 2777 gH3, Tt aHy
D2y= 02k k=2D,H,+ D4w_§ N Iy 41
_ Z Hyg
bi,=bs= 0 02=0.
==(+Dw (36)

It is seen from Eq(27) thatH; vary from 0 toce. So, the state of
averaged systeni28) varies randomly in the first quadrant Ofwhereal, a,, by, andb, are defined by E¢29) with H, andH.,
plane H;,H). Suppose that the limit state of the systenHis replaced byH,,andH.,, respectively. One boundary condition is
=H;+H,=H,, i.e, (23) with T, defined by Eq(30). The other qualitative boundary
. _ - condition, Eq.(22) with I'; defined by Eq.(31), can be trans-
Fet HitHo=He,  Hy H=0. (30) formed into 3uantitative or(:e by using é(qﬁ()‘ and considering the
The safety domain of the system is the inside of a right trianglgniting behavior of the drift and diffusion coefficients in E@9)

with boundaried’, in Eq. (30) andT",, defined by at boundant,. It is
Lo=Lo1+ oot og, bHotD H_§0 i1 ZUEUN
I'p1: Hi=0, O<H,<H, (31) 21720 42w§ (;Hgo ToH 4, 27 22M20
I'pp: Hy=0, O<H;<H D 1%
o e Wi M| (b @)
: 205 % IH
[zt Hy=H,=0 w3 w3 20
(see Fig. 1 for boundaryl g, ;
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Fig. 2 Reliability function of system  (24) for given initial con-
dition. @;;=0.01, @4,=0.03, B,;=0.1, w;=1.0, @»;=0.04, ay
=0.04, B,=0.4, w,=0.707, 2D,=0.03, 2D,=0.01, H,=0.3. The
other parameters are 2 D3;=2D,=0, Hip;=H,,=0 for A and A ’;
2D3;=2D,=0, H;y=0.09, H»,=0.03 for B and B ’; 2D3;=0.1, 2D,
=0.01, Hyg=H,,=0 for C and C '. ——analytical result by using
the present proposed procedure;  — — — —analytical result by us-
ing the procedure proposed in  [24]; O ¢ A from digital simu-
lation.

2
Ho| 0°ai1 B

1.2
DH;p+D3=—~|———+|Dy—ayH;;— =—H
( 1M10 32(»%) (9Hio 17— @110 2w§ 10
D3 Iy +1 Ipi+1
4+ —Hqn| ——= =—(1+1 38
wi 10) 3H10 ZaHZO ( )lu’| ( )
for boundaryl,;
I +1 Ity +1
—+ =—(I+ .
D, IH 10 D, IH 50 (I+ D (39)

Equation (36) is a two-dimensional elliptical partial differential

equation and can be solved numerically together with boundar
conditions by using the five-point scheme of the finite differenc

25

Hi

0.1

0.05

Fig. 4 Mean first-passage time of system  (24) as function of
Hio for given Hyy. 2D3=2D,=0, H,,=0 for A and A'; 2D;
=2D,=0, Hy=0.08 for B and B '; 2D3;=0.1, 2D,=0.01, Hy=0
for C and C '. The other parameters and symbols are the same
as those in Fig. 2.

results are in excellent agreement. Note that the conditional reli-
ability function is a monotonously decreasing function of time.
Some results for the reliability function, the probability density,
and the mean of first-passage time of syst@d) as functions of

the initial condition are shown in Figs. 5—7. It is seen that both the
reliability and mean first-passage time are monotonously decreas-
ing functions ofH q and/orH .

As indicated above, systeli24) is a quasi-integrable Hamil-
tonian system. However, the procedure for evaluating the condi-
tional reliability function and the statistics of first-passage time for
quasi-non-integrable Hamiltonian systems developef®2# can
also be applied to systert24). It is interesting to see if this

| method yields good results.
Treat system(24) as a quasi-non-integrable Hamiltonian sys-
m, the averaged ltequation is of the form

method to yield the conditional moments of first-passage time of dH=a(H)dt+E(H)dE(t) (40)
system(24).
Some numerical results for the conditional reliability functionwhereH is defined by Eqs(26) and (27),
the conditional probability density and the conditional mean of the
first passage time of systef24) obtained by using the above a(H)=D,+D —l(ﬁ B, i+_
procedure are shown in Figs. 2—4. Similar results from digital 1RE2 g PP 2 2
simulation are also shown for comparison. It is seen that the two 1 5. D
3 4
ol autanT 5 ?) H
0.1 1 72 (41)
i 1/{D; Dy,
0.09 ¢ b(H):EZ(H):§(—2+—2 H?+(D,+Dy)H.
0.08 | w; W3
007 . The conditional reliability functionR(t|H,) of system(40) is
006 bl governed by the following one-dimensional backward Kolmog-
TR orov equation:
p(T) 0.05
0.04 IR (Ho) R 1b(H )ﬁZR “2)
X : —=a(Fg) - —*+ 5 0) 52
0.03 3 ." (912 (9H0 2 (9H0
0.02 i o wherea(Hg) andb(Hg) are defined by Eq41) with H replaced
001 i 04 by Hp. The boundary conditions are
o b R(t|Ho) =0 43)
30
R(t|0)=finite. (44)
Fig. 3 Probability density of first-passage time of system (24) The later condition is qualitative and can be made to be quantita-

tive by using Eq.(42) and the limiting behavior of(H,) and

for given initial condition. The parameters and symbols are the
b(Hy) nearHy=0. Itis

same as those in Fig. 2.
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Fig. 5 Reliability of system (24) at t=2 (second ) as function of H;q and Hyg.
2D;=0.1, 2D,=0.01. The other parameters are the same as those in Fig. 2.

The one-dimensional boundary-initial value problem, Ed®),

(LR: D,+Dy— E(ﬁ'ﬁﬁz)( i2+ iz) LR (45) (43), (49, and(46), can be solved by using the finite difference
ot 6 0 w3)|dHo method of Crank-Nicolson type. The conditional probability den-
The initial condition is sity of first-passage time can be obtained frdR(t|H,) as
R(O|Hq)=1. (46) follows:

Fig. 6 Probability density of first-passage time of system (24) as function of
Hyo and t for given Hyp=0.2D3;=0.1, 2D,=0.01. The other parameters are the
same as those in Fig. 2.

Fig. 7 Mean first-passage time of system  (24) as function of H;q and Hyg.
2D5;=0.1, 2D,=0.01. The other parameters are the same as those in Fig. 2.
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Fig. 8 Reliability function of system  (52) for given initial con-
dition. @;=0.2, a,=0.1, @3=0.1, 8,=0.05, ®=1.0; a,=04, B,
=0.1, k=2.0, 2D,=0.03, 2D,=0.01, H.=0.3. The other param-
eters are 2 D3=2D;=0, Hyp,=H,,=0 for A and A'; 2D3;=2D,
=0, Hy,=0.04, H,=0.02 for B and B ’; 2D;=0.1, 2D,=0.05,
Hip=H,,=0 for C and C'. —analytical result by using the
present proposed procedure; — — — —analytical result by using
the procedure proposed in  [24]; O ¢ A from digital simulation.

p(TIHo) =—— (47)

t=T
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Fig. 10 Mean first-passage time of system  (52) as function of
H,o for given Hiyy. 2D3=2D,=0, H,q2=0 for A and A'; 2D,
=2D,=0, H;,=0.04 for B and B ’; 2D;=0.1, 2D,=0.05, H,,;=0
for C and C'. The other parameters and symbols are the same
as those in Fig. 8.

The one-dimensional boundary value problem, EdS), (49),
and(51), can be solved by using the Runge-Kutta method.
Obviously, for evaluating the statistics of the first-passage fail-
ure of system24) the procedure for quasi-non-integrable Hamil-
tonian systems is much simpler than that for the quasi-integrable

Similarly, the generalized Pontryagin equations for the mQsgmiltonian system. However, the former generally yields inac-
ments of first-passage time of syste#0) can be obtained as ¢yrate results as shown in Figs. 2—4. Our experience shows that it

follows:
1 f92/~’v|+1 Iy +1
Eb(HO)a—HSJra(HO) o =—(I+1)y. (48)
The boundary conditions are
Hi+1(He) =0 (49)
mi+1(0)=finite. (50)

The qualitative conditior{50) can be converted into quantitativ
one by using Eq(48) and the limiting behavior o&(H,) and

b(Hy) nearHy=0. It is

I 41
=—(I+1)u.
My (I+1)m

(51)

1
D;+Dy— g(lﬁ*ﬁz)

+
(71?2)
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Fig. 9 Probability density of first-passage time of system
for given initial condition. The parameters and symbols are the
same as those in Fig. 8.

(52)
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may yield good results in some very special cases, for example,
the ratio of excitation intensity to damping coefficient for the first
degree-of-freedom is the same as that for the second degree-of-
freedom. In this case syste(@4) will behave like a quasi-non-
integrable Hamiltonian system. On the other hand, the method
proposed in this paper always yields good results for sy$gn
although the equations involved are more difficult to solve.

Example 2. Consider a van der Pol oscillator nonlinearly

ecoupled with a Duffing oscillator subject to external and paramet-

ric excitations of Gaussian white noises. The equations of motion
of the system are of the form

Xq+ (= Bt X3+ apXi+ asX2) Xy + 02X, = W (1) + X, Wa(t)
) _ (52)
Xo+ (Ba+ agX]) Xo+ KX3=Wo(t) + X,Wy(t)

where ay, as, az, a4, B1, B2, w, k are constantsy,(t)(k
=1,2,3,4) are independent Gaussian white noises with intensity
2D . The response of syste(B2) with external excitations only
has been studied by using the stochastic averaging method for
quasi-integrable Hamiltonian systentgl9]). Let X;=Qq, X,
=Q,, X1=Py, X,=P,, Eq. (52 can be rewritten as a quasi-
Hamiltonian system of the form of EqY), i.e.,

Q=P
sz P2
P1=— 0%Q;—(— B1+ a1Q%+ a,Qi+ 3PP,
+Wy(t) + Q1 Wi(t)

P2= — ng— (Bt (14Q%) P+ W (1) + QaWy(t).

Equation(53) can be modeled as’ltequations. Since the Wong-
Zakai correction terms for this example vanish, the modified
Hamiltonian is the same as that associated with(B8), i.e.,

(53)
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Hy=3(P?+ 0?Q?) (55) equations governing the conditional reliability function and the
generalized Pontryagin equations governing the conditional mo-
H,=3(P3+ 3kQ%). (56) ments of first-passage time by a half when the associated Hamil-
tonian system is nonresonant. Furthermore, the backward Kol-
HamiltonianH is separable and so E(3) governs a quasi- mogorov equation and generalized Pontryagin equations of an
integrable Hamiltonian system. Suppose that the Hamiltonian s¥greraged system are nonsingular and much simpler than those for
tem is nonresonant. The averaged diguations can be obtainedthe original system. Applications of the proposed procedure to two
from Eq.(53) by using the stochastic averaging method for quaséxamples show that the proposed procedure yields quite accurate
integrable Hamiltonian systemg19]). It is of the same form of results. Thus, the proposed procedure is promising and deserves
Eq. (28) with the following drift and diffusion coefficients: further development and application.
H The results for the two examples indicate that both the reliabil-
H,H,+Dy+ —;D3 ity and mean first-passage time are monotonously decreasing
@ functions of initial energy of each degree-of-freedom of the sys-
7 tem. This property will be used in the study of nonlinear stochas-
W=

a, da, day
a,=pB1H1— ﬁHi_ WHle_ 3

tic optimal control of first-passage failure of quasi-integrable
Hamiltonian systems.

The procedure for evaluating the statistics of the first-passage
failure of quasi-non-integrable Hamiltonian systems has also been
applied to the two examples. The numerical results showed that it
1 generally yields inaccurate result for quasi-integrable Hamiltonian
b11=2D;H,+ —5Ds (57)  systems although it is much simpler than the procedure proposed

in this paper. Experience shows that only in some very special
cases it may yield good results.

64r (—) H It is remarked that the criteria for the failure considered in this

H, —2D4 paper are functions of the first integralsnergies of the indi-

k vidual oscillators. The stochastic averaging method is the most
effective for this kind of first-passage failure problem. If the fail-
ure criterion is given in terms of other physical quantity, such as

b1,=by=0. the displacement, the first-passage failure problem will be much

SinceH;(i=1,2) vary from 0 to= under the conditiork>0, more difficult to solve. For such a kind of a first-passage failure
the safety domain of syste(62) may be of the same form as thatProblem of a single-degree-of-freedom quasi-Hamiltonian system,
in Fig. 1. The backward Kolmogorov equation for the conditiondroberts[31] developed an integral equation for evaluating the
reliability function, the generalized Pontryagin equations for thgonditional transition probability density in the safety doméire
conditional moments of first-passage time, and their associatéegral of which is the reliability functionby using the uncondi-
initial and boundary conditions for syste(®2) can be formulated tional transition probability density obtained from solving the av-
and solved as for example 1. The only difference is that the drifaged FPK equation. Maybe this method can be extended to a
and diffusion coefficients for this example are defined by(@ Multi-degree-of-freedom quasi-integrable Hamiltonian system but
with H, andH,, replaced byH, andH.g, respectively. much more computational work is involved and some difficulties

The procedure for eva|uating the statistics Of first_passage fd“ave to be SOlVed. Th|S will be the SubjeCt for our future research.
ure of quasi-non-integrable Hamiltonian syste(i®4]) can also
be applied to applied to systerts2). The mathematical formula-
tion is the same as that for example one, i.e., E¢8)—(51), Acknowledgment
except the drift and diffusion coefficients. For this example, there The work reported in this paper was supported by the National
coefficients are Natural Science Foundation of China under Grants No. 19972059
and 10002015 and the Cao Guang Biao Hi-Science-Technology
Foundation of Zhejiang University.
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Elastic Wave Propagation in

Circumferential Direction in

Anisotropic Cylindrical Curved
s. Towtighi | Plates

T'F Kundu Ultrasonic nondestructive inspection of large-diameter pipes is important for health
ellow ASME o N Lo >

monitoring of ailing infrastructure. Longitudinal stress-corrosion cracks are detected
M. Ehsani more eﬁiciently by .inducing circumfergntie}l waves; henpe, the §tudy of elastic wave
propagation in the circumferential direction in a pipe wall is essential. The current state
of knowledge lacks a complete solution of this problem. Only when the pipe material is
isotropic a solution of the wave propagation problem in the circumferential direction
exists. Ultrasonic inspections of reinforced concrete pipes and pipes retrofitted by fiber
composites necessitate the development of a new theoretical solution for elastic wave
propagation in anisotropic curved plates in the circumferential direction. Mathematical
modeling of the problem to obtain dispersion curves for curved anisotropic plates leads to
coupled differential equations. Unlike isotropic materials for which the Stokes-Helmholtz
decomposition technique simplifies the problem, in anisotropic case no such general de-
composition technique works. These coupled differential equations are solved in this
paper. Dispersion curves for anisotropic curved plates of different curvatures have been
computed and presented. Some numerical results computed by the new technique have
been compared with those available in the literatu®Ol: 10.1115/1.146487]2

Department of Civil Engineering
and Engineering Mechanics,
University of Arizona,

Tucson, AZ 85721

Introduction no such general decomposition technique works. The differential
equations remain coupled and require a more general solution

Mathematical modeling of wave propagation in the axial d're(%'%chnique.

tion of a cylinder has been studied extensively. However, for wav The new technique, presented in this paper, solves coupled set

propagation in the circumferential direction, which is essential f%rf differential equations without attempting to decounle the equa-
nondestructive testingNDT) of large diameter pipes, literature q pung P d

shows fewer investigations. Viktorov's workl]) establishes the tions. Hence it removes the obstacle arising from not being able to

fundamental mathematical modeling of the problem for isotrop%e.co.ulOIe the gquatlons. Consgqugntly it provides a ;ystematlc and
épfylng solution method, which is capable of solving a set of

material properties. He has introduced the angular wave numl(S:' led differential equations, and can be utilized to solve a va-

concept and has derived, decomposed and solved the governlﬂ P p qt i)l

differential equations. He has considered only one curved surfa{:'g; of wave propagation problems.

in other words, he has found the solution for convex and concave

cylindrical surfaces. In order to obtain the results for curved plates

Qu et al.[2] have added the boundary conditions for the second

surface and solved the problem of guided wave propagation in

isotropic curved plates. Different aspects of the circumferentiflundamental Equations

direction wave propagation along one or multiple curved syrfaces—rhe formulation presented here is for the wave propagation in a

have been analyzed by Grace and Goodi&in Brekhovskikh  cyjingrical curved plate in the direction of the curvature as shown

(4], Cerv[5], Liu and Qu[6,7] and Valle, Qu, and Jaco8]. I iy Fig. 1. We will interchangeably call the wave carrier a “curved

all these works the material has been modeled as isotropic e|aﬁt|l§te’n “cylinder,” “pipe segment,” or simply “pipe” all meaning

material. , ) ) the same thing. What we are interested in is analyzing the disper-
Many investigators have solved elastic wave propagation prolyye waves in the curved plate for waves propagating from section

lem in homogeneous and multilayered anisotropic solids. HOW- (4 R (see Fig. 1 This analysis does not include the reflected

ever, all those works have been limited to the flat-plate ¢¢2e guided waves from the plate boundary. The problem geometry can

or for waves propagating in the axial direction of a cylind@0]).  pe 5 segment of a cylinder or a complete cylinder.

Wa\{e propagation in the circumferential dlrectllon of an aniso- e propagation in circumferential direction in pipes with iso-

tropic curved plate has not been analyzed earlier, and solved faf,c ' material properties is usually modeled as a plane strain

the first time in this paper. L : S
> . - . problem; i.e., the displacement component along the longitudinal
Unlike isotropic materials for which the Stokes-Helmholtz deéxis of the pipe is set equal to zero. For a few other types of

composition technique simplifies the problem, for anisotropic Caﬁ?\isotropy this situation remains valid. However, for general an-

Contributed by the Applied Mechanics Division offE AMERICAN SOCIETY OF isotropy the longitudinal component of displacement must be con-
ontripute y the Applie echanics Division ol . . . . _
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- sidered in the mathematical modeling. The symmetry of both ge

CHANICS. Manuscript received by the ASME Applied Mechanics Division, April 5,0metry and material properties is required for plane-strain
2001; final revision, November 1, 2001. Associate Editor: A. K. Mal. Discussion oflealization. In absence of such symmetry a three-dimensional
the paper should be addressed to the Editor, Prof. Lewis T. Wheeler, Departmen ; R ;

Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and Wméthem.atlc.al mOde“r!g IS necess_ary. . .

be accepted until four months after final publication of the paper itself in the ASME_IN cylindrical coordlnates, strain components in terms of dis-
JOURNAL OF APPLIED MECHANICS. placements can be written as
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Fig. 1 Waves propagating from section
plate. Wave speed is proportional to radius of curvature.
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Equations of motion for three components of displacement in cy-
lindrical coordinates are as follows:

Aoy, N A0y, 007y  Tp—0pp  92UL(T,6,1)
o oz rae T
0y 004 049 20,4 02Uy, 0,1)

o ez reg 1 P a2

Ao,y N Aoy, 00, E—p F2uy( I’2, 0,t) 0 3
ar Jz rae r at

Stress components in the above equations can be substituted in
terms of displacement components. Since displacement compo-
nents are functions of wave forms, time dependency of waves

must be established.

Wave Form

In cylindrical geometry the generation of surface waves in the
circumferential direction with a plane wave front requires the cir-
cumferential wave speed to be a function of the radial distance.
Viktorov [1] has introduced this concept and called it the angular
wave number. Similar formulation has been adapted here:

The stress and displacement components are shown in Fig. 2. And

constitutive matrix for general anisotropy contains 21 independent

elastic constants:

X dr

Fig. 2 Stress and displacement components in cylindrical co-

ordinate system
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u,(r,6,t)=U,(r)e'Pi=v
Ug(r,0,t)=U,(r)e Pi=ed
Uz(r,e,t)zuz(r)ei(PG*wt) (4)

whereU,(r), U,(r), andU,(r) represent the amplitude of vibra-
tion in the radial, tangential, and axial directions, respectivaly. “

is the imaginary number/=1. It should be noted here that the
phase velocity is not a constant and changes with radius. As
shown in Fig. 1 the phase velocity has to be proportional to the
radius to have a plane wave front. Hencegjfis assumed to be
the phase velocity at the outer surface with radiidor other
points having a radius the phase velocity would be

Vpn(r)=Cpr/b. (4a)

For the flat-plate case wave numlies defined aso/v,, because
curvature does not change. However, for a curved plate the same
definition would be dependent. Thus the angular wave nunper
which is independent af is defined as

p=w/(vpn(r)/r)=wblcy. (4b)
Governing Differential Equations

Subsequent substitution of Eqgl), (1), and (2) into Eqg. (3)
yields the following governing differential equations:
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*2C5,5Ur(r)p2*2C1,5Ut(f)|02*204,5Uz(r)p2*2iC1,1Ux(f)p also noted that),(r), U(r), andU,(r) are functions of the ra-
dius only and they appear in all equations. Therefore, there are

—2iCsaU(r)p—2iCy U (r)p+4irCszgU/(r)p three coupled differential equations and six boundary conditions
that must be satisfied simultaneously.

+2irC 1 3U{(r)p+2irCs U (r)p+2irCz4U,(r)p To solve the equations, the unknown functions are expanded in
Fourier seriegFS). Substitution of FS expansions into the differ-

+2irC5'6U£(r)p+2r2pw2U,(r)—2C1,1Ur(r) ential equations provides three algebraic equations that must be

satisfied for the entire problem domain. To satisfy the equations
+2C; dU(r)+2rCa U (r)—2rCysU(r)—2rCy gU,(r) for a given number of FS terms weighted residuals integration

with a linear weight function has been utilized:
+2rCaUs(r)+2r2C5 U} (r)2r’Cy 57 (r)

+2r2C5U%(r)=0 °
3,83(r) fwf(r,xi)dl’=0. (1)

R=
- 2C1,5Ur(r)p2_201,1U1(r)p2_ 2C1'4Uz(r)p2+2iC1,1Ur(r)p

a

+2iCs U, (r)p+2iC,U,(r)p+2irC,3U/(r)
ssr(N)P 40P 18 (1)P The radius corresponding to the peak value of the linear weight

+2irCg U/ (r)p+4irC U/ (r)p+2irC,gu.(r)p fqnction can takg any va_Iue between the inner and the outer ra-
’ ' ' dius, each resulting one independent equation. Hence from every
+2irc4’sué(r)p+zcl’sur(r)ju2r2pw2ut(r) differential equation any number of equations can be obtained.

On the other hand, it is known that the general solution is a
—2C55U(r)+2rCygU; (r)+4rCz U/ (r)+2rCssU, linear combination of all solution functions that can be obtained.
Therefore, the general solution should contain combinatorial pa-

+4rCsgUL(r)+2r2Cy U7 (r)+2r’Cs U7 (r) rameters. The number of combinatorial parameters is the same as
the number of individual solutions. These combinatorial param-

+ 2r205,6U’Z’(r) =0 eters are necessary to satisfy the boundary conditions. Satisfaction

) ) . of six boundary conditions requires six parameters and six equa-
—2C, U (r)p"—2C, U(r)p—=2C, U,(r)p°+2iC1 U ()P tions. Therefore the necessary and sufficient number of combina-

—2iCdUy(r)p+2irC4 Ul (r)p+2irCs U/ (r)p ':)oerllqegepna;rzsigrjttiirnssfs six and it indicates the existence of six inde
+2irC 1 dU{ (r)p+2irC,sU{(r)p+4irC,gU.(r)p Substitution of solution functions into the differential equations
leads to three equations, each containing all of the FS parameters.
+2r2pw?U,(r)+2rCygU/(r)+2rCs U/ (r) In other words, all FS parameters for the three amplitude func-
, 2 " 2 " tions appear in every equation. Because of this coupling, the val-
+2rCe U, (r)+2r°Cs U/ (r)+2r°Cs gUt(r) ues of parameters obtained for FS expansiod ¢f ), U.(r), and
+2r206,5U’Z'(r)=0 ) U,(r) are not independent and a solution must yield all param-

eters as one set of results. Since the equations are linear and the
i results must be combined using combinatorial parameters only
Boundary Cond.ltlons ) ) ) their relative values must be found. Therefore one of the FS pa-
In order to obtain the dispersion curves, the traction-free boungimeters can be assumed equal to one. Then the relative values for
ary conditions(zero stress values on the inner and outer surfacggher FS parameters can be calculated in terms of this unit value.
of the pipg must be satisfied. Hence, eta andr =b: Each set of the parameter values defines a set of dependent shapes
: : : for the above amplitude functions; these are called basic shapes.
+ + - + . : '
CLalr(NHIPCagUr(N) +HIPCLU(N = CadUl(NHIPCa VAN G cethe number of equations must be equal to the number of
+1C3U; (r)+rCasU{(r)+rCadUs(r)=0 unknowns a specific number of weight functions are required.
- o ’ _ The FS expansion fad,(r) can be written as
Ca18U(r) +ipCs U (1) +ipCagUi(r) = CssU(r) —ipCygU,(r)

+rCgaU/(r)+rCssU{(r)+rCseU,(r)=0 m nor ot
CoU, (1) +ipCs U, (1) +ipCyeUy(r) — CsUy(r) +ipCygls(r) Ur(”=xo+n21(COS(T)XH+S'”(T)VH) ®)
+I‘C3Y5U;(r)+I’C5Y6Ut'(r)+l’C6Y6U;(I’)=O. (6)

. which contains 2n+1 parameters or coefficients, andy,, .
Solution With two other expressions fad,(r) andU,(r) the number of

It can be seen that all differential equations are functions ahknowns increases tont+3. Performing weighted residuals
three displacement components and their derivatives. It shouldrethod, a set of linear equations results:

11Xy QX o AiXs  Arg+1Xs+1 A15+6Xs+6 0
A 1Xy ApXp tr ApeXs  Apg+1Xs+1 Ar5+1Xs+6 0
= 9)
0
Ag1X1  AgpXp Qg eXs  Ags+1Xs+1 A s+6Xs+6
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where Xg,1,Xs12, - - - Xs1g represent the last sine and cosine 10.0
terms of FS expansions. Assigning six independent unit vectors \
the last six parameters as shown in Et), 50
1 2 3 4 5 6 -
X7s+1 X's41 X'sy41 X'sp1 Xsp1 X'gia ]
1 2 3 4 5 6 E 504
X7s+2 X's42 Xsy2 X'spz Xgp2 X'gy2 E
1 2 3 4 5 6
Xs+3 X'st3 X543 X's43 X'siz X'sys ﬁ- 4.0
1 2 3 4 5 6 >
X'sta X'sya Xspa X'spa Xspa Xsig
1 2 3 4 5 6
X's+5 X'si5 Xsy5 X'si5 Xsi5 Xigys 2.04
1 2 3 4 5 6
X's+6 X'st6 Xs+6 Xst6 Xste Xs+6
0.0 T T T T
1 0 0 0 0 0.0 20 4.0 &0 8.0 10.0
0 1 0 O O O Frequency (MH 2)
0O 01 0 0 O p=28g/cc ¢1=6.40 km/sec c¢2=3.1km/sec
"o oo 100 (10)
Fig. 3 Dispersion curves for isotropic flat plate ([11]). Plate
0O 0 001 O thickness =1 mm.
0 0 0 0 0 1 v km/sec
. .. . 10 % ‘ L . N .
yields six independent solutions. Therefore the number of eqt FUY ..
tions has to bes=6m—3. Consequently, the general solution cal s v v, DY -
be obtained as a linear combination of the above solutions: Y S R
NN, AR T e
4 X%, x3; x4 X%, 6 T e e Tt
X12 X22 X32 X42 Xs2 -.‘.\ -..,-‘.. -..,.”.
4 Y Treeenl e
A +A, +A; +A, +As S eargeeeennitTrreeee T
2| .-
x1g X2 x3 x4 x5
£ (MHZ)
6
X°q 2 4 6 8 0
6
X2 p=28g/cc ¢ =640 km/sec cy=23.1km/sec
+As . (11) Fig. 4 Dispersion curves generated by the proposed method.
Plate thickness =1 mm. Pipe outside radius =1.0 m.
6
X S

flat plate
The superscript for FS parameters shows the solution set number. coordinates €

Substitution of the obtained FS parameters into stress components
on the inner and outer surfaces of the pipe leads to an eigenvalue cylinderical e,
problem. The determinant of the coefficientsfofshould be zero /
(54
€

ey
for any point located on the dispersion curves. coordinates e
X

Numerical Results

Based on the proposed mathematical modeling a Mathematica
program has been developed. To ensure the validity of the mod-
eling and the computer program, its results are compared with the
available dispersion curves for anisotropic flat plates by usin’gg

small ratios of thickness to radius, when pipe geometry apld- 5 Tangential direction of the fibers maintains the symme-
y. Coordinate systems for flat-plate and pipe analyses are

proaches flat plate geometry. Additionally, the results are co o shown.

pared with the published results for isotropic pied). Since the
exact input values have not been reported by Qu €i2d).the

comparison is done only qualitatively. The dispersion curves are ) i ) ) )
also given for anisotropic pipes. B Comparison With Available Data for Anisotropic Flat

Plate. Dispersion curves for anisotropic flat plates are available
in the literature([12,13)). In this section our results are compared
A Comparison With Available Data for Isotropic Flat  with those given in RosgL3].
Plate. Dispersion curves for a flat plate are given in Mal and For the unidirectional composite plate or pipe with a zero-
Singh[11], see Fig. 3. Curves for the same plate thickness anégree angle between the wave propagation direction and the fiber
material properties, but having an outer radius of 1 m, are geneirection as shown in Fig. 5, the material and the geometric sym-
ated by the proposed method and shown in Fig. 4. metry conditions are maintained; hence, the plain-strain formula-
A comparison of Figs. 3 and 4 shows a very good match b#en remains valid. Consequently the constitutive matrix reduces
tween the two when only 20 terms are used in the FS expansiottsthe following form:
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Fig. 6 Dispersion curves of a unidirectional composite plate

for waves propagating in fiber direction (x-axis direction, 0
deg). Material properties are given in Eq.  (12), p=1580 kg/m3
(3D.
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Fig. 7 Dispersion curves for a large-diameter pipe made of an
anisotropic material. Material properties are given in Eq. (12).
Pipe wall thickness =1 mm. Pipe outer radius =1000 mm, m
=30.
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Fig. 8 Dispersion curves for the anisotropic pipe with m=20.
Pipe dimensions and material properties are same as in Fig. 7,
only m is different.

1282 6.9 6.9 0

Ty €9
ol 69 1495 733 o0|| o
= . (12)
Oyr 6.9 7.33 14.95 0 Err
o o o0 0 673 &0

Journal of Applied Mechanics
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Fig. 9 Dispersion curves of unidirectional composite plate for
waves propagating perpendicular to the fiber direction (x-axis
direction, 90 deg ). Material properties are given in Eq.  (13).
Plate thickness =1 mm, p=1580 kg/m? ([3]).

Stiffness values are given in GPa. Flat-plate results are shown in
Fig. 6. Results for the curved plate are shown in Figs. 7 and 8.

The result of Fig. 7 is obtained using 30 ternms={ 30) in the
Fourier series expansion. To show the effect of the number of
terms(m) on the computed results the same dispersion curves are
computed form=20 and shown in Fig. 8.

It is interesting to note that smaller value wf gives broken
lines. Therefore the user can easily realize the need for a greater
number of terms in the FS expansion when the lines in the dis-
persion curve plot are found broken. There are some missing parts
of curves in Fig. 7 that can be obtained by increasmdlowever,
for m=30 we get enough information for comparison with the
results given by RosgL3].

For the same material with fibers going in the longitudinal di-
rection of the pipe, the constitutive matrix changes to @6).

1495 6.9 7.33 0

Tog €90
. 69 1282 69 0 0
= . (13)
Oyr 7.33 6.9 14.95 0 €
Tro 0 0 0o 381 20

Obtained results for this case also match with the corresponding
dispersion curves presented by R¢%8]; see Figs. 9 and 10.

For the case where fibers are oriented at 45 deg relative to the
pipe axis, plane-strain assumptions are no longer valid. The con-
stitutive matrix for this case is obtained by transformation of the
coordinate system as shown in Efj4). See Figs. 1(), 11(b) and
12 for comparison. This case also shows an excellent match be-
tween the available data and the obtained results.

voh km/sec
14

12

*IRtIneIN
aaeemoens!

10

H
i
H
i
H i
' H
!
H
H
H

pessesestresesssmansmneamasssam

£ (MHZz)

Fig. 10 Computed dispersion curves for an anisotropic large
diameter pipe, when fiber and wave propagation directions are
perpendicular to each other. Material properties are given in
Eq. (13). Pipe wall thickness =1 mm. Pipe outer radius
=1000 mm.
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45.9675 32.5075 7.115 0 0 -—28.312

T9,0 €4,0
32,5075  45.9675 7.115 O 0 -28.3125

Uz,z ez,z
o, 7.115 7115 1495 0 0 0.215 e,

= ' (14)
Oar 0 0 0 527 —1.46 0 2e,,
Tor 0 0 0 -146 527 0 2€4,r
09,z Zee z

’ —28.3125 —28.3125 0215 O 0 32.337 ’

Since for the curved plate, the midplane is not the plane of sym-D Anisotropic Pipe of Small Radius of Curvature. To
metry, the dispersion curves cannot be grouped as symmetric ahdw the effect of the radius of curvature on the dispersion curves
antisymmetric modes. That is why all modes are shown togethee pipe radius is varied from 1000 mm to 2.5 mm keeping the
in Fig. 12 for a large-diameter pipe. wall thickness and material properties same as those mentioned in
the figure captions for Figs. 7 and 9. Dispersion curves obtained
C Comparison With Available Data for Isotropic Pipe DY the 30 terms FS expansion fio=1000, 10, 5, and 2.5 mm are

As mentioned earlier, Qu et 42] have derived dispersion curvesShown in Figs. 15 and 16. Figure 15 shows dispersion curves for
for aluminum pipes but the material properties have not been f#2€rs going in the circumferential direction and Fig. 16 is for
ported in their work. Hence, the quantitative comparison was nbpers going in the axial direction while the waves propagate in the
possible. However, curves presented here, Fig. 13, qualitativéycumferential directions in both cases. _ ) _
look similar to those of Qu et a[2], Fig. 14. Figures 13 and 14 From Figure 15 one can see that for fibers oriented in the cir-

. . . . o, ; cumferential direction the dispersion curves do not change signifi-
Sah%V;;Pee?ib:?énfg)d:npdemOn curves with non-dimensiered cantly as the outer radius) is reduced from 1000 mm to 10 mm.

However, as is reduced further the deviation of the dispersion

p curves from the large radius case is no longer negligible. For
w=w(b—a)\/—.
M
vpn km/sec
14 H Y A P M
14 I i
1371 12 3 HEY
1t 10 : HERN FEAR .,
3 101 N T
E 74 ‘ 6 ~...' . kY -..-:" '-'..‘ . A}
g:: 2| el TR P . SO
21 £ (iz)
0 N + + - 4 1 2 3 4 5
0 1 2 3 4 5 6 Fig. 12 Dispersion curves for a large diameter pipe made of an
(a) ney (MHz anisotropic material. Material properties are given in Eq. (14).
Freque ¥ ( ) Pipe wall thickness =1 mm. Pipe outer radius =1000 mm, m
14 T T =25.
131 LY
12 -
Bl 1 o)
~ 107 10 .
o 9 e ) . e
g g . . * '.e R . .
= 7 . . ! P
..g [%3 \\ LY 8 s . "
R - rd . ,
T i \\ . , ) .
3+ D SR 6l - . i
2» K o
1 "'/‘*M' .". -t
0 PR 4 P M 1. T n=0.1
g 65 1 15 2 253 3 35 4 45 5 53 6 e,
(b) Frequency (MHz) 2 o
Fig. 11 (a) Dispersion curves for symmetric modes for a uni- boe & i
directional composite plate for waves propagating in 45 deg to 2 4 6 8
the fiber direction. Plate thickness =1 mm and p=1580 kg/m?
([3]). (b) Dispersion curves for antisymmetric modes for a uni- p=2700 kg /m® ¢1=6.42km [sec ¢y =3.02km /sec

directional composite plate for waves propagating in 45 deg to
the fiber direction. Plate thickness =1 mm and p=1580kg/m® Fig. 13 Dispersion curves for aluminum pipe obtained by the
([3D. proposed method. % (ratio of inner to outer radius  )=0.1.
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Fig. 14 Dispersion curves for aluminum pipe obtained by Qu
et al. [2]. Material properties are not known.

Dispersion curves for the 5-mm outer radius pipe with fibers
oriented along the 45 deg direction are shown in Fig. 17. This
result is obtained for the material properties given in @4¢). In
the frequency range smaller than 1 MHz, some vertical lines ap-
peared due to the numerical errors when the nunfimrof FS
terms is 25. By increasing to 35 those lines disappeared. The
results form= 35 are shown on the left side of Fig. 17.

Conclusion

A solution technique based on the Fourier series expansion of
the unknown quantities has been introduced to solve the elastic
wave propagation problem in anisotropic cylindrical plates in the
circumferential direction. Accuracy of the technique has been
verified by comparing the computed results for isotropic pipes
with the published results. Since no published results are available
for wave propagation in the circumferential direction in aniso-
tropic cylindrical plates, the computed dispersion curves for an-

fibers oriented in the axial directiofFig. 16) the dispersion isotropic curved plates could not be compared with any results
curves remain almost unchanged for 1000 mm down to 2.5 available in the literature. However, the Lamb wave dispersion
mm. Forr=2.5mm the dispersion curves are obtained with curves for flat plates can be computed and those values are used to
=45 in FS expansion of amplitude functions. The computatiocheck the accuracy of the proposed technique. With the new tech-
with m=30 gave too many broken lines in the dispersion curveique, dispersion curves for cylindrical plates with large radius of

plot for r=2.5 mm.

curvature (outer radius of curvature to thickness ratio equal to

In summary, a comparison between Figs. 15 and 16 shows th@00 have been computed and compared with the flat-plate re-
the effect of curvature is stronger when the fibers are orientedlts for both isotropic and anisotropic materials. Computed re-
along the circumferential direction and hence when the fibers alsolts for such low curvature plates matched very well with the
have a curvature. When the fibers are oriented in the axial dirdtat-plate results. The effect on the dispersion curves as the curva-
tion and hence don’t have any curvature the flat-plate approxinare of the anisotropic plate increases has been also studied.

tion can be extended to pipes of much lower radius.

ven km/sec
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12 .
H LI e, Sow, teelte
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vph km/sec
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12 . 1N,
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T
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f (MHZ)

(b) Outer radius = 10 mm

£(MHZz)

The solution technique used for this specific wave propagation

£ (MHZ)

£ (MHZ)

(d) Outer radius =2.5 mm

Fig. 15 Dispersion curves for circumferential direction wave propagation in fiber-reinforced cylindrical composite plates
when fibers are oriented in the circumferential direction, outer radius of the pipe is (@) 1000 mm, (b) 10 mm, (c¢) 5 mm, and (d)
2.5 mm. Pipe wall thickness and material properties are same as those in Fig. 7.
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Fig. 16 Dispersion curves for circumferential direction wave propagation in fiber-reinforced composite cylindrical plates when

fibers are oriented in the axial direction, outer radius of the pipe is
thickness and material properties are same as those in Fig. 9.

(a) 1000 mm, (b) 10 mm, (¢) 5 mm, and (d) 2.5 mm. Pipe wall
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Fig. 17 Dispersion curves for the curved plate when the fibers are oriented in

the 45 deg direction. Material properties are given in Eq.
mm. Thickness =1 mm. Right figure is for

=35. Frequency range for the left figure is 0 to 1 MHz and for the right figure it

is 0 to 6 MHz.

(14). Outer radius is 5
m=25, and the left figure is for m
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The Effect of Debonding Angle on
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In an effort to uncover the effect of interfacial partial debonding on the reduction of
composite stiffness, a reduced moduli approach is proposed for the fictitious inclusions
which are used to replace the original partially debonded inclusions. The fictitious inclu-
sions are now perfectly bonded to the matrix and any micromechanical theory can be
called upon to estimate the moduli of the composite. Using the volume of the inclusion
directly beneath the interfacial cracks under the considered loading mode as a measure of
damage, a set of anisotropic damage parameters is established in terms of the debonding
angle, providing the reduced moduli for the fictitious inclusions. Specific considerations
include debonding on the top and bottom of spheres and prolate inclusions, debonding on
the lateral surface of spheres and oblate inclusions, and debonding on the top and bottom
of circular fibers and elliptic cylinders. The reductions of the five transversely isotropic
moduli for the partially debonded particle composites and the nine orthotropic moduli for
the partially debonded fiber composites are examined as the debonding angle increases.
The theory is also compared with some finite element results, and it suggests that the
concept proposed to estimate the reduced moduli of the fictitious inclusions is a viable
one.[DOI: 10.1115/1.1459068

Department of Mechanical and Aerospace
Engineering,

Rutgers University,

New Brunswick, NJ 08903

1 Introduction tive modulusEs; in the debonding direction as the debonding

The effective moduli of a partially debonded composite aringlaﬁ increases. The nature of this reduction exhibits a deflec-

tlon point at a sufficiently large, that is, in theE,; versuse plot,
known to be weaker than those of a perfectly bonded composi : e
but the extent of reduction depends on the debonding geomelﬁe rate of reductiofislope was initially small and then becomes

d its determination i I t a trivial bl | Yge, and later turns to small again. Moreover, thengle at
and Its determination 1S generally not a trivial problem. In afyicn sych a deflection occurs also tends to decrease with increas-

attempt to shed some light on the effect of partial debonding,q finer yolume concentration. They concluded that the debond-

Zhao and Wend1] considered two kinds of debonding geom;, angle could play a key role in affecting the oveigy,.

etries: _the fir_st one involves debo_nding on the top and bottom ofq present study was in part motivated by this finite-element
oblate inclusions and t_he se(_:ond |nvolves_debond|ng on the Iaterréguh’ and in part by the desire to extend the concept suggested in
surface of the prolate inclusions so that, in each case, the ovetglhy 44 Weng1] to include the debonding-angle dependence in
property remains transversely isotropic. The approach was baggd estimate of the effective moduli of a partially debonded com-
on the concept of a fictitious inclusion whose property was detgfpsite. We shall again start out from the concept of fictitious in-
mined from those of the original inclusion but with the additionat|ysjon, but shall not assume that the load transfer ability of the
assumption that the load-transfer ability of the inclusion in thgeponded inclusion in the debonding direction is completely lost
debonded direction is lost. With this concept and with the help gfhile in the transverse direction it remains intact. Instead, partial
Willis [2] and Mori-Tanaka[3] moduli for a perfectly bonded |ost in both directions will be taken, with a magnitude dependent
composite containing aligned ellipsoidal inclusions, the derivaghon the debonding angle and loading direction. The outcome will
moduli for the partially debonded composite can still be cast ingdill be an explicit set of formulas for the effective moduli but now
simple, explicit form. The results reflect the significant loss of thgith a debonding-angle dependence.
overall moduli in the debonded direction, but not in the transverse
direction, at all levels of inclusion shapes and concentrations.
What remained unclear was the effect of interfacial debondi . P .
angle on the reduction of the moduli. In order to answer thrg Properties of the Fictitious Inclusion
question, Zheng et al4] recently carried out a finite element We shall consider both particle and fiber composites in a rather
investigation on the problem of a two-phase composite containiligoad sense, in that the particles may be spherical or aligned sphe-
aligned fibers, and observed a continuous reduction of the efféoidal inclusions and that fibers may be circular or elliptic cylin-
ders. The schematic diagrams depicting the debonding locations
(with exaggeration on the surface separation for clafity these
1on leave from Shenyang Architectural and Civil Engineering Institute, Departw0 classes of inclusions are shown in Figa)t-(d) for particles
mezn'IEoo\fNﬁti)vri'I] Eggzseegrgénsczegg&% ;éaggid'g 51512515 P.R. China. and Fig. 1e)—(f) for fibers. Figure a) shows the debonding on
Contributed by thz Applied Mechanics Division oﬁEAMERICAN SOCIETY OF the. top and. bottom of a prolate In.dUSIOn’ an.d W.hen the. aspect
MECHANICAL ENGINEERSfor publication in the ASME QURNAL oF AppLIEDME-  fatio a—defined as the length-to-diameter ratio—is one, it turns
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Septeminto (b), a spherical inclusion. Figurdd indicates the debonding
er 27, 2000; final revision, November 22, 2001. Asso_ciate Editor: J. W Ju. Discysn the lateral surface of an oblate inclusion and when the aspect
sion on the paper shoulq be adqressgd to th(_e Ed.ItOI', Prof. Lewis T. Wheelleé'tio—the thickness-to-diameter ratio—is one. it turns I(d)) a
Department of Mechanical Engineering, University of Houston, Houston, . NS .
TX 77204-4792, and will be accepted until four months after final publication o?phere- Note that the nature of debonqubh and (d) are dif-
the paper itself in the ASMEQURNAL OF APPLIED MECHANICS. ferent. In Fig. 1e), debonding occurs on the top and bott¢ime
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Fig. 1 Schematic diagrams for the interfacial partial debonding: (a) debonding on the top and bottom

of prolate inclusions, (b) debonding on the top and bottom of spherical particles, (c) debonding on the
lateral surface of oblate inclusions, (d) debonding on the lateral surface of spherical particles, (e)
debonding on the top and bottom of elliptic cylinders, and (f) debonding on the top and bottom of
circular fibers

narrower sidesof an elliptic fiber, and when the cross-sectionathe volume fraction of the inclusion directly between the debond-
aspect ratiom—defined as the thickness-to-width ratio—is one, iing surfaces in accordance with the loading direction. An aniso-
turns into the traditional circular fiber itf). The specific cases tropic damage paramet&; will be used to denote this effect for
studied in Zhao and Wend] were for debonding on the top andloading direction Out of the six figures in Fig. 1, there are three
bottom of Fig. 1c) and on the lateral surface of Fig.al; as both distinct casesta), (c), and(e). We now analyze these cases sepa-
types of debonding were on the broad side of the spheroid it wesely.

considered sensible to assume that the load transfer ability of the

inclusion was completely lost when the debonding angle was suf- ) ) i )

ficiently wide. Casesgb) and (f) here are the types of debonding_ 2.1a Aligned Prolate Inclusions With Debonding on the
commonly studied in literature. We note in passing that the elasiéP and Bottom Surfaces. For Fig. Xa), the Young's modulus
field involving oneinterfacial arc crack for a circular fiber in an Of the perfectly bonded fictitious inclusion in direction-1 is calcu-
infinitely extended matrix has been derived by Engl#Gfland lated on the basis of an effective stres§; such thatof;
Toya[6] and that the result has been used byduo construct a =o1:/(1—D;) under a pure tensile loading,;. This leads to a
damage model for a fiber-reinforced composite, but that issueegluced Young's modulus

involving doubledebonding in &inite matrix as considered here )

appear not to have been addressed before. Eir=Ei(1-Dy), @)

Now debonded particles or fibers of each kind are randomjy the debonding direction, where the superscript 1 signifies that it
placed in the matrix but with a fixed orientation, so that the comefers to the perfectly bonded fictitious inclusion. The damage
posite as a whole is transversely isotropic(@—(d), and ortho- parameteD, is calculated according to
tropic in (e)—(f). Our objective is to derive a set of explicit for-
mulas for the five or nine effective moduli that could provide D,=Vq4q/V, )
some insights into the effect of debonding angle and at the sam
time remain potentially useful for design or application. The sy
metric axis of the spheroidal particles {a)—(c) is taken to be
direction-1, whereas for the fibers (g)—(f ) the debonding direc-
tion is designated as direction-3. Angferepresents one-half of cog ¢ 3/2
the total debonding angle so that whér=0 the composite is D,=1- e drcoZd 3)
perfectly bonded and whe#=90 deg it is totally debonded. In a”sin ¢+ cos ¢
the two-phase composite the inclusions will be referred to @s terms of the debonding anglkg and aspect ratiae. When the
phase 1 and the matrix as phase 0, with the volume concentratjgolate inclusion turns into a sphere as in Fi¢o)1this damage
of therth phase denoted hy . For simplicity both phases will be parameter is simply
taken to be isotropic, with the Young’s modullds and Poisson’s
ratio v, . The concept to be presented, however, applies to aniso- D;=1-cos ¢. (4)

tropic inclusions. Due to symmetry the damage paramederandD; for tensile

_ To determine the reduced moduli of the fictitious inclusion thagaing in the 2 and 3 directions are identical and their value can
is to be used to replace the debonded inclusion but now becomgsay aluated as

perfectly bonded to the matrix, we shall account for the partial
loss of load-transfer ability due to partial debonding in terms of D,=Vg, !V, (5)

_ﬁerevdl is the volume of the “damaged” part of the inclusion
directly between the two debonding surfaces, ¥rttie volume of
the inclusion. After some elementary calculus one finds that
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whereV, is now the volume of the damaged part of the inclusioithe Young’s modulus of the fictitious inclusion in the transverse
associated with the direction-2 loading; it is also the top and batirection is taken to be
tom parts ofVy, . It follows that

cos¢(3a? Sir? ¢+ 2 cog ¢)
2(a?Si? grcod 5 © ESY=E=Ei(1-D,). ®

When the inclusions are spherical, it turns into

D2:l_

1. Following similar consideration for other loading directions, the
=1- + = . X ; - : - Lo
D>=1 cos¢( 1 2 sir ¢) ) compliance matrix of the fictitious inclusions can be written as

m n
! 2 _a 0 0 0
Ei(1-Dy) =] E,
1
_n " 0 0 0
E, E1(1-Dy) E1(1-Dy)
1
B 0 0 0
E; E1(1-Dy) Ey(1-Dy)
M1:
1+,
0 0 0 0 0
E (1-Dy)
1+ Vq
0 0 0 0 0
E,(1-Dy)
1+ Vq
0 0 0 0 i
b E1(1-Dy)

2.1b Aligned Oblate Inclusions With Debonding on the Lateral Surface. When debonding occurs on the lateral surface of the
oblate inclusion as depicted in Fig(cl, the compliance matrix of the fictitious inclusion may be written as

] ||
! _na _na 0 0 0
El(l_Di El El

_h ! S 0 0 0
E, E1(1-Dy) E1(1-Dy)

n B 121 1 0 0 0
E: Ei(1-Dj) Ey(1-Dy)

M]_: ’
1+ Vq
0 0 0 _— 0 0
Ei(1-Dj)
1+ Vq
0 0 0 0 _— 0
Ei(1-Dy)
1+ V1
0 0 0 0 _
s Ei(1-Dj) ]
[
where in terms oV y,, V41, D,, andD of the previous case, the ., sin &(3a? cog ¢+ 2 sirt @)
damage parameters are D,= 2(aZcod st )2
D;=Vy/V=(V=Vg)/V=1-D,, si & 3
'\ Di=|—s—o—o7 2 o~ (10)
Di=V{/V=(V—V4))IV=1-D;. 9) @ Ccos ¢+sin’ ¢

Thus in terms of the current debonding anglevhich forms a For spherical particles as depicted in Figd)] these damage pa-
90 deg conjugate with the previous debonding angle rameters turn into
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1 For direction-2 along the thickness, it is
Dg=sin¢(1+§co§ ¢), D} =sir ¢. (11)
. . . ) . 2 asing - asing
2.2 Aligned Elliptic Cylinders With Debonding on the Top D2=; (@?Si? g7 cod )12 sin ((az Si? f+ coZ )72

and Bottom Surfaces. The anisotropic damage parameters in
this case are measured by the area directly beneath the debonded cos¢ }
2 .

portions according to the loading mode. For loading along - 17 (14)
direction-3, the debonding direction, direct integration of the area (a?sin? ¢+cos’ )
for the elliptic surface yields
2 asingcosd asing With circular fibers it has the simple expression
=—|—5—5——>—+sin ! - .
Ds=7 | aZsi? prcof s oM\ (aZsi g+ cod ¢)1/2” )
(12) D,=—sin¢(p—cosg). (15)
For circular fibers g=1) it is simply .
2 The compliance matrix of the fictitious elliptic fiber takes the
D3—;(sm¢cos¢+ b). (13) form
|
m 1 L
il - - 0 0 0
E: E: E:
1
- - 0 0 0
E1 Ei(1-Dy) E:
o n ! 0 0
Eq E. E1(1-Dy)
M 1=
1+ V1
0 0 0
E1(1-Dy)
1+ Vq
0 0 0 0 0
E1(1-Dgy)
0 0 0 0 1+
. Ei(1-Dy)

3 Effective Moduli of the Partially Debonded Compos- ~ We now examine the results based on the proposed approach.
ites Numerical calculations were performed for the silicon-carbide/

. . N . ) aluminum system, with the properti€<1,12):
Once the elastic compliances of the fictitious inclusions are

established, one may invoke any micromechanical theories for

perfectly bonded composites to evaluate the effective moduli. For Silicon carbide: E; =490 GPa, v;=0.17,
the problem with aligned ellipsoidal inclusions the simplest one is
likely to be Willis’ [2] approach, which gives an identical result to Aluminum: E,=68.3 GPa, 1,=0.33. (18)

the Mori-Tanaka[3] approach for the aligned case. This model

inherently takes the distribution function of the inclusions to be 3 153 Aligned Prolate Inclusions With Debonding on the
identical to the inclusion shapesee Weng8] for proof). The Top and Bottom Surfaces. With spherical particles¢=1) the
established complianced , turn into the moduliL, for the ficti-  fiye transversely isotropic moduli of the composite whose partial
tious inclusions witi_, =M 7 *. The effective moduli tensor of the debonding is depicted in Fig(t) are shown in Fig. 2. HerE,,

debonded composite then follows as E.s, V12, 12, @andu,g are, respectively, the longitudinal Young's
modulus, transverse Young’s modulus, major Poisson’s ratio, axial
L=(c;L;A;+colo)(CiA+Col) 71, (16) shear modulus, and transverse shear modulus of the partially de-

bonded composite. The plots are displayed as a function of de-
wherel is the fourth-order identity tensor, arg the strain con- bonding anglep at three selected particle concentrations: 0.1, 0.2,
centration tensor of a single fictitious inclusion embedded in ti@d 0.3. We did not go beyond 0.3 as the Willis-Mori-Tanaka
infinitely extended matrix. In terms of Eshelby8] Stensor for formulas are essentially a low concentration theory. A quick

an ellipsoidal inclusion, it is given by glance over these five figures indicates tBaf, v,, and uq, are
the moduli that are sensitive to the debonding angle. Even for
A1:[|+S|—61(|—1—|—o)]_1- 17 these three moduli there appears to have an incubation period

before the debonding angle begins to show its effect, that is, for
The components of th&tensor for a spheroidal inclusion and arspherical particles as shown here, when the debonding angle is
elliptic cylinder can be found in Murfl0]. small, the reduction of the longitudinal Young’s modulus does not
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Fig. 2 The influence of debonding angle on the five effective moduli of the composite whose spherical par-
ticles debonded on the top and bottom

begin to show up until about 30 deg@t=0.1 and about 15 deg When the prolate inclusions take another shapes, the reductions
atc,=0.3. But further increase in the debonding angle will lead tof the five moduli are shown in Fig. 3, a;=0.1. The shape-

a visible reduction. At$p=60 deg, the reduction dE;; with c; dependence foE,; and v, are seen to be not monotonic. While
=0.1is about 15% and witb; =0.3 it is about 38%. There is alsothere is a significant incubation period far=1, the drop of the

a cross over around thig as a higher concentration of debondednodulus fora=10 is almost immediate. This is due to the fact
particles becomes more detrimental to the strengthening effettiat, at thisa, the major body of the inclusion with a large deb-
Similar features are also observed for,, but the crossover event onding angle is directly under the cracks and it is not functioning
is not a feature of the major Poisson’s ratig, which exhibits a as a fully effective medium to carry the load. Even though under
reversed trend in terms of the particle concentration. the perfectly bonded conditiong=0) its E;; was greater than
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Fig. 3 The influence of debonding angle on the five effective moduli of the composite whose prolate inclu-
sions debonded on the top and bottom

that of =1, it quickly lost the ground and rendered the compos- 3.1b Aligned Oblate Inclusions With Debonding on the

ite weak when the debonding angle increases. This is the reasateral Surface. When debonding occurs on the lateral surface
for the crossover effect i,;. The existence of a deflection pointof the spherical particles as depicted in Figd)l the angle-

as mentioned in the Introduction—though not eviden&inl up dependence of the reduction for the five moduli is displayed in
to 60 deg—is now visible in every curve. In the transverse dire€ig. 4. In this case the transverse properti&s»and u,;—are

tion, such asE,, and u,3, the reduction of the moduli also be-the figures of merit. The nature of the reductionBg, is to be
comes significant ag increases, so unlike the spherical case theompared with that o, in Fig. 2, andw,z with r1,. It is found
moduli reduction in the transverse direction is generally not nethat the incubation period—even for the low concentrat@n
ligible for prolate particles as the interfacial cracks will spreae-0.1—is shorter in this case. The reduction in bBth and w3 is
quickly to the surface normal to the 2-3 directions. almost immediate as the debonding angle increases, leading to a
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Fig. 4 The influence of debonding angle on the five effective moduli of the composite whose spherical
particles debonded on the lateral surface

crossover. The off-axis moduti;; and w1, in this case also show material. Due to such a sharp reduction at a smalthere is a

a clear dependence ap following an incubation period, a phe- crossover effect in these two moduli. While no crossover is ob-

nomenon not present iB,, and u,3 of Fig. 2. The crossover of served folE,; andu,,, significant influence by is evident when

the moduli seems to occur at a fixed debonding angle for eattte inclusion is flat.

modulus, regardless of the particle concentration. Such an angle is

smaller for the two in-plane modu{around 45 deg but greater

for the two axial moduliE,; and u, (about 70 deg 3.2 Aligned Elliptic Cylinders With Debonding on the Top
The shape-dependence of the reduction with the lateral interfsad Bottom Surfaces. With circular fibers as depicted in Fig.

cial debonding is shown in Fig. 5, far; =0.1. As the inclusions 1(f), the reduction of the nine orthotropic moduli as a function of

take the more oblate shape, say with- 0.1, the reduction ifE,, debonding anglep is shown in Fig. 6. Here, as in the previous

and u,3 is quite drastic. Partial debonding in this case quicklgase, Poisson’s ratig;; is defined as the ratio of strain shrinkage

spreads to the flat parts of the inclusion on the top and bottoin,thej-direction due to a tensile stress in thdirection. Keeping

rendering the entire inclusion almost useless. The asymptotic partsmind that fibers are aligned in direction-1 and debonding is

of the moduli inE,, and w,3 are essentially those of a porousalong direction 3, itis clear th&,,, w1,, andv,, are not affected
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Fig. 5 The influence of debonding angle on the five effective moduli of the composite whose oblate inclusions
debonded on the lateral surface

by ¢. But the figures of merit in this problem akg;; and u,3, sectional shape of the fibers. But the two previous insensitive

and it is found that their reductions are faster than their counteroduli—u 1, andv,,—are now exhibiting a strong dependence on

parts in the spherical cad&,, and u4, in Fig. 2), for more the debonding angle especially when the elliptic cylinder takes the

volume is affected by the interface cracks in a cylinder. BBy form of a thin ribbon ¢=0.1). The two major moduli-E33; and

and u,3 show a cross over at about 50 deg, in contrast to the @Qs—clearly are very sensitive to the debonding angle as the

deg for spherical particles. cross-sectional aspect ratio diminishes. The counterparts of these
The shape-dependence of the moduli reduction for the fibeine moduli for a perfectly bonded composite can be found in

composite is displayed in Fig. 7, a;=0.1. As expectedg,; is [13].

still not affected by¢ and is virtually independent of the cross- Finally, in order to provide some perspective on the quantitative
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Fig. 6 The influence of debonding angle on the
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nine effective moduli of the composite whose circular fibers

accuracy of the proposed concept, a comparison for the caseP8fthe top and bottom as depicted in Fi¢f) ITheir results, using
circular fiber is made with the finite element results of Zheng traction-prescribed boundary condition, are reproduced in Fig. 8
et al.[4]. This comparison is given in Fig. 8 féi;; atc;=0.1 and as dashed curves, and the results from the present development
0.3. The finite element calculations also made use of the saare given as solid lines. The finite element results also exhibit
silicon carbide/aluminum system, and the fiber debonding is alsertain incubation period and, &;=0.3, develop a deflection
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Fig. 7 The influence of debonding angle on the nine effective moduli of the composite whose elliptic cylinders
debonded on the top and bottom

point in the curve at aroung=35deg. Comparison betweenFig. 8—is small, suggesting that using the volume between the
these two sets of curves indicates that the theory agrees well witkerface cracks as a measure of damage parameter is a reasonable
the finite element result at,=0.1, but not so well at;=0.3. As approach. The significant departure between the two at a large

the effective-medium theory of Willis-Mori-Tanaka is accurate &or ¢;=0.3 may be attributed to two factor§:) the boundary-

low concentration, any error in;=0.1 is a direct result of the traction approach adopted in the finite element tends to provide a
new concept proposed in Section 2. Such an error—as shownlower-bound value, andii) the Willis-Mori-Tanaka approach is
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also a lower-bound one before debonding but can turn into &cknowledgment
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and no high-concentration effective medium theory is known t '
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Hankel integral transforms are applied combining with a dislocation density function to
reduce the mixed boundary value problem into a singular integral equation with a gen-
eralized Cauchy kernel in Laplace domain. By solving the singular integral equation
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tensity factors are obtained. The influences of material properties and interlayer thickness
on the dynamic stress intensity factor are investigaf&DI: 10.1115/1.1459066
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1 Introduction homogeneous layer which properties different from that of bonded
aterials. However, recent studies have indicated that in many

Interface crack problems of composite structures have been %5es an inhomogeneous interlayer exists between the bonded ma-

Important topic of fracture mechanics in recent decades. There g{go g\ hramanian and Crasi20)). This kind of interlayer may
a large number of solutions in the technical literature for iSOtropigy, developed as a result of certaiﬁ processing technid c-

orthotropic, and qnisotrop_ic bonded materials cor]taining interfa%b ider[21] and Shiau et a[.22]) o results from intentional grad-
cracks. Some typical studies that should be mentioned are thati & of the material compositiotKurihara et al.[23] and Jager

asymptotic analysis of the elastic fielda/illiams [1]), the stan- et al.[24]). For the static problems of fracture mechanics about

dard interface crack solutionéErdogan(2], Rice and Sih3], the inhomogeneous interlayer, there have been many theoretical

Willis [4] and Qu and Bassafb]), the crack-tip contact model studies(Delale and Erdo
. . . gafR5], Ozturk and Erdogaff6], Wang
(Comninou[6] Achenbach et al[7] and Rice([8)), the elastic- o5 127 and Fildis and Yahsi28]). In their studies, two kind of

plastic analysigShih and Asard9]) and so on. Hutchinson a”d.inhomogeneous interlayer models have been proposed. One of

Sfu_o [lOf] once gell(ve gn eri(tenﬂvehovec;wiw on the IStat'C behzv'ﬁ{ekm is the exponential function model and another is a so-called
of interface cracks. On the other hand, there are a/so a num eE@ eralized interlayer model, which is a power function. These

papirs csit_ar\]/oteg (t:Oh theldyne(ljmig fracturtla dmeche_mics of interf dels have physical background and make the problem of stress
cracks. >ih an efLl] studied several dynamic responses ofs ijiatory singularity(Williams [1]) overcome. However, as for

composite materials with interface cracks, such as antiplane Shgat, i fracture mechanic of interface cracks, there are few stud-
of interface rectangular cracks in layered orthotropic dissimil s considered the effect of an inhomogeneods interlayer

materials, orthotropic layered composite debonded over a pennyy, is haper, we examine the torsional impact response of a
shaped region subjected to sudden shear, diffraction of t'”%%nny-shaped interface crack in a layered composite. Although

harmonic waves by interface cracks in dissimilar media. Takei a s problem is rather a theoretical problem, it also has the engi-

co-workers(12] and Li a_nd T"."[B] considered the elastodynar_nicneering background, such as the sudden appearance of a penny-

' ANUPIAEhed interface crack in a component under torsional loading.
shear loading. Ueda and co-workdti] reported the torsional o™ ain difference between our present paper and literature

impact response of a penny-shaped crack on a bimaterial intﬁgfeda, Shindo, and AstunilL4]) is that a graded material inter-
face. Beyond these, considerable experimental works on the gge\ s introduced. Our main objective is to investigate whether
namics of interface cracl(sk_ambros and _Rosal_<[§.5] ?”d Singh, the graded material interlayer is helpful in reducing the dynamic
Lambros, and Rosakigl6]) and numerical simulations of dy- gyess intensity factor of an interface crack in a bonded materials
namic interfacial crack growtiiXu and Needlemarj17] and ,nq 6w the material inhomogeneity and interlayer thickness in-
Needleman and Rosakis8]) were also carried out. Rosakis andy ,ence the dynamic stress intensity factor. The methods used in
Ravichandrarj19] recently made a rather comprehensive revieW, haner are the Laplace and Hankel integral transforms and the

on dynamic failure mechanics. ; : ; :
. singular integral equation technique.
The researches mentioned above usually assumed that the dlls9 9 q q

similar materials were bonded directlyimaterial$ or with a thin .
2 Formulation of the Problem

1Cu':lrent iddDreEsi:g;Dleepartment of Mechanical Engineering, University of Dela- As shown in F|g 1, consider two dissimilar ha|f-spaces
ware, Newark, . ol AL ; ;
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MECHANICAL ENGINEERSfor publication in the ASVE OURNAL oF AppLiEDME-  INterlayer, which denoted as Material-2. The material properties of
CHANICS. Manuscript received by the ASME Applied Mechanics Division, June 23Vlaterial-1 and Material-3 are constant and denotegd,ag., and
1999; final revision, June 22, 2000. Editor: A. Needleman. Discussion on the pa , i3 respectively, wherg is the mass density andis the shear
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APPLIED MECHANICS. in the dynamic torsional problems. They are the shear mogulus
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Wo(r,h™,t)=wg(r,h",t), O0=sr<om, (9)
(ng)z(r,hi,t):(ng):;(r,th,t), O=r<ee, (10)

Note that the standard Laplace transformfdt) is

f*(p)=f f(t)e Pidt (11)
0
whose inversion is
L — — - 1 ;
———— f(t)=z— | f*(p)ePdp (12)
a / 27 Jg,

Material-1 M) and Br denotes the Bromwich path of integration. Applying the
transform(11) to Egs.(4) and(5) results in the transformed equa-
tions

Pw Lawr wEAwE et
_ + =—W =
Fig. 1 A penny-shaped crack on the interface of a graded aZ Tror r2 a2 i Wi, =13 (19)

material interlayer and a homogeneous material - . . . . )
Wy 1 Owy; Wy W5 up'(Z) dWy  pop”t
7t = vl 7+ = Wz -
ar roor r Jz uo(z) 9z uo(2)

(14)
and the mass densiy For the inhomogeneous interlayer, due t; . . . .
the mathematical cg}r;plexity introducgd by the inertig term, it %/Ioreover, introducing the pair of Hankel transforms of the first
necessary to assume that the shear modulus and the mass deﬂgqt?/r’
can vary independently. Such an idealization can offer consider-
able simplifications to the analysis. After compared the several Vi(s,z,p)=J wi (r,z,p)Jd (sr)rdr, (15)
models for expressing the variation of the shear modulus, such as 0
the exponential formu(z)=u,exp(2 (Delale and Erdogan -
[25]), and the power formu,(2) = u1(1+ az)* (Wang et al[27)), W (r,z,p)= f Vi(s,z,p)Jd;(sr)sds (16)
we found that the variations 0

©

o= u(1+ az)?, (1) whereJ,( ) is the Bessel function of the first kind, then applying
Eq. (15) to the Eqs(13) and(14) yields
p2=(p1+p3)/2, (2
; i ; i #Vi(s,z,p) [ , pip’ :
are mathematically tractable, and still physically representative ——————| 8%+ —|Vi(s,2,p)=0, i=13 (17)
enough. In Eq.1), the parameter can be determined by the Jz Mi
continuity condition of the shear modulug,(0)=x,; and 2
po(h)= s, that isa= (3 g;—1)/h. I°Vy(s,2,p) N 2a dVy(s,z,p)
Assume a penny-shaped crack of diameteri®located at the az? ltaz Jz
interface of Material-1 and Material-2 and subjected to a torsional 2
impact Ioadir!gP(r). For the present problem, in the cylindrical —| g2+ P2P 5| Va(s,2,p)=0. (18)
polar coordinates r(6,z), only the displacement ug); ma(1+az)

%Wi(r'z’t) nonvanishes, where sqbscnptsl,zs refgar to mate- Considering the displacement conditions thatandw, vanish
rials 1, 2, and 3, and whetds the time. The nonvanishing stressat|zl_)OO the solutions of Eqs17) and(18) can be expressed as
componentsr,, and 7, , are as follows: ’ q p

(9Wi &Wi Wi ] Vl(sv z, p) = Al(si p)exq ylz) (19)
o mnl G m2s @ Va(5.2,0) = Aq(s,p)exsl ~ 732) (20)
The governing equation of motion gives S
Aw 1w wi Pw_p dw, Va(s,2,p)=Ao(s,p)(1+a2) Y4 (1+a2) MTI}

v et e TR @

S
+As(s,p)(1+az) YKy (1+az) W}’ (21)

W, . 1ow, W, Wy, w'(2) dwWp,  py  9°W,
oz roor 1 9 pa(2) 9z pa(z) ot where
5

2 2 2

p1P [ 5 P3P 1 pap
b . y1=\/$°+ = V3= =, B=\z77t - 2

The boundary conditions are given as follows: %1 M3 4 wa

where u5(2) is the derivative ofu,(z) with respect taz
(22)

andl g( ), Kg( ) are the modified Bessel function of the first kind
wy(r,00,t)=w,(r,0",t), r=a, (7) and the second kind, respectively.
From Eq.(16), we can obtain the displacements in the Laplace
gwain. Subsequently, the shear stresses in the Laplace transform
omain 7}, and 77, can be obtained from Eq3). Then the un-
known functionsA;, A,, Az, A, can be determined from the

(Te)1(r,07,t)=(Tg)2(r,0%,t), r=a, (8) boundary and the continuity conditions.

(TBZ)l(r!O_lt)z(792)2(r10+1t)=P(r)H(t)l O$r<a, (6)

where H(t) is the Heaviside unit step function. The continuity,
conditions of the displacement and the shear stress acrossg
interfaces give
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3 Derivation of the Singular Integral Equation
In Laplace domain, the boundary conditions become

P(r)

(T;z)l(rvo_lp):(721)2(r10+1p):Tl Osr<a, (23)

wi(r,07,p)=w3(r,0%,p), r=a, (24)

and the continuity conditions across the interfaces become

(Tzz)l(rlo_lp):(722)2(r10+1p)v r>a, (25)
w3 (r,h~,p)=wi(r,h*,p), Osr<eo, (26)
(Th)a(r,h™,p)=(75)3(r,h*,p), O=sr<w.  (27)

To reduce the mixed boundary conditiof@8) and(24) into an

integral equation, we first define the following dislocation density

function on the interface of Material-1 and Material-2:

19
g(r.p)=——-[rw3(r,0",p)—rwi(r,0",p)]. (28)

ror

From the continuity conditions and the dislocation density fun

tion, we can obtain

(Tzz)Z(r101p):M2(o)fo R(ulrrp)g(urp)Udu (29)

where

R(u,r,p):f:D(s,p)Jl(sr)Jo(su)sds

(30)

and

d21(S 3ot dygp) — dpo(SUay+dyy)
(d13—d21)(SUgpt dyp) — (SOgy+dy) (dio—dyp) '(

D(s,p)=

The coefficientdd;; in Eq. (31) are as follows:
s) dmsK s
m ) 12=SKg m )

ot -

dll=S|ﬁ

1
dy=—|5+8

dam=| 8okl g ol e
=—|Z aKgl | =K | = 2
#2 Alal] "\ [al/]al
da;=(1+ah)~ %3 (1+ah)i
* g [of
dao=(1+ah) YK (1+ah)i
» ’ [of
1 S
d41:—(§+,8 a(l+ah)™34, (1+ah)m)
+(1+ah) Y2, | (14 h)iﬂ
e o] fTal
1 s
dip=—|5+8 a(l+ah) ¥, (1+ah)m)
S | S«
*(1+ah)71/2K/3_1((1+ah)m)@.
Note that
A=limD(s,p)=— 3. (33)

S—®©

R(u,r,p) can be further expressed as

Journal of Applied Mechanics

R(u,r,p)=Ry(u,r,p)+Rs(u,r,p) (34)
where
Rn(u,r,p):f [D(s,p)—A]Ji(sr)Jo(su)sds  (35)
0
Rs(u,r,p)=)\JmJl(sr)Jo(su)sds
0
3 N 1 —u—r+2rM(u,r)
lu(u—r) u(u?-r?) ., (36)
and
=8
—E| = u<r,
o
M(u.r)= uz (r\ u-r? [r 37)
r? (u) r2 (G' u=r.

=( ) andK( ) are complete elliptic integrals of the second and
irst kind, respectively. From the boundary conditi@3), we ob-
tain a singular integral equation with a generalized Cauchy kernel,

Ja P(r)
0

H2(0)p’
where

AL +R
—u T o(U,r,p)

0<r<a,

(38)

g(u,p)du=

N u+r—2rM(u,r)
Ro(U,r,p)ZURn(Uvr,p)Jr;T- (39)

The single-valued condition can be given from the definition of
a(u,p),

a
J ug(u,p)du=0.
0

(40)

4 Dynamic Stress Intensity Factor

Normalized the interval by the following transformation of
variables:

a a
U:§(1+§), I’:E(1+77). (41)
The integral Eqs(38) and (40) can be rewritten as
fl AR }G L R
. 7T§_7] 0(6-7]1p) (gip) 67 Mz(o)pl ( )
1
ﬁl(l+ £)G(&,p)dé=0, (43)
where
— a_|a a
Ro(fﬂ?-p):ERO{E(:H‘@:E(]-"‘W;D} (44)
a
G(&p)—g[z(lw.p}, (45)
— a
P(n)=P[5<1+ ol (46)

Considering the singularity at the crack tip, we assume that

G(p) 1

P Vig
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G(é.p)=

(47)



Following the numerical method developed by Erdogan for sin- 0.60-

gular integral equationgErdogan[29]), expandingG(&,p) in ps/p=1.0,h/a=1.0
forms of Chebeshev polynomials 0.55
— - Hy/ 1y
G(£,p)=2) BiTy(8), (48) 0501 112
n=0 Q
; . o 0.45- "
we can obtain a system of equations, *r :
n — — frr 3
—A = G(&.,p)  P(wm) L 0404
+7Ry (&, ,p)|—————= —F=+, 49 a
0.35 1
(1+&)— :
21 G(¢.p)=0, j=12,...n—1,  (50) 0.30
=
where¢;, n; are the roots of Chebeshev polynomial of the first 0.00 4 . T T '
kind and the second kind, respectively, 0 2 4 6 8
2i—1 ) cyt/a
&=co on 7| i=1,2,...n,
. Fig. 2 The effect of the ratio of shear modulus on the normal-
771‘:00{]5 77), j=12,...p-1 (1) ized dynamic stress intensity factor

Solving the system of linear algebraic Eq49) and (50), the
unknown functionG(¢,p) can be obtained.
If the mode Il stress intensity factor in Laplace domain is

defined by
lim V2(r—a)(7},),(r,0p), 52 0.65 -
Kii(p)= e ( )(75.)2(r,0,p) (52) 0/ =10, s/ =113
0.60
then by using the properties of Chebeshev polynomials, we obtain h/a
0.55 0.2
. a G(l P
Kii(p)=Au2(0) (53) 0504
P e = 0.5
The dynamic stress intensity factor in time domain can be ob- o 45 12'8
tained by =~
— = 0.40-
=X\ f CULP) corg 54 X
Kin( H2(0 22w Jg P evap. (54) 0.35 1
5 Results and Discussion 0.30
Suppose that the crack surface torsional loadingPis) 0.004 : i . ,
=—ror/a. In this problem, the variables ape;/u,, h/a, and 0 2 4 6 8
palp,. To investigate the influences of these parameters on the( ) ¢/
dynamic stress intensity factor, we analyzed some real composite Cxlsa
materials, such as AD5/Ni, TiC/C, SiO,/Ni, SIiC/C, and so on,
and found that the parametes /., may vary in a wide range but 0.50+
the parameteps/p; may vary in a relatively narrow range. Fi- =10, mes w3
nally, we chose the following combinations for the analysis: Pl =18 sl ™
530/,%: 1/12,1/3,3,12;p53/p,=0.5,1.0,2.0,4.0h/a=0.2,0.5,1.0, 0.45 h/a
.S'olving Egs.(49 and(50), and accomplishing the Laplace in- f'g
version(54) by the numerical procedure developed by Miller and [® 5404 0'5

Guy[30], the mode Il dynamic stress intensity factors in different o
cases are obtained. The results of the normalized dynamic stres:— 0.2
intensity factorK,;, (t)/ 7¢\ya as a function oft,,t/a are shown in =
Figs. 2—4, wherec,;=Juq,/p; is the shear wave velocity in >  0.35-
material-1. A general feature of the curves is observed to be that

the stress intensity factors rise rapidly and reach a peak, then

oscillate about their static values with decreasing magnification. 0.304

This general feature has been reported for homogeneous material

and layered composite materials. 0.004 ' . . .
Figure 2 shows the variations of the normalized dynamic stress 0 2 4 6 8

intensity factor with time for various ratios of the shear modulus
m3lwq while ps/p,;=1.0 andh/a=1.0. It can be seen that the (b)
K, (t) factor tends to monotonically decrease with the increasing

of uz/u,. The differences between the peak values of curves ap@. 3 The effect of the interlayer thickness on the normalized
the static values also decrease with increagin@u,. This ten- dynamic stress intensity factor

¢, t/a
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Elastic-Inelastic Self-Consistent
Model for Polycrystals

Based on a well-established nonincremental interaction law for fully anisotropic and
compressible elastic-inelastic behavior of polycrystals, tangent formulation-based and
simplified interaction laws, of softened nature, are derived to describe the nonlinear
elastic-inelastic behavior of fcc polycrystals under different loading paths. Within the
framework of small strain hypothesis, the elastic behavior, which is defined at granular
level, is assumed to be isotropic, uniform, and compressible neglecting the grain rotation.
The heterogeneous inelastic deformation is microscopically determined using the slip
theory. In addition, the granular elastic behavior and its heterogeneous distribution from
grain to grain within a polycrystal are taken into account. Comparisons between these
two approaches show that the simplified one is more suitable to describe the overall
responses of polycrystals notably under multiaxial loading paths. Nonlinear stress-strain
behavior of polycrystals under complex loading, especially a cyclic one, is of particular

interest in proposed modeling. The simplified model describes fairly well the yield surface
evolution after a certain inelastic prestraining and the principle cyclic features such as
Bauschinger effect, additional hardening, ef©OI: 10.1115/1.1427693

are also determined on all slip systems by the well-known

1 Introduction ! / .
Since the first reported study in the area of the self-consiste%(fhm'dS law([31). Hence, the modeling of the single crystal, for

approach originated by Sachg], then Cox and Sompmitf2], such approaches, is almost st_andard and has i_ndisputablt_a treat-
and Taylor[3], this area has been a topic of increasing interest [RENtS: Since the overall behavior of polycrystals is strongly influ-
the field of polycrystal modeling. For small and large deformatiof"ced by grain/matrix interaction law, therefore the heterogeneous
conditions, many research efforts have been theoretically dev@itess and strain fields throughout the mataggregatenecessi-
oped. These concern purely elastic césee, for example, Her- tate obviously the grain interaction consideration. Moreover, the
shey[4] and Krmer [5]) or viscoelastic behaviotsee, for ex- type of the interactiorthard or soft of the grain with its matrix
ample, Laws and McLaughlif6] and Kouddane et g]7]) as well gives an appropriate estimation about the accommodated plastic
as inelastic behavior, i.e., plastic or viscoplagBcown [8], Rice strain and its repartition between the grain and the surrounding. A
[9,10], Hutchinson[11], Molinari et al.[12], Weng[13], and Leb- trivial way to theoretically obtain this grain interaction is the well-
ensohn and Tomgl4,15) or elastic-inelastic behavior of poly- known self-consistent relations. Thus, the interaction law repre-
crystals(Lin [16], Kroner[17], Budianski and Wii18], Hill [19], sents an extremely important key factor for this type of modeling.
Hutchinson[20], Berveiller and Zaouj21], Weng[22], Iwakuma Some contribution¢for example, Kouddane et 4i7], Weng[13],
and Nemat-Nassd23], Nemat-Nasser and Obaffa4], Lipinski and Molinari et al.[28]) have developed approximate solutions
et al. [25,26], Kouddane et al[7], Rougier et al[27], Molinari  taking into account partly the viscous character of the intergranu-
et al.[28], Schmitt et al[29], Abdul-Latif et al.[30], and others |5 interactions. A recent wor{30]) was devoted to mainly de-
The polycrystal is usually viewed as an aggregate of numeroy§ipe the overall mechanical cyclic behavior of polycrystals un-
(single or polyphase crysfagrains with different orientations yer complex loading paths. This represents the first simplified
with Leslpect t? the Ioao:mg axes. The numlber, orlﬁntanon_, a08rsion of a self-consistent interaction law proposed by Kouddane
morphology of grains play an important role on the predlcte%t al.[7] in the case of incompressible elastic properties.
result. The case of the random crystal distribution in an aggrega Sn this work, based on one-site nonincremental interaction law
of grains is considered here according to the macroscopic isotfo- . > d ible elastic-inelastic behavi f
pic behavior of the aggregate. The emphasis is placed here on. (?an_lsotroplc and compressible eiastic-inelastic behavior ot an
single-phase fcc polycrystals and the properties of each grain gifaﬁus'on embedded in infinite matrik12]), tangent formulation-
identical with respect to the crystallographic reference systefgSed and simplified interaction laws are determined. The ob-
The granular heterogeneity comes, in general, from the diffd@ined models allow to describe the elastic-inelastic behavior un-
ences in the orientation of the grains and the single-crystal intrifier different loading pathgmonotonic and cyclic for fcc
sic anisotropy since the morphology and spatial distribution of t@lycrystals. The theoretical basis of rate-dependent inelastic
grains are not taken into account. strain is examined at the css level. Contrary to the Abdul-Latif
For the nonlinear elastic-inelastic behavior of polycrystals, tre al.’s hypothesig[30]) which cannot fulfill the physical require-
developed approaches up to now give, in general, approximatent entirely, the granular elastic part of the strain is now as-
solutions. Whatever the self-consistent approach, the inelasiomed to be compressible, uniform, and isotropic. Further, the
strain in each grain is calculated based on the glide on the crysrerall kinematic hardening can be naturally described by the ob-
tallographic slip systentcsg level. The resolved shear stressés tained interaction law of the grain with the surrounding. This is
due to the existence of the granular elastic behavior in the inter-
o wham corespondance shauld be addressed. © action law since the intergranular accommodation has an elastic
e e omts ecee ey, NAlUre([27). In the case of simpified law, a phenomenological
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Jan. 25parameter is introduced in order to reproduce the elastic-inelastic

2000; final revision, Apr. 30, 2001. Associate Editor: J. W. Ju. Discussion on tiigehavior of polycrystals under multiaxial cyclic loadings as a par-
paper should be addressed to the Editor, Professor Lewis T. Wheeler, Departme i i

Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and Wriweﬂlar. Imer]?sk: o.f this model. f the fati f | |
be accepted until four months after final publication of the paper itself in the ASME In view of the importance of the fatigue rupture of polycrystals,

JOURNAL OF APPLIED MECHANICS. a self-consistent model describing the plastic fatigue behavior of

1To whom correspondence should be addressed.
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polycrystals has been already proposéddul-Latif and Saa-  Recently, a generalization of the Kouddane et al.’'s mdjdg)
nouni[32-34], Saanouni and Abdul-Lat{f35], Abdul-Latif [36], for fully anisotropic and compressible elastic-viscoplastic behav-
and Abdul-Latif et al.[37]). It was based on the self-consistentor with small strain hypothesis was developed by Molinari et al.
model proposed by Cailletay®8] as an initial model of elastic- [28]. Based on the tangent formulation, the local and global be-
viscoplastic behavior of fcc metals. Note that the actual develophkdviors are also presented here by elastic-viscoplastic relation but
elastic-inelastic model uses less number of internal variables aiod compressible elastic properties. In order to simplify the sig-
material coefficients in comparison with Cailletaud’s modatificant difficulty of the resolution of this problem, Molinari et al.
([38]). Hence, it seems to be a judicious choice when the pres¢@8] proposed an approximate solution keeping the same structure
self-consistent model will be coupled with damage as a futugd the incompressible interaction laiouddane et al[7]), i.e.,
work predicting the low-cycle fatigue life of metallic polycrystalswith elastic and viscoplastic parts. The generalized elastic-
viscoplastic interaction law of Molinari et dl28] is expressed as

2 Self-Consistent Modeling follows:
2.1 Grair/Matrix Interaction Relation. A simplified inter- (35 +C) L(09-3)+(F'S +A) L(L-9)=(e9-E)
action law is examined and gives the granular stress fields due to (5)

the difference between the granular strain rate and that of th% 3% and3’s tively fourth rank t hich h
aggregateématrix). According to the advantage that the nonincre?” teuraecorr?gute g g;e C?reesgrfcful\r/lit)i/or?gn p riﬁ?egrzrl]srﬁghvc\)l dlsc usiz\ée

mental formulation is shown to be softer grain/matrix interactio . . . -
g and C ([28]). A is the macroscopic tangent viscoplastic modulus

version made by Kouddane et @] and then by Molinari et al. andC being the global stiffness tensor. . .

[28]. Concerning Kouddane etal’s work7]), an elastic- In the case where the elastic response dominates the viscoplas-
: ) ! . -1 _ .. .

viscoplastic nonincremental self-consistent model for incompredis term ( 'S T+A) l becomes negligible with respect to the

ible polycrystals has been proposed. Motivated by a Maxwell-tygdastic part, and the interaction law can be written by

law, the interaction law for a spherical isotropic and incompress-

~s 1 —-1./ . < 7/ .
ible inclusion with its matrix is given by (3° +C) H(09-3)=(&d—Eo). (6)
o 1 . It corresponds to the solution of the elasticity problem for hetero-
- 3—#0 (P—9S)— 3—7]0 (°—S)=(£%9—-E) (1) geneous materials.

) For a spherical inclusion embedded in an infinite homogenous

where €9 and E are, respectively, the total granular and overaiBotropic matrix having elastic properties defined/bynd\ (the

strain ratesS and<? are the global and granular rates of deviatori€lassical Lame’s constantshe fourth-order interaction tensor is

parts of Cauchy stress tensor, respectivefyis the scalar mac- determined[40]) as

roscopic viscous tangent modulus depending on the deformation 1

history, and,u"_|s the the uniform macroscopic shear modulus. fﬁjkl=m[(3)\+3,u)6ij6k,—3(3)\+8,u)|ijk,]

Note that the viscous relaxation is taken into account through the " H

term (—1/37%°). In a linear elastic case, the interaction lébycan )

take into account the instantaneous elastic response, i.e., whenwith

viscosity tends to infinity {°—), the total strain rate becomes 1

fully elastic E-E,. This leads to the same form of Krer's Lijki =5 (SikSj1 + 8it 8- (8)

interaction relation for an elastic inclusion 2
5= — 3088 Ee)- ?) As a consequence, the elastic part of the interaction law can be

expressed by
Note that this relatiori2) remains valid under a large jump of the ) - . - .
strain rate where the elastic response dominates. 2A(09—-2)+Btr(09-2)1=(&d- E) 9)
In th_e case where a constant strair_1 rate !s app_lied, a visc%ﬁere the constanta andB are defined as
relaxatlon, at steady state condition, will dominate, i.e., we obtain

(¥—S)—0 for t—oo. Therefore, the interaction la¢l) becomes _ —(8u+3N) (10)
SQ—S:—SnO(éign_Ei”)' 3) 21(14p+9N)
In order to satisfy the self-consistency condition$,has to be _ (Bu+M)(3\+8p)
) . ’ ; B > > (12)
adjusted at each instafiKouddane et al[7]). Numerically, this pn(448u”+456uN + 108\ )

task, for uniaxial cyclic loading conditions, is relatively reason- . . . N .
able (Dingli [39]). However, if complex biaxial loading paths are . For a fully viscoplastic behavior d(_)mln_&ltmg at stfitlonary state
applied, such conditions will not be respected by the adjustme(ll'lﬁlthe long range responsghe term @9— ) is practically van-

of the scalarg®, since it depends always on one strain rate dire¢3"€d- Therefore, EG5) can be written approximately as

tion and not on two or more directions in the same time. Hence, a st 1 Q) (s

symmetric fourth-rank tangent viscous modulus tensor can be (@3 A (=9 = (e~ Bin). (12)

used instead of the scalgf. In this case, the determination of all This equation represents a self-consistent approach developed

the viscous parameters of such operator becomes a very diffidoyt Molinari et al. [12] describing the viscoplastic behavior of

task particularly from algorithmic point of view. In addition, thepolycrystals under large deformation condition.

use of nonisotropic tangent viscous modulus introduces a considin the case where the viscoplastic behavior of the matrix is

erable difficulty in the derivation of the interaction law. supposed isotropic and incompressible, the tangent modulus can
A simplified solution of the grain/matrix interaction law givenbe approximated by

by (1) has been performed by the authd30]) to get

o o Aijki = 27°Njjiq - (13)
- — Q)= —3,°(£9—
$=S+B(s=9) 3 (e5-E). “) For spherical inclusion, the interaction tenggf is given by
This simple modification is shown to be enough to simulate
accurately the polycrystal behavior under different cyclic loading I Sa=— i'“m (14)
ij ijkl -

paths when the parametgris carefully determined[30]). 57
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The viscoplastic part of the general interaction I&yis there- e9=¢3+ &9 . (25)
fore deduced as ) ) ) )
The granular inelastic part of the state potengal?, is ex-

1 g ¢ S i and Abdul-Latif35]) as follows:
_ 3_1]0(39_8):(8?”_5”)_ (15) pressed Saanouni an nu fﬁs ]) as follows
1
The general interaction law for the elastic-viscoplastic behavior pz/f?nzz 21 21 HsQ%'g® (26)
r=1s=

of polycrystal(Eq. (5)) is equal to the sum of the two approximate

parts(elastic: Eq.(9) and viscoplastic: Eq(15)). Thus, we get  \hereQ is the transgranular isotropic hardening modulus of the
) ) 1 ) c¢ss. The hardening interaction matHlg is supposed to describe
2A(0%—3) +Btr(09—3)1— = (f—9)=(£9-E). (16) dislocation-dislocation interactiori&ocks and Browr{41], Jack-
37 son and BasinsKi42], and Franciosf43]). The dual variableR®
The same problem of° adjustment, as in the incompressiblestate law can be derived fron26) as follows:
case(Eq. (4)), came across in order to satisfy the self-consistency P n
conditions especially under multiaxial loading path. Hence, the RS=)p in :QSZ H,.q. 27)
term (1/3;°) is replaced by a phenomenological paraméter0) aq° =

and the simplified interaction law can be written as The slip rate can be determined as long as the shear stress and

2A(09—3)+Btr(09—3)1— a(F—S)=(£9—E). (17) the hardening variables are known. Hence, the evolution rates can
be obtained by introducing a yield functidi¥ together with a
2.2 Single-CryStaI Constitutive Relations. At this level, it dissipaﬁon potentian for each s||p System according to the

is assumed that slip is the dominant deformation mechanism afsh associated plasticity framework.

other mechanisms like twinning, grain boundary sliding, etc., are s s s

neglected. The constitutive equations of the inelastic strain are =7 -R°—k3 (28)

examined at the css scale in the case of fcc structure. The resolyggh e ks

! : ’ o Is the initial value of the critical resolved shear stress
shear stresses’ are determined by the twice-contracted tensor"ﬂ‘riction stress.

product betweewr? and the Schmid factor tensar®: The transgranular inelastic dissipation potential is similarly
5= o9 ms (18) written as initially proposed in Saanouni and Abdul-L486].
1 F=f5+b%g°R® (29)
mSZE[ns@’ b*+n°®b°] (19)  where bS characterizes the nonlinearity of the local isotropic
_ ) _ S _ hardening.
whereb® is the unit vector in the slip direction amd is the vector  Now, the evolution laws of the granular inelastic strain and the
normal to the slip plane. internal variable of the transgranular isotropic hardening are given

For each slip system, only the transgranular isotropic hardenifg generalized normality rule:
is modeled and represented by the couple of the internal variablegt the granular level
(9%,R®) describing the expansion of the elastic domain on the n
systems. Throughout this paper, the inde {1,2, ... n} is as- g _z AS JF®
sociated to the system rank, wittbeing the maximum number of fin= o M40
octahedral systems in the graim= 12 for fcc). ]

The elastic and inelastic parts of the granular specific free en-with

ergy 49 can be written as ¥5=\Ssign(°) (31)
PO=dd+ i, . (20)  where?® is the slip rate on the css.

At the css level, the rate of the isotropic hardening variable
a«.=r}/_olution is expressed by

=D MsignSHms=>, y¥m*  (30)
s=1 s=1

As an internal variable, the granular elastic pefftis assumed
to be uniform, isotropic, and compressible and its associated v.

able is thermodynamically represented by a granular stress tensor "9F .
~S r (9 S, SH~S
of. q=rz,l)\(9RS=)\(l—bq). (32)
pyd(ed)= %)\(tr £9)2+ utr(£9)? (21) In the framework of viscoplasticity, the value of “pseudo-

multiplier” \S for each css is a power function of the distance to
where\ andu are the classical Lame’s constants of the grain, arttle yield point defined by the criteriof?:
p is the material density.

S S
The granular stress tensof can be deduced as S f_s ‘L 7R~ ko) *
= KS - KS (33)
g
OQZpa—dlg,}ZZ,ungr A(tr €)1 (22) whereK® andz® are material constants describing the local vis-
Fe cous effect of the material.
wherel is the second-order unit tensor. It is worth noting that the Eq33) together with(31) represent
At a constant temperature, the granular coefficiéntand x) generalization to hardening case of the classical power-law micro-
remain always constants, the time derivative of &9) gives constitutive equation frequently used in the literature.
) . . The intrinsic dissipation at the granular level is given by
o9=2pued+ \(tr ed)l (23) .
and 0% el — D, RGS=0. (34)
6‘9 s=1

5222—— mtr( o9l (24) By using(27), (28), (30), and(31), it is easy to show the ther-
K plep modynamical admissibility of the single-crystal model. This can
According to the small strain hypothesis, the total granuldre achieved by showing that the inequalidy) is satisfied as long
strain &9 is partitioned into elastied and inelastice?, parts: as the parametei®® andk$ are positive.
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Table 1 identified model constants  ([44])

3 (MPa) —u(MPa) a ko(MPa) z K Q(MPa) b ht h2 hs hs hs hs
144780 81440 5x107 240 12 38 256 126 1 0.75 074 148 105 35

2.3 Polycrystal Constitutive Relations.  After determin- 3 Comparison Between the Two Models
ing the granular inelastic strain rate as the sum of the contributigig parametric Study
from all activated slip systems, the transition from the single to . . . )
polycrystal response is performed by the well-known averaging The simplified self-consistent model is tested using an aggre-
procedures depending on the granutgiastic and inelastiorates.  date of 200 graing30]). For simplicity, it is assumed that all the
The overall total strairelastic and inelastjcrate is therefore 9rains and the slip systems have the same material properties.
calculated as follows Consequently, all the grains have the same value of the elastic
constantsh and . and all the octahedral slip systems have the
E=Ee+Ein (35) same constanis K, k,, Q, andb. The identified constant®ingli
et al.[44]) are listed in Table 1.
) Ng Some numerical comparisons between the tangent formulation-
Ee= 2 v9ed (36) based and the simplified model are carried out. The first compari-
g=1 son is conducted employing monotonic tensile tests. Three
Ng uniaxial macroscopic strain rates are ugéd;=0.1, 0.01 and
Ein 2 050 37) 0.001/3. It is important to note that, for the tangent formulation-
& n based mode(Egs. (16, 38), the value of5°, which satisfies the
self-consistency condition, remains almost constant for each con-
where v9 represents the volume fraction of the same orientdtblled strain rate for any timé>0, since there is no change
grains.£$ and €2, are given by Egs(24) and (30), respectively. nfeithq in the strain rate nor in i_ts direction. l}{evertheless, for the
An attempt is performed to compare two formulations: Slmpllfle_d model, the Se_|f-COI’lSI_Stency conditions are Systematl'
(i) The tangent formulation-based interaction law given by Egally satisfied. Examination of Fig. 1 shows the overall responses
(16), itself based on the following macroscopic combination o?f both models using the above strain rates. For a given strain rate,
Hooke’s law and tangent viscoplastic relation. both models give practically the same overall responses showing
their sensitivity to the strain rate.

° The effect of an abrupt change of uniaxial loading direction on

I=2uE+NIrE)I - ?(S— S%) (38) ' the overall polycrystal behavior is studied. One cycle of tension-
compression with strain-controlled conditidyE,;=1 percent is
whereS° is the macroscopic back stress. used (Fig. 2(@)). Obviously, both models describe appropriately
(i) The proposed simplified interaction lai&q. (17)) together the overall stress evolution notably in the inelastic zone, i.e., hard-
with the macroscopic fully elastic behavior given by ening evolution. Moreover, the similarity of the responses is well
) ] ) captured by these models. For the tangent formulation-based
3=2uEc+ N (trEo)l. (39) model, the evolution of;° is recorded and analyzed during this

uniaxial cyclic loading. Figure () reveals that its value remains
~ Some numerical applications are conducted using both modglshstant when a constant strain rate is appfiedsile phasewith
in order to study and to compare their overall responses undgfiich the consistency condition is almost respected. However, as
uniaxial loading situations. soon as a rapid change in the strain rate direction is taken place
For the tangent formulation-based model, the adjustment prq— 10 seconds an extremely high jump of;° value is conse-

cess ofy° in order to fulfill the self-consistency conditions can beyuently recorded. This evolution can be interpreted by the fact

pe{?;g‘;ﬂ_iigggﬂgjzcon ditions that, to have an instantaneous overall elastic responseFi.g.,

E=E' (40)

whereE’ is the imposed macroscopic total strain rate.

800 -
While, in stress-controlled conditions

. 750
3=3' (41)
wherel' represents the imposed macroscopic stress rate.
The exact satisfaction of the self-consistency conditigx.
(40) or Eg. (41) is not always evident due to the fact that thg
adjustment process is performed only on the scafarThus, °
is calculated in order to minimize the relative er(&e) defined
by in strain-controlled condition: 550

700 4

650 4

Axial Stress (MPa)

600

Re=|E—E'||/|[E’|| (42) 500 , , ‘ ‘ ‘
0.0025 0.004 0.0055 0.007 0.0085 0.01

and, in stress-controlled condition: . .
Axial Strain

Re=|Z—%"|l/|%| (43)
. . . Fig. 1 Plot of comparison between tangent formulation-based
where the normx| is defined ag|x||=ax:x with a=2/3 for (1) and simplified (S) models showing the overall stress evolu-
a strain-controlled situation and=3/2 for a stress-controlled tion versus the strain for uniaxial tensile test under three strain

condition. rate values (1:0.1/s, 2: 0.01/s and 3:0.001/s)

312 / Vol. 69, MAY 2002 Transactions of the ASME



1000 , 35 4

800 -

30

25

= a
& §
g % 20
2] =4
8 . °
B ' ' S s
%n-0.01 0.00 0.01 o
& T
g |
<
5
o S
-800 -
T ° 0 10 'o
-1000,- . 2 30 40
Axial Strain Time (s)

(@) (b)

Fig. 2 Plots showing (a) a comparison between tangent formulation-based (T) and simplified (S) models for
tension-compression loading,  (b) the evolution of #° versus time during tension-compression loading test

—>E§1v the term @ 7°)(Sy— ) (Eq. (38)) has to tend to zero used as a bgsis of interpretation. In faqt, this parameter ha_ls to be
by the high increase of° value. Just after this sudden change Ogetermme_d n SUCh. a manner that the instantaneous elastic _eﬁect
direction, a constant compressive strain rate is imposed by tﬂ'@d the viscoplastic relaxqtlon at steady state are appropriately
load. The second change of directigatt= 30 secondsprovokes ensureci. Hence, three d;ffergnt values efare chosen(a
another considerable increasing#ff as in the tensile phag€ig- .:5'1U . 5.10°, and 10‘ ).W'th which two extreme and an
ure 2b)). Consequently, the tangent formulation-based modibtermediate responses visvis the over_all hardemng_ evc_)ll_mon
needs more calculation time in comparison with the simplifie@® recorded. Using a monotonic tensile load for simplicity, the
model due to the adjustment process of the macroscopic visc&y&rall, granular, and microscopical responses are recorded and
tangent modulus,® at each time step. In conclusion, for uniaxiaPn@lyzed for each value af (Fig. 3. Evolution of activated slip
loading paths, the simplified self-consistent model is more suftyStems during the straining is pointed out in Fig. 4. Recorded at
able than the tangent formulation-based model from the calcuthe (_end of Ioao_llng_, elastic and melastlc_ strains at the granular level
tion time point of view. Furthermore, it has been demonstrated € illustrated in Figs. 5 and 6, respectively. For a greatest value of
Dingli et al. [44] that the simplified model is more suitable fore (a=10"*), a high heterogeneity of the granular inelastic strain
multiaxial loading paths for which the tangent formulation-baseig clearly recordedFig. 6). When the value ok is relatively high,
model cannot work. this provokes stiff inelastic interactions. According to ELj7), the

To understand the role of the parameteron the kinematic term (a(s®—S)) dominates with respect to the other elastic terms
hardening evolution, the simplified interaction ld#q. (17)) is in the left-hand side of this interaction law. The instantaneous
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<
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a=10-4
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Axial macro-strain Ey,

Fig. 3 Overall stress-strain simplified model response showing its sensitivity to the phe-
nomenological parameter (@) under monotonic tensile test
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Fig. 4 Effect of the parameter (a) on the evolution of the activated slip systems during
monotonic tensile load
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Fig. 5 Effect of the parameter (@) on the heterogeneity of the elastic strain (sg) in 11 direction of each grain within
the used aggregate at the end of the monotonic tensile load

elastic effect becomes consequently negligible giving a considéeterogeneous granular elastic behavior in the interaction law
able heterogeneity of granular inelastic behawvigig. 6). How- leads to a natural description of the global kinematics hardening
ever, the granular elastic strain distributions are almost homogffect. This can be interpreted by the fact that the intergranular
enous (Fig. 5 and their values are relatively small leadingpccommodation has an elastic nat(Reugier et al[27]). In con-
consequently to few instantaneous activated slip systéigs4). clusion, the phenomenological parametehas a great influence

In the case wherer=5.10"7, it can be noticed that the termon the hardening evolution. To appropriately describe the effect
(a(s9—9)) gives a certain equilibrium between the first two elasof the hardening on strain-stress behavior of polycrystals, all
tic terms in the left-hand side of EL7). The heterogeneity of the the qualitative simulations were therefore conducted using
instantaneous granular elastic effect giving the progressive im=5.10"".

creasing of the activated slip systems. Therefore, the granular ij‘ R K dc USi

coplastic relaxation at steady-state becomes heterogeiEigss emarxs an onclusions

5 and 6 leading relatively to smooth interactions between the This study is based on the generalized nonincremental interac-
grains and their matrix. As a matter of fact, the existence of thmn law for fully anisotropic and compressible elastic-inelastic
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| Non-Gaussian Narrow-Band
Goodrig-/\e[r?);truBctlu?e‘s,,lllr?cs, Random Fatigue

Mail Stop 107P,
850 Lagoon Drive,

Chula Vista, CA 91910 Fatigue is produced by the sum of randomly phased sine waves. Fatigue damage during

this non-Gaussian, finite random process is a function of the noise bandwidth, the fatigue
slope, mean stress, and the rms stress. Methods are developed for predicting the cycles to
failure. Comparison is made with datfDOI: 10.1115/1.1428332

1 Introduction 2 Fatigue Models

Many processes that cause fatigue are not Gaussian distributedwo widely used fatigue models for constant amplitude cycling
For example, fatigue damage accumulated by normally operatiage (1) the exponential fatigue law an@) the equivalent stress
machinery is the result of a finite number of operational cycles model. The exponential fatigue law postulates that the stress cycle
quasi-random environments. Manufactures guarantees exclaaeplitude above the mean stress is a straight line when plotted on
most, if not all, extreme events. The as-designed operation ®fiog-log scale against cycles to failurN;SQ:C (Basquin[9],
machinery is a random process with finite limits. Crandall and Mark2] p. 113, and Bannanting10]). 1/b is the

Palmgren and Miner proposed that fatigue damage is only dslope of the fatigue curve when plotted as Istyess amplitude
pendent on the peaks in a time history and that fatigue failug@rsus log(cycles to failure. The dimensionless parameteis a
occurs when the sum of the fatigue damage reaches (Fiighs positive real number. Further, Goodman and Soderberg postulated
and Stevend1], pp. 190-19L By applying their hypothesis, that stress amplitude for fatigue failure is proportional to the dif-
Crandall and Mark([2], p. 117 obtained an integral expressionference between the material yield stress and the mean stress
for the expected number of cycles to fatigue failukg;, for a (Fuchs and Stepherig], p. 72. The exponential fatigue model

stationary narrow band random process. with mean stress effect thus is
Sa=(1-S,/S,)CN P, @)
% Ps(9) -1 S, is the oscillating stress amplitude aBg is the mean stres§,
Ng= f Lds} (1) isthe stress that causes yield or failure. For fully reversed cycling
o N¢(s,Sp) S,=0. See Fig. 1. Solving Eq2) for the number of cycles to
fatigue failure (N;) gives the form required for insertion in Eqg.
2).
psp(s) is the probability density of peaks in cyclic stress and Nf:C(l_Sm/Sy)bS;b ©)

N;(s,Sy) is the expected number of cycles to failure of a material
during sinusoidal cycling at stress amplitusl& he mean stress is In the limit asb=0, failure occurs at th€th cycle regardless of
. the stress amplitude. In the limit=cc, the failure stress is inde-
Equation(1) has been applied to stationary Gaussian randopgndent of the number of cycles.
processes by Wirschin@], Sobczyk and Spencer, J4], Bishop ~ The equivalent stress fatigue mod@fliL-HDBK-5G, 1994,
and Sherraf5], Lin [6], Crandall and MarK2], Powell[7], and Section 9.3.4.Pgives a relationship between cycles to failure and
Miles [8]. This paper develops methods to predict fatigue damag¥clic stress in terms of four parameteds,A,,Az,A4:l0goN
produced by non-Gaussian stationary narrow-band random preA;+A, log;d (1—R)"sS,— A,]. The oscillating stress ampli-
cesses consisting of the sum of finite amplitude randomly phaside is
sine waves. This is finite random narrow-band pink noise. The
single sine wave and the Gaussian process are the limit cases. The Sa=(Ag+10 A /ANTR2)/(1-R)As, (4)
results allow the prediction of the fatigue as a function of the . ) o )
number of sine wavegbandwidth, or equivalently, randomngss The stress rati® is the ratio of the minimum stress to the maxi-

as a parameter. mum stress during one cycle.
Application of Eq.(1) requires(1) a fatigue model, or data, for
the number of cycles to failure with constant amplitude cycling R=(Sn—S)/(SntSa) (5)

and, (2) the probability density of peaks during random cyclinge g ations(4) and (5) can be solved for cycles to failure.
Section 2 presents models for fatigue of materials including mean

stress. The probability distribution of the peaks in the finite ran- _ AscAs 1-As_ a 1A

dom noise time history is developed in Section 3. The Sections 4 Ny=10[2 382 (SmtS)™ = Aal™, - Sa>Sim (6)

determines fatigue life in closed form and by numerical integrq=his is the form required for insertion in EQ]_)

tion. Applications and comparisons with data are given in Sectionsgquation(6) has an endurance limit stress below which no fa-

5 and 6. tigue damage occurs. The oscillating stress amplit@jg)(at the

- endurance limit is found by settiny;=c0 in Eq. (6) which is
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF

. ; 3 1-Az—
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- equ_lval_em to solving 2382 (Sm+Sa) L A‘_‘ for the me?_n or
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Januar@Scillating stress at the endurance limit with the conditidgs
13, 2000; final revision, November 13, 2000. Associate Editor: A. Needleman. Dis-0 andS,+ S,,>0. For zero mean stress the endurance limit is

cussion on the paper should be addressed to the Editor, Prof. Lewis T. Wheeter, _ Ag i
Department of Mechanical Engineering, University of Houston, Houston, TX 77204IM A4/2 - Both the equwalent stress moqus.(4), (6)) and

4792, and will be accepted until four months after final publication of the paper itseﬂf]e EXpon.ential mOdéEqS-(Z): (3)) can be solved for mean stress
in the ASME DURNAL OF APPLIED MECHANICS. as a function of peak stress and number of cycles to failure.
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S,(1-S,C N ), exponential model (7a) at Ny=5x10° and N;=10° gives b=4.911 andC=1.545E 12
- (zsa)—A3/(l—A3)[10—A1/AZNf1/A2+A4]1/(1—A3)_Sa, l(Zl?Si)Zgl [2.030 E16 (MP&°'Y. These curves are shown in
equivalent stress (7b)

Tensile mean stress reduces fatigue life; compressive mean st@ssProbability Density of Peaks in Finite Narrow Band
increase fatigue life. The exponential and equivalent stress fatigRandom Noise

models are identical if there is no endurance limit or mean stres
S,=A,=0 so thatR=—1, b=—A,, andC=10%2"2"s,

Fatigue models are semi-empirical fits to constant-amplitu
fatigue data. For aluminum Al 2024-T3 with a notch factor
=15, A;=75, A,=-2.13, A;=0.66, A,=23.7ksi (MIL-
HDBK-5G [11], p. 3-113 in units of ksi (1 ksi=1000 Ib/sq in.
=6.895 MPa) A, has units of stress. With stress in mega Pasca
these are A;=7.5+2.1310g((6.895=9.286 and A, sine waves.
=23.%6.895=163.4MPa. The units ofA; are such that  The glemental narrow-band process is a constant amplitude
10122 has units of stres#\, andA; are dimensionless. sinusoidal stress time history.

If fatigue life is known at two pointsN¢;,S,1;N¢2,S,,, then
the fitted parameters and C in the exponential fatigue law are
b=—10g;d Ni2/N¢;1/10g1d Saz/Sa], C=N;; S, . b=~5 to 20 s()=acodwt+¢), O<t<T, a=0, O0s=¢<2m. (8)
for high cycle fatigue of most metal$/anson[12] and Bannan-
tine[10]) andC~ S whereS, is the yield or ultimate stress as carThe probability that the amplitud@) of stress cycle peak falls in
be seen by settinl;=1 andS,=0 in Eq. (3). For aluminum the range betweesands+ds is zero unless that range includes
alloy Al 2024-T3 withKt=1.5, fitting the equivalent stress modelthe amplitudea. Thus the probability density of the amplitude of a

constant amplitude sine wave is a Dirac delta function.

SThe spectral components of a narrow band process are assumed
o fall within narrow frequency band, typically one-third-octave
fand or less wide. Each time the mean vales) is crossed with

a positive slope, a single peak is generated before the axis is
recrossed. Positive peaks only occur above the mean value. The
eaks occur at nearly constant rgté]) as shown in Fig. 1 for a
arrow-band process consisting of the sum of two equal amplitude

ps,(s)=o[s(t) ~a] ©)
Sa3 S T . . . .
) Sa e Substituting this expression into E@l) reproduces the fatigue
o Su @ law for constant amplitude sinusoidal cycling.
o 7 § Consider finite narrow-band noise that is the sumvbequal
S, E amplitude @,=a,m=1,M), randomly phased sine waves whose
< A g frequencies fall in a relatively narrow bang,~ o, m=1, M.
a <
v A 0 M
NSITY —
. \/ g,‘}%%ﬁ';fgzga) s(t)—mz,1 anCof wmt+ ¢y,  Ost<T,
m
an=0, 0=s¢,<27. (20)
TME V The amplitudes,a,,,, are positive constants. The circular fre-
quency of each sine wavey,,, is a positive, nonzero integer
Fig. 1 Time history of a narrow-band random process with multiple of 277/T whereT is the sampling time interval. The num-
mean stress (S,,) and the associated probability density of the ber of sine waves in the serigd, is a measure of the bandwidth
peaks. Process shown is the sum of two sine waves. or randomness of the noise.
The phasesp,, in Eq. (10) are independent random variables
that are uniformly distributed over the range@,,<2.
100
- 600. .
1/(2m), if 0=<=¢<2w
% __— EQUIVALENT STRESS p¢m(¢ = 0 if 0> r >2 (11)
N MODEL (MIL-HDBK-5G) ) ¢ or ¢>2m
_ N
oW
= S0 140 The maximum value of the oscillating componeiit), Eq. (10),
§ “ EXPONENTIAL FATIGUE is the sum of the amplitudes of the sine wavecalla,,=0).
E .~ MODEL (FITTED)
; 40 \\
5 ) 4 200, % 1o
E 20 | _ § Smax* e} am ( )
» S——
0 . : - 0 =Ma, for a,=a, m=1,2,.M. (120)

10° 10 10° 10 107
CYCLES TO FAILURE .
The root-mean-squar@ms) of the sum of mutually independent
Fig. 2 Fatigue curves for 2024-T3 Al K,=1.5 with no mean  Sine waves over the ensemble of random independent sine waves
stress and sinusoidal cycling is the square root of the sum of the mean squares of the terms.
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Fig. 3 Probability density of amplitude for sum of randomly phased sine waves (Table 2)
Table 1 Fourier coefficients B; of M-equal-amplitude sine probability distribution. Case 4 of
Table 2.
M 2 3 4 5 6 8
Shax 2 2.45 2.83 3.16 3.46 4
S’ms
B, 1.03613 1.47952 1.54854 1.56185 1.53894 1.46782
B, —0.25911 0.10399 0.33872 0.62573 0.84299 1.14488
B 0.50665 0.13080 —0.2551E-1 —0.2748E-1 0.9322E-1 0.30870
B, —0.22002 —0.34356 —0.6865E-1 0.1071E-1 —0.1879E-2 0.2405E-1
Bs 0.36795 —0.4612E-1 0.11990 0.02888E1 —0.4861E-2 —0.6822E-4
Bs —0.19353 —-0.7622E-1 —0.5270E-1 —-0.3711E-1 —0.1235-1 —0.4310E-3
B, 0.30192 0.19239 —0.1186E-1 —0.4610E-1 0.8122E-2 —0.8269E-3
Bg —-0.17112 0.2985E1 —0.3011E-1 —0.4037E-2 0.2378E-1 —0.1955E-2
By 0.26396 0.5330E1 0.4651E-1 —0.3387E-2 0.4599E-2 —0.5061E-3
B —0.15644 —0.13365 0.2257E1 —0.8987E-2 —0.5762E-3 0.4020E-2
B 0.23347 —0.2219E-1 —0.7055E-2 0.1019E-1 —0.1168E-2 0.2896E-2
B, —0.14555 -0.4076E-1 —0.1767E-1 0.1525E-1 —0.2870E-2 0.3765E-3
B3 0.21531 0.10286 0.2601EL 0.1600E-2 0.1294E-2 —0.3401E-4
B —0.13510 0.1801E1 0.1312E-1 0.1589E-2 0.5600E-2 —0.5775E-4
Bis 0.19753 0.3304E1 —0.4767E-2 0.4262E-2 0.1160E-2 —0.1051E-3

(a) Computed with 20 terms in each sum.

ik

s,
/4,

i=k=0;
i>0,k=0;

VW21 =11 (km)?2 i=0:k>0,
[(—1)k=1]/(km)?, i>0,k>0
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Table 2 Probability densities for peaks in finite narrow band random noise with

amplitude spectral components, Eg.
=number of spectral components.

M equal

(10) ([13]). a=amplitude of spectral component. M

1 One Sine Wave M=1. a=2'?3, .. ps ()= ls(t)—a]

a+Eps (s)ds=1 for e>0.

2 Two Sine WavesM=2. a= S,
2

Ps,(8)= m/(2a)2—2’

0, s>2aors<0.

Jaa Ps, (d)ds~ (2/m)(ela)*? for e/la<1.

3 Three Sine wavesM=3. a=(2/3)'?S,,,s. Envelope distribution in terms of the complete elliptic

integralK, discussed in the Appendix.

16sa°
K \/[4a2— (s—a)?](s+a)?

, 0Oss=a,

4s 1
?\/[4a27 s—a)?](s+a)?

Ps,(8)= 4s [4a®—(s—a)?](s+a)?
2 \/16$a 16s

0, s>3aors<o.

<s=<3a,

fa“ps (s)ds~(2/7?)(ela)(3+In(16(a/€)®)) for e/a<1.

4 M Sine WavesM=2, 3, 4, 5...

Psp( S)=

a=(2M)"?S s

1 < -
M—a; B(M)sin(i7s)/(Ma)), 0<s<Ma,

0, s>Maors<0.

where Table 1 gives values & . See Blevind20] for nonequal amplitude case. An alternate expression is

a Cramer power series valid fekMa,

2 4
ie—szlzsfg(l_ 1 (1 S + S

psp(s): ms M

+ —
SI'I'Y\S I'ITIS 12M :

15 7s8 3s®
+ +
4S?ms lzsrms 12@[’1’15

1 ( 6s°

11 1 28> 3s* s®
8m?3

Both series converges most rapidly fdr>2.

+
Srzms 4 SI"‘I’]’\S 1 6 3845?[’{15

+0O(1IM%).

5 Infinite Sine Waves,M=w«, the Rayleigh distributiori[2]),

S

2 2
—s°/(2S;
(2Shg),

0=s<w.

1 2 M 2 1 M
S > ancodwnt/T+ by | dt== >, a2
T), | & 2 &~

(13
=1iMa? for a,=a, m=12,.M (130)
Note the rms and the maximum defined by Ed®) and(13) do

equal amplitudes, there is no chance the r&ig,,s will exceed
2.828. See Fig. 3. Table 2 provides a summary the probability
density of peaks in finite narrow-band noise with equal amplitude
spectral components. There are simple expressiord fed, 2, 3,
ande. The M=1, 2, and 3 probability densities have singular
points atS/S,,«=2%2 2 and 3, respectively, but like all probabil-
ity density functions, the area under the probability density curve

not include the mealiconstank stress. The maximum oscillating is unity.

stress isS,=Ma=(2M)*%S,... is all M amplitudes are equal.

The probability density of peaks for the process(&€. (10))

The maximum-to-rms ratio, which is a measure of randomnedey arbitrary integerM is given in Case 4 of Table 2 by two

increases with the number of component sine waves in(Hij.
M M 1/2
Smax
_ 12 2
=223 an /| 2 ah|
ms m=1 m=1

=(2m)*2,

(142)

for a;=a,=a,=a, m=12,.M. (14b)

equivalent series(1l) a Fourier series over the range of nonzero
probabilities, and(2) a Cramer power series which is adapted
from Blevins[13] but with corrections and additional terms. ks
approaches infinity, the central limit theorem implies that the pro-
cess becomes Gaussian and the distribution of peaks approaches
the Rayleigh distributiori(2]). This can be seen in Table 2, Case

SinceM is finite the probability ofS exceeding the sum of the 4b, in Cramer series by letting approach infinity and in Case 3
amplitudeqEq. (12)) is zero. For example fdvl =4 process with of Table 3 by settingy(1+b/2,00) =T (1+b/2).
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Table 3 Solutions for cycles to failure with exponential fa- Sm br S
tigue, Eq. (15) NF=C(17 g) [f s’ps (s)ds (15)
Sine WavesM Cycles to FailureNg
Sm)b bi2 The integration is made over the range of nonzero probabilities.
1 C(l S Sm2 ", or equivalenty, Table 3 lists exact solutions to E@.5) using the exact probability
( Sa\® densities of amplitude given in Table(&radshteyn, Ryzhik, and
c \ 1= S, Sa Jeffrey[14]). The random cycles to failure is proportional3gZ.
The Cramer power series for probability is used for the general
[ S b 12)~b case. These solutions are in terms of two special mathematical
2@ C(l §) Smem*2 T (14b/2)/T (1/2+b12) functions, the gamma functiohi(x) and the partial gamma func-
tion y(x,a), that are discussed in the Appendix.
C(l %) - ( +b M) Equation(1) is numerically integrated to obtain solutions for
S e 2 other fatigue laws or probability densities. Using the Fourier se-
3.M @b 1 1 11\1- ries probability density representati¢fiable 2, Case 4band the
X(l——+ . _) exponential fatigue law and Simpson’s’s numerical integration,
2 3
2M  12M 8M this is
% (a,0 C(l %) S22752I1(1+ b/2)

‘a)See Appendix for definition and evaluation pfa,x) andI'(a).
BCramer series, Casgb} of Table 2 used. Increasing number of terms in series

K .
b Cimk
Fparently does not substantially increase accuracy. X E —| B (M )s|n — (16)
©Crandall and Mark2]. =171 \K K

The stress range has been divided iKtantervals withds=As

. = ShalK.

4 Cycles to Failure With the equivalent stress fatigue model, numerical integration
The expected number of cycles to failure of a narrow band carried out over the stress amplitude range between the endur-

random process is found by substituting the peak probability demnce stress amplitudéS;,,—see Eq.(6) with N;=«) and the

sity of the peakgTable 2 and the sinusoidal cycling fatigue fail- maximum stress,,,,, (Eq. (12)) by dividing this range is divided

ure model(Egs.(3) or (6)) into Eq. (1) and integrating. into K stress intervals of siz&s=(Sya—Sim)/K. Simpson’s rule
Substituting Eq.(3) into Eq. (1) gives the following equation of numerical integration is applied. With narrow-band finite ran-

for cycles to failure for the exponential fatigue law: dom noise and the equivalent stress mdée]. (6)) the result is

o -1
% X 2 (B(M S|n(Mz)/1OA1[2A3sA3(Sm+s)1A3—A4]A2)ds} (17a)

NF:

Ma—Sim « < Bi(M)sin(i m(Sim +kAS)/(Ma))

T 10K Ma & = [27%( Syt KAS)3(Syy+ Sy + KAS) T A= A, ]2

-1

(1)

Good numerical accuracy requiris=20 or more integration in- processEq. (1)) equal to that of a sinusoidal procedx. (3) or
tervals and approximately 10 to 15 foM=3,4,5... . Notea Eq. (6)) and solving for the sine amplitude. For the exponential
=(2Sms/M) 2. fatigue law and equal-amplitude random sinusoidal terms in the
The exact probability densities for thd =2 andM =3 cases process, the equally damaging sinusoidal amplitude is
(Cases 2 and 3 of Table) give better accuracy than their series w 1o
approximation(Case 4 of Table 2 The numerical integration of S,|equal-damage= f sPps (s)ds| (18)
Eq. (1) across singularities in these distributions can be accom- 0 ‘
plished by creating small stress intervatide about the singu- The right-hand side is only a function of the sldpef the fatigue
larities ats=2a ands=a in the M=2 andM =3 distributions, curve and the bandwidtM. The ratio of the equally damaging
respectively, and integrating the probability densities across tbgusoidal amplitude to the rms stress fde= 1 (sinusoidal time
singularities while holdingN;= constant, as indicated in Table 2.history), M=2, M=5, M=20, andM =%, Eq. (36) are given
In general, numerical evaluation using Fourier series represerfable 4. Numerical integration of E¢18) was used foM =3 in
tion of probability density, Eqs.16) and(17), gives better accu- this table. ForM =1 or a very steeply dropping fatigue cunte,
racy than using the general Cramer series solution, Case 3<08, the equivalent amplitude is“2 times the rms; it is larger for
Table 3. more componentM and flatter fatigue curves.
Following Crandall and MarK2], the damage per vibration
. . cycle is defined as the rms stress times the probability density of
5 Randomness and Fatigue Life the stress amplitude, divided by the number of cycles to failure at
We can define a sinusoidal process which will generate tligat stress amplitude. The most damaging stress with the Rayleigh

same average fatigue damage per cycle as a narrow band randistribution and the exponential fatigue law is €b)Y?S,s.
process by setting the number of cycles to failure of a rando8tress amplitudes up to twice this value contribute significantly to
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Table 4 Ratio of equally damaging sinusoidal amplitude stress to random RMS stress as function of random bandwidth (M) and
fatigue slope (b)
Sa /Srmsfrandom
M

b 1 2 3 5 10 20 o

2 1.4142 1.4142 1.4185 1.4143 1.4142 1.4142 1.4142
3 1.4142 1.5030 1.5214 1.5349 1.5451 1.5500 1.5550
4 1.4142 1.5651 1.6073 1.6383 1.6605 1.6712 1.6818
6 1.4142 1.6475 1.7380 1.8078 1.8583 1.8823 1.9064
8 1.4142 1.7007 1.8308 1.9419 2.0248 2.0642 2.1039
10 1.4142 1.7384 1.8999 2.0504 2.1689 2.2251 2.2826
15 1.4142 1.7981 2.0148 2.2477 2.4624 2.5637 2.6730
20 1.4142 1.8337 2.0862 2.3805 2.6929 2.8378 3.0096
30 1.4142 1.8751 2.1719 2.5491 3.3039 3.2039 3.5842
50 1.4142 1.9144 2.2561 2.7240 3.4565 4.1482 45116

the overall damage accumulation as shown in Fig. 4. So for thgtigue law givingS,=151N; ®**!, ksi. dividing the stress by

flatter fatigue curves or broader probability densities, the mogt/2
damaging stress is pushed towards the rare, high amplitude, stresg,

cycles.

As noted by Wolfe[15], the random vibration amplitudes pro-
duced by standard electromechanical shakers are not Rayleigh
tributed beyond three to four times the rms. Figure 5 shows
results of fatigue testing a 321 austenitic steel tube with a fitti
on a shakefPozefsky{ 16]). Two sets of test were madg) with
sinusoidal input, an@®) using narrow band random noise as inpu
to the shaker. The sinusoidal data was fitted with an exponent

1.0
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0.7
0.6
0.5

NORMALIZED DAMAGE

MOST

DAMAGING \ b
AMPLITUDE \\
L l N
" 1 S
0 1 2 3 4 5 6
Sa/Sms

Fig. 4 Fractional

(Eqg. (21)) and cumulative damage with Ray-

leigh distribution. Curves have been normalized to a maximum

of unity. Material is Al 7075-T6,

25.

20.
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K=2, b=6.15.
T 1 T T T TTT17[ T T T rrrrr
.
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Fig. 5 Sinusoidal and random fatigue data for austenitic stain-
less steel 321 in comparison with exponential fatigue law fits

and predictions. Random fit is identical to
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M=5 prediction.

gives the sinusoidal result in terms of rMSc sine

7N; %3 ksi rms. Fitting the random test results with the

same exponent gav8ms randon=79-% Nz °*%, ksi rms. The
\gnitude corresponds to a sine-peak-to random rms value of
1.3/79=1.91. Interpolating in Table 4 this gived ~5, rather

tnt anM =< which would give the Rayleigh result.

A second comparison of fatigue data taken with both random
nd sinusoidal cycling is given for annealed titanium Ti-6Al-4V.
qhneider’s [17] fit to his random fatigue data isNg

=10"*% g, >% whereas the sinusoidal data of MIL-HDBK-5G
([11] p. 5-68 givesN;=10'*18 "%, This impliesh=7.55. By
equating cycles to failure, the ratio of the sinusoidal peak stress to
the random rms stress is found as follows:

10 10°
1.74 1.88

10°
2.04

10
2.21

Cycles to Failure
Sa/Sims

Comparing this table with Table 4 using~8 suggests that a
finite random noise witiM =4 to 15 is an appropriate model for
this random process. It also suggests that the Rayleigh distribution
is conservative for computation of random fatigue and that “3-
sigma” criteria([3]), Sequiv/ Sms= 3, is overly conservative for all

but the flattest fatigue curves.

6 Example
Application is made for the aluminum alloy Al 2024-T3 sheet

with a notchK;=1.5 at room temperatur¢11], p. 3-113—also
30. " T T 3200
h
25.
-150.
@ 20.}
x
173
a
a 15. | J
o M=1 (sine) 100.
ol =
M=6 Rayleigh
0. I 1 1 0
4 5 6 7 8
10 10 10 10 10

CYCLES TO FAILURE, N
Fig. 6 Effect of increasing randomness of fatigue of Al

2024-T3 with K;=1.5 and no mean stress. N is number of ran-
domly phased sine waves in the process.
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30. r - =
\\ oo 200 K(x)
25. K, =
d1s0. In(x) =
Z 20. M =
- m =
A AN Ne =
& 15. o~ {100 F
— N ~ . .
» " S~ Mean Stress = -20 ksi
4 ~— (138 MPa)| @ N¢ =
«c 10.L e e — =
e ean Stress =0 ]
~~~~~~~~ s0. Py(®) =
5.1 e ] psp(s) =
Mean Stress = +20 ksi R =
(+138 MPa)
0. 1 1 L 0
10* 10° 10 10 10° Ss=
CYCLES TO FAILURE,N Sa =
Fig. 7 Effect of mean stress on M=6 finite random noise in- Sim =
duced fatigue of Al 2024-T3 with K,=1.5. Note RMS stress re- s =
fers to oscillating component only. m
Smax -
Sims =
see Section 2 The finite random fatigue curves for zero mean t =
stress are shown in Fig. 6 for sinusoidal oscillatiov =1, S(x) =
Smax!Sms=2Y?), random oscillations with two spectral compo- I'(x) =
nents (M =1, Sya/Sme=2"9, six spectral componentdi=6,  v(a,x) =
Smax/Sms= 3.46), and the Rayleigh distribution which is achieved ¢ =
in the limit of infinite spectral componentS(.,/Sms=>). Fa- w =

tigue life decreases as random bandwidth of the pro@é3sn-
creases. Figure 7 shows that a tensile mean stress decreases ran-
dom fatigue life. Appendix

complete elliptic integral of first kindsee Appen-
dix)

fatigue stress notch factor

natural logarithm

integer number of sinusoidal components in process
integer index of sinusoidal component

expected number of cycles to failure for random
stress cycle

expected number of cycles to failure for sinusoidal
stress cycle

probability density of phase

probability density of stress amplituce

ratio of maximum to minimum stress over one
cycle

stress

amplitude of cyclic stress

stress amplitude below which no fatigue damage
occurs

mean stress

maximum value of oscillating stress

root mean square stress

yield stress

time

Dirac delta function

gamma functiorn(see Appendix

partial gamma functiorisee Appendix

phase angle

circular frequency

Evaluation of Special Functions. The gamma functiof’(x)

7 Conclusions

Analysis has been made to determine the fatigue life of maté%
rials for stationary finite narrow-band random noise consisting
the sum of a finite number of randomly phased sine waves. The

and the incomplete gamma functioy(a,x) are defined by the
lowing expressions(Abramowitz and Steguil8], pp. 255,

%

e %t 1dt

l"(a)=f
0

y(a,x)= J'Xe"ta’ldt=l“(a)—l“(a,x)
0

following are the conclusions of the analysis.

1 Fatigue damage during this non-Gaussian, finite, pink noise
is a function of the noise bandwidth, that is, the number of com-
ponent sine waves in the sum, the fatigue slope, mean stress, and
the rms stress.

2 A method of computing cycle to failure for a finite narrow
band noise consisting of the sum of randomly phased sine waves
was developed.

3 The fatigue damage for a given rms stress increases with thieere are relatively simple expressions available for evaluation of
random band width of the process. The results fall between twlee gamma functiottAbramowitz and Stegufil8], p. 255.
limit processes, the single sine wave, and the Rayleigh distribu- ~(2m) Y0 Vo X(1 4 (120 + .. .), x>1

tion. F(X):[(n_l)l

4 Comparison with data suggest that extreme amplitudes of
nﬂwe incomplete gamma function is related to the area of the upper

%

where F(a,x)=f e 2" 1dt.

X

integer x=n=1,23 ...
normally operating machinery are not Rayleigh distributed a

that finite random pink noise can provide a more representati . : IS -
and less conservative model than the Rayleigh distribution or tgagl of the statistical chi squared distributi@ (Abramowitz and

3-sigma criterion. egun(18], pp. 940-941
y(a,x)=T'(a)*(1-Q(2x|2a))

Tables of the chi-squared distribution are available in statistical
and mathematical literatur@l7]), for example.

Nomenclature

APy = Eare;z;eters in equivalent amplitude stress model, These functions are available in software. For example in Math-
. Q. litude of si idal st ilati ematica[19], I'(a) = Gammaa] and y(a,x) =Gammaa,0x]. In
= ampiitude of sinusoidal stress oscillaton EXCEL 2000 ([20]) spreadsheet they are expressed in terms of
am = ampl!tqde (_)fmth smu'smdal stress q_scﬂlaﬂon_ related functions, I'(a) =EXP(GAMMALN( a)) and vy(a,x)
B; = coefficient in expansion for probability density of =EXP(GAMMALI\1( a))* (1— CHIDIST(2*x,2* a)) '
b = ﬁ]rcglggd;’ ;gglee;, eii)ii:ntial fatigue model on The Bessel Function of zero ord&j(x) has a series forms. The
log-log plot complete elliptic integral of first kind(x) has approximate ex-
C = exponential fatigue model parameter, E8) pression(Abramowitz and Stegufil8], pp. 360, 591
Jo(X) = Bessel function of first kind and zero ordeee c (= Lx2)k
' Appendi Jo(x)= >, T
I,i, K, k = counting integers i=o kKIT(k+1)
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Open-Loop Nonlinear Vibration
Control of Shallow Arches via
Perturbation Approach

An open-loop nonlinear control strategy applied to a hinged-hinged shallow arch, sub-
jected to a longitudinal end-displacement with frequency twice the frequency of the sec-
ond mode (principal parametric resonance), is developed. The control action—a trans-
verse point force at the midspan—is typical of many single-input control systems; the
control authority onto part of the system dynamics is high whereas the control authority
onto some other part of the system dynamics is zero within the linear regime. However,
although the action of the controller is orthogonal, in a linear sense, to the externally
excited first antisymmetric mode, beneficial effects are exerted through nonlinear actuator
action due to the system structural nonlinearities. The employed mechanism generating
the effective nonlinear controller action is a one-half subharmonic resonance (control
frequency being twice the frequency of the excited mode). The appropriate form of the
control signal and associated phase is suggested by the dynamics at reduced orders,
determined by a multiple-scales perturbation analysis directly applied to the integral-
partial-differential equations of motion and boundary conditions. For optimal control
phase and gain—the latter obtained via a combined analytical and numerical approach

with minimization of a suitable cost functional—the parametric resonance is cancelled
and the response of the system is reduced by orders of magnitude near resonance. The
robustness of the proposed control methodology with respect to phase and frequency
variations is also demonstratefiDOI: 10.1115/1.1459069

resonance mechanisith5]). Yabuno et al.((6]) showed that a
rametric resonance in a cantilever beam can be suppressed by
aching a pendulum absorber to the beam tip. Using a more

Introduction
Shallow arches are common structural members widely usgﬁ

either in civil engineeringle.g., bridges or in mechanical and :

; ) ' theoretical framework, Maschke et d17]) are currently develop-
aerospace engineering as $ub(_aleme_nts of more complex structulhes.a port-controlled Hamiltonian forérJnL]Jiation for the)(ljynamicg of
More recently, they are being investigated also as components 4 @ e }

o nonlinear distributed-parameter systems to represent the energy
nanostructures. External resonant excitations may be sources, 8f

undesirable flexural vibrations which may be either catastrophic. > through the boundaries of these systems aimed at extending
) h ; y . P me control schemes proposed for nonlinear finite-dimensional
(due to coupling with torsional modes as, e.g., in the collapse gystems([S])
L?geﬁﬁgo(;zz t'\cl)afrzract)iwulzrli%?r:s?&ﬁ)yu?gnIrﬁﬁr?]?él¥n;?ggﬁi? t?netﬁgrs' When excitations and actuations enter a system at the same
. gue. 7 yne Y oint and in the same way, direct cancellation of the disturbance,
systems is the parametric resonance which can be excited by |

A / éEuIting in no net energy transfer to the system, is possible. In
gitudinal end-dlsplacements or loads qbov_e a threshold {p/p! systems such as the one under consideration, wherein the actua-
and can cause violent and complex vibratigf#).

tion and excitation are noncollocated, direct cancellation of the

To cope with _these Iarge-amplltudg V|brat|_ons, an open-lo stem disturbance is not possible. Furthermore, the linear modal
con_trol strategy Is deyeloped f(_)r a hlnged-hlnged _shallow ar ojection of the control force onto the antisymmetric modes is
excited by a Ior!gltudlna}l end-cjsplacement which is parametiy, entailing that the system is linearly uncontrollable with the
cally resonant with the first antisymmetric mode. The control irgjyen control input. However, due to the system structural nonlin-

putis a transverse fqrce at the midsp&i. 1). . earities, the nonlinear controller action may be exploited to cancel
The task of mitigating the effects of resonant disturbances s external principal parametric resonance. Therefore, the same
as parametric excitations has been tackled in a number of d'ﬁer%"auator, optimally collocated to control symmetric modes, may
ways ranging from direct disturbance rejection via classical CORg gjl| employed for controlling antisymmetric modes. One of the
trol theory techniques to the use of vibration absorbers attacheoE ectives of this paper is, in fact, to show how an intelligent

the main system as dedicated substructures. For example, a ndlisioitation of nonlinear phenomena can greatly expand on the
ber of works have addressed both theoretically and eXpe“me”taéB(pabilities to control a distributed-parameter system.

the problem of controlling transverse oscillations in distributed- A girect perturbation expansion of the system dynamics facili-
parameter systems by parametric-type control acti@d]) or by  {ates understanding of the mechanism by which the full nonlinear
coupling autoparametrically the system to an electronic circUifoator input may be used to suppress the resonant part of the
thereby exploiting the saturation phenomenon due to a 2:1 intergkitation and further reduce the residual steady-state oscillations.

—_ The key mechanism here used is a subharmonic resonance of
To whom all correspondence should be addressed. _ i i f ;
Contributed by the Applied Mechanics Division of The American Society opr.d.el; one-half arising from the quadratlc nonllnearlt(dse to
Mechanical Engineers for publication in the ASME Journal of Applied Mechanicénltla_ curvatu_ré. . . .
Manuscript received by the ASME Applied Mechanics Division, Oct. 18, 2000; final This work is not the first to examine the effects of the interac-

revision, Oct. 25, 2001. Associate Editor: N. C. Perkins. Discussion on the paggnn of parametric resonances with subharmonic resonances of

should be addressed to the Editor, Prof. Lewis T. Wheeler, Department of Mechani, _ R _ _Af
Engineering, University of Houston, Houston, TX 77204-4792, and will be accepteajber one-half although for single-degree-of-freedom systems

until four months after final publication of the paper itself in the ASMBEJBNAL OF only ([9]) In a previous work by the same auth(ﬁ[$0]), Si_m”ar
APPLIED MECHANICS. concepts were employed to address noncollocated disturbances

Journal of Applied Mechanics Copyright © 2002 by ASME MAY 2002, Vol. 69 / 325



w(x,t) Pw  d'w o d%y [Low dy

—+t———| — —dx
LW TU(t) a2 ox* dx2)o ox dx
A e B Uy COSLU Aw (towdy 1 d% (1 ow)?
> > [ — — —dXx— = — _
. X, U P ax? Jo 9% dx 2 dx2Jo\ ox
X
, () ) 1 0°w 1/ aw\?
T T e — —_—
1 2 axz 0 X X

Fig. 1 Shallow arch geometry with the disturbance and the IW 1
control input =— GVZCE + €"3U(t) 5( X— E)

@

via nonlinear actuator action in a pendulum-type crane architegnare €"2c=¢12/JmEl,e"U, =0 I4(rEl), and e"wu(Lt)
ture. It is worth pointing out that the use of a perturbation tech:-l](I D2, with e der;otingca sTnaII non’dimensional nL;mber
nigue, namely the method of multiple scales, is here aimed ed'as a Bookkeeping device
designing the type of control inputs rather than simply at obtain- or hinged-hinaed arches tHe boundary conditions are
ing closed-form approximate responses of the system to externar 9 9 ’ y
disturbances. 92w

The control strategy is referred to as “open loop” because nei- w=0 and —>=0 at x=0 and x=1. 3)
ther the system states nor a measured output are employed in IxX
direct feedback. Nevertheless, the approach tacitly assumes directhe linear unforced undamped problem is obtained from Eq.

availability of the disturbance levels and relative phases. In pr. by dropping the damping term, the disturbance, the control
tice, these values might be directly measured or estimated throygkze, and the nonlinear terms: that is,

use of an augmented state observer although this may introduce
significant complexity. Also, determination of the resonant- Iw Pw  dtw o d%y (Low dy
excitation character could be extracted from base-excitation mea- e +Lw= e + ot A2 S ox dx x=0 (4)
surements by means of phase-locked-loop electroqits]). 0
However, the control methodology is shown to be robust witith boundary conditiong3). In Eq. (4), £ denotes the linear
respect to limited phase and frequency variations. stiffness operator.
Because the linear unforced undamped problem is self-adjoint,
the eigenfunctionsp,,(x) are mutually orthogonal and they are

normalized as follows:f §émdndX={dmdn)=Smn, {BmLdn)
=wﬁ5mn where &, is the Kronecker delta. For a simply-

Equations of Motion and Problem Formulation supported shallow arch with initial shapf#(x)=Db sinzx, the

Nonlinear vibrations of shallow elastic arches around the initi%elggr(ieensmodes are readily obtained in the form of the trigonometric

configurationy are governed, in dimensional form, by the follow-

+€"u(1) W + dzlﬁ)
1y ; -
€ ax?  dx®

ing integral-partial-differential equatioth12]): éa(X)=12 sinnmx, n=1,2,. .. (5)
and the associated natural frequencies are given dhy
Pw d'w  EAd%) (lowdy . EA. . Pw =721+b?%2 andw,=n?7?, n=2,3,.... A few bimodal two-
mﬁJr IF_TW a—»d—A X |—U(|.t)ﬁ to-one and one-to-one internal resonances may be possible in
X X" Joox dx X hinged-hinged shallow arches.
EA W (low dif . EAd2) (' ow 2 In the next section, we develop an .operj-loop cqntrol strategy to
—_ | = Ldx=——| | = reduce the nonlinear resonant vibrations arising from the
I ox? Joox dx 2l dx? Jo\ ax boundary-excited principal parametric resonance of the second
. a2 mode when this mode is away from the mentioned internal reso-
EA &ij' ow\|” . nances.
- = = — ] dx
2l gx2 Jo\ ox
W o ] . d¥y Open-Loop Control Of The Principal Parametric Reso-
= e FUD x5+ Uy o (1) nance Of The Second Mode

In this section, we construct the response of the system to a
principal parametric resonance of the second mode when no in-
&:Irnal resonances engage this mode with any other mode and the
Sy'stem is subjected to a control force introduced to suppress the
principal parametric resonance and further minimize the overall
steady-state vibrations. The boundary disturbance is sinusoidal;

wherem is the mass per unit length;is the span of the arcti
and| denote the area and moment of inertia of the cross secti
respectively;c is the coefficient of linear viscous damping;is
Young’s modulusu(l,t) andU(t) represent the prescribed end
displacement(_external boundary disturbancend the. control namely,u(1,t) = ug cosQt with Q~2aw,.

force at the midspan, respectively; addienotes the Dirac delta  1he ordering of the excitation and damping demands that
function (see Fig. 1 for the definitions af, x, andw). Using the  —;,,—1 andv,=2. This ordering promotes the excitation to first
following nondimensional variables and parameters:x/l, ¢  order to activate the principal parametric resonance. Further, the
=gir, w=w/r, t=tJEl/mI* (r is the radius of gyration of the control input is introduced also at first order so as to balance and
cross sectiop Eq. (1) is transformed into its simplest nondimen-possibly inhibit the external principal parametric resonance. On
sional form as the other hand, the damping force is demoted to third order where
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there appear the secondary-resonant terms produced by the corialer €2

force and the resonant effects of the structural nonlinearities yield-

ing the frequency correction. Dow,—v=—Dyw; ©
We assume the control signal as a pure tone; thatigt) P 1 d

=U, exp((Qet+ ) +cc where cc denotes the complex conju- p & rv - oy ﬂJ %—(’/jdx

gate of the preceding term. The objective is to design a control 2 2 1Tk Jo ox dx

term at first order that is capable of producing resonant terms at

second order counteracting the effects of the principal parametric 1.d%p (1 owy)2 1 9w, T
resonance which are proportional foexp{w,t). Here, A indi- I X 5 5 (uge0+co)
. X“Jo ox
cates the complex-valued amplitude of the arch response at the
natural frequency of the second mode,} and the overbar de- (20)

notes its complex conjugate. Hence, to create nonlinear controlgr 3.
S rder €”:
terms at second-order proportionalAcexp(ws,t), the control fre-

quency needs to satisfy the relatiohQ).*w,=w,. Conse- Dowz—v3=—D,w;—Diw, (11)
quently, we choosé€).~2w,. In addition, it is required that the
resulting nonlinear controller action have nonzero projection onto *wy (Low, diyr
the mode to be controlle@.e., the first antisymmetric mogleThe Dovg+ Lwg=—Dyv1~Dyvy+ WJ o ax %
designed control input is thus expected to produce resonant terms 0
via a one-half subharmonic resonance. 2 1 2 1

The method of multiple scales is employed to determine a wf %d—w X d—l/f %%
third—order uniform expansion of the solutions(@f and (3). As ax? Jo ox dx dx?Jo 9X 09X
mentioned, the resonant dynamics arising from the disturbance
and control input will appear at second order. However, to capture 1 0%wy [ ow,)? d
the nonlinear frequency correction, we seek a third-order expan- *t3 ax2 Jo | ax X= 2y
sion. Consequently, one needs to use the method of reconstitution
([13]). To obtain consistent reconstituted modulation equations, 1 5w, .
the equations of motion need to be cast as a system of first-order + = (uge'®To+cc) (12)

equations in time(i.e., state-space formulatipnfirst, and, then, 2 gx?
they can be treated with the method of multiple scales. Therefofgye poundary conditions at all orders are given(8y

we first rewrite Eq/(2) as a system of two first-order equations in - gecayse the second mode is directly excited by the principal
time by adding the equation=v and puttingv instead ofw in  parametric resonance of the disturbance and indirectly by the sub-
the equation of motion. Moreover, we directly attack the equatiofgrmonic resonance of the control input; moreover, because there

of motion and boundary conditions instead of treating finiteare no internal resonances involving this mode, we assume the
degree-of-freedom discretized versions. In fact, it has been exteatution at order as

sively shown that treatment of a discretized set of distributed- T QT+ o)
parameter systems with quadratic and cubic nonlinearities may Wy =A(T,Tp)e'“2Togh,(x) +U(x)e! P To" Ve

lead to erroneous quantitative and, in some cases, qualitative re- 0T,

sults([14,15)). Thus, we overcome the problem of order reduction +B(x)e™o+ce 13)
and the associated problems as spillover effects which are critioedere the functionéf,(x) andB(x) are solutions of the following

when designing control laws for such systems. boundary value problems:
We seek a third-order uniform expansion in the form 1 1
3 cuc—4w§uc=§uca( X— 5) (14)
WX, )= ewy(X,To,T1,To) +
k=1

(6) 1 d?
3 LB-4w5B= Equ—f. (15)

X

v, )=, €vp(X, T, Ty, To)+
k=1 The functionl/, can be expressed as an infinite series of the

whereT,= €t are the time scales. Then, the first derivative wit§igenfunctions in the form

respect to time is defined @dt=Dy+ eD,+ €2D,+ where 1= & (1/2)

D,=d/dT, . To express the nearness of the principal parametric U(x) = _UCE L¢2k+1(x)

resonance, we introduce the detuning parametesuch that() 2 750 wiy— bl

=2w,+ eo. We assume at this stage that the excitation and con-

trol signals are phase-locked and one-to-one; thddjs; () (this U, sin X+i sin((2k+1)(#/2))
assumption will be later relaxgd T a2 TR L T T A
Substituting(6) into the system of first-ordefin time) equa- ™| b"~126 k=1 (2k+1)7-64
tions of motion and boundary conditiori8), using the indepen-
dence of the time scales, and equating coefficients of like powers Xsin(2k+ 1) mwx|. (16)
of € yields
Order €

On the other hand, the functidf can be readily obtained as
Dow;—~v;,=0 (7

1

1 B(x)=—
D0U1+£W1:EUCeI(QTD+¢C)5 X_z

u
mb sin . 17)
72(b%—
Substituting(13) andv ; = Dyw; into the second-order problem,
1 d? Egs.(9) and(10), we obtain
(8)

+ = —uge'®To+cc -
2 dx? DoWy—v,=—(D;A)e' “2Togh,(x) +cC (18)
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. — 1 )
Dovot Lw,= —i wz(DlA)e'sz(’(ﬁz(X)+Ae'(“’2T°+UT1)¢5( (B"y")+ EUB+e'¢'C<Mé¢/'>)

. 1 . . 1

+Ae|(3w2T0+o'Tl)¢g( <Br ¢r>+ EUB+ gl l,//c<u(l: ¢r> +e|(4w2T0+20'T1+21//C)(§ wrl(uéu(l:>+u g(ué¢r>

. 1
+el(4w2TO+2(TT1+1//C)(u Z<B’ 1!’,>+B”<u{:llf’>+ wu<ué81>+ zuBug)

. 1 1
+el(4w2T0+2¢rT1) §¢’,<B/B/>+B”<B’ lﬂ')‘i‘ EUBBN

1 221wy T, g 1 = Iz rgr i, Va1 % ’opr Iz 12 ” [
+ EA e”"2 01// <¢2¢2>+ EAA‘// <¢2¢2>+e C(Z/{C<B ‘r/j >+B <Uclr// >+l// <uc8 >)+uc<ucl// >

1 1 1
S WU+ BB Y'Y+ 50/ (B'B')+ 5 ugB' +cc (19)

where the prime indicates differentiation with respectxidBe- 2i w,(D A+,uA)=aA2K+a A (25)
cause the associated homogeneous problem admits nontrivial so- 2-e S

lutions, the resulting inhomogeneous problem, Egg), (19), and  \here theeffective nonlinearity coefficies given by

(3), possesses solutions only if solvability conditions are satisfied.

The solvability conditions of Eq$18), (19), and(3) demand that

the right-hand side of Eq$18) and (19) be orthogonal to every a=(drd,
solution of the associated adjoint homogeneous problem. The
transposes of the solutions of the adjoint homogeneous problem
are (wy,1)p(X)exp(—iwcTp). Hence, imposing that the right- =87% Db
hand side of Eq918) and(19) be orthogonal to these adjoints, we
obtain the following solvability condition:

3
204" xa) + (4" x3) + §<¢é¢é>}

o 2 + ! 3 (26)
b2+2 Db%—126 '

On the other hand, the coefficient of the linear frequency shift is

2iw,D A=A TTI(K, +€'%eK,) (20) given by
where theexternal parametric excitation coefficieahd thesub- 2 2 2
: ; . ] 16Ug b T
harmonic control gairare given, respectively, by o= — =g
(b%+2) | 74 (b?—126)2 2
o , .1\ 25207 ,
Ki=($32)| (B'¢')+ 5 g = 16 (21) . 500772b2uB—16b(b2—1)UCuB+ (6372ug—Ub)?
and m2(b?+2)(b?—126)2 47%(b?—126)2
(27)
n ’ ! 4b
Ko= (ol Uetp')=— mUc- (22)  where use of the phase conditign=2n= was madethis con-

dition will be discussed in the next sectjon
Substituting(20) into (18) and(19), we seek the solutions of the Employing the method of reconstitution by substituti(2f)

resulting equations along witt8) in the form and(25) into A= eD A+ €?D,A+ . . ., andsettinge= 1, we ob-
_ . _ tain the normal form governing the modulation of the amplitude
Wo=[ x1(X) + €' Vex,(x) JA€ (“2To" T 4y 5(x) A2e?!w2To and phase as
+ xa()AA+ xs(X) + € Yoxs(x) JAE Bw2TotoTy) 2iwy(A+pA)= (K +e¥eK,) el A+ o A+ aA?A.  (28)
+ [ x7(x) + €' Peyg(x) + &2 ey qg(x) ]! (A2Tot 20T 4y (x) The deflection of the arch, to second order, is given by the sum
v of (13) and(23) with the complex-valued amplitud® being gov-
+e'ex1u(x) +cc (23)  erned by the reconstituted modulation E28).
vo=[ 71(X) + €Y, (x) JAE @2Tot oT1) 4 5 (x) AZg2iw2To Control Input Design. Our objective is the reduction of the
_ ) _ overall parametrically excited vibrations. Therefore, to optimize
+ 72(X)AA+[ 75(X) + €' e pg(x) AL B@2ToroT1) the nonlinear control action, we choose the following cost func-
) ) ) tional:
[ 77(0) + € () + €2 e pg(x) |l (A02To 2T 4 ) O
Feeny(x)+ec (24) i= " Cwixtand 20
11 - “o=t=T, Ow(x, ;8 “dx (29)

The second-order displacement and velocity fields depend on the
shape functiong; and »; . The functionsy; are solutions of a where T, is the period of oscillation and,, is the maximum
number of boundary value problems, E¢#0)—(49) with bound- stable value of the real part of the complex-valued amplitde

ary conditions(50), reported in the Appendix. The functions gov-the disturbance frequency detuning This cost is calculated
erning the system response at first and second-order are showhdsed on steady-state rather than transient behavior. Hence, it re-
Fig. 2 for the value$=16.5,uz=1, andU.=28.936. Using the flects the cost predicted over long periods of operation where
solutions at second order, Eq®3) and (24), and substituting transient effects are negligible. The constraint for the optimization
them into the third-order problem, Eq4.1) and(12), we impose problem is given by the reconstituted modulation E2f). The

the solvability condition governing at this order the dependence ddbmain where minimization aj is sought is spanned by, and

A on the scal€l,; that is, .. Itis clear that if we seek conditions for minimizirag,, then
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004, (8) 004 (O)

0.00 0.00
-0.04 - -0.04 —
(c) (d)
0.004 - /8 X2 0.50 -
1 Xs
0.000 0.00
-0.004 - -0.50 -
Xs
(e) (
0.003 - ZG xs 1E-5 1
0.000 0E+0
-0.003 - -1E-5 ]
(9) (h)
5E-5 - 2E-4
0E+0 | 0E+0
-5E-5 - -2E-4 -
(i) 0]
1E-4 - 2E-4 - /\
0E+0 ] 0E+0
AE-4 - -2E-4 4

Fig. 2 First and second-order shape functions: (@ U.; (b) B; (¢) x1 and xy; (d) x3

and x4; (e) xs and xs: (f) x7; (@) xs: () x9: (/) x10: @nd (j) x11 when b=16.5, ug
=1.0, and U,=28.936

we can more efficiently minimizé within the design parameter whereas the phase is given by t&nIM(K§/4w§—M2)’(1’Z).
subset where the minimum @iy, is attained. The form of the  \we gain more insight into the effects of the control scheme by

effective parametric excitation coefficiefsum of the external preliminarily investigating the system uncontrolled dynamics ex-
parametric and subharmonic control coeffici¢stsggests that we (iiaq by the principal parametric resonance. In this case, the

have the ability to affect this coefficient through the control gai ) : - .
and phase. Then, the objective is to lower this coefficient belo clu(;an_cy responjieqﬁanon &an_tl)(e ob%med fﬁf_?)ﬂbdy puttfm%
the activation threshold of the parametric resonance. In this wage =0 into o5 and K, (hence,K.=K;). The amplitudes of the
we prevent the principal parametric resonance from being adfontrivial uncontrolled responses are given by

vated and the only stable solution becomes the trivial solution.
It is clear that the magnitude of the overall effective parametric a Osuc [K? 4,2
—| —g— — =+ — —4u
w32 w32 w%

1/2

resonance coefficientiks + K, exp(yo)—is minimum with re- a=2 (33)

spect to changes in the control phase wkerexp(y) lies in a
complex-vector direction opposite ko, . Inspecting Eqsi21) and  seeking conditions for the existence of real solutions gowe

(22), we note thak; andK, have always opposite sign; henceconcjude that there are three regions in the plane of disturbance
the control phase condition is easily obtained fas=2nm, n  amplitude and detuning as shown in Fig(@hereb=16.5 and
=0,1,.... Using this condition, we can transform the complex;, —0.05). Namely, (i) in region | Us<Uge V o OF o>
¥a|ued modulatlon.Ec(28) into the real-valqed modulation equa’—Usyuc/w2+(Kf/w§—4M2)1’2), there are no solutionsfii) in

ions for the amplitude and phase. To this end, we assume the. I . on— (K2 02— A432) 2= e — /
following polar transformatioA= 1/2a exp(B)exp(—ioy/2t) and reg|02n ) 2(1, Tsuc! @2 (Ky/ w3 =40%) T= " Tsuc! B2
obtain the phase/=(c+o)t—28 in order to render the modu- *+ (Ki/@3—4u?)'), there is only one real solutiofiii) in region
lation equations autonomous. Substituting the polar transforml-( o< — o e/ w,— (K3 w5—4u?)Y?), there are two real solu-
tion into (28) and using the control phase conditighe., ¢, tions. We note that subregion (i.e., ug<ug ), embedded in

=2n) yields region |, is such that the nonactivation of the parametric resonance
therein is independent of the frequency detuning. The activation
a=— pat l &a sin (30) threshold is obtained fronB3) imposing vanishing of the argu-
mary W, Y ment of the inner square root which vyieldsg . =2u|b?
K —126/63.
L Os), * 3, Re Computation of the effective nonlinearity coefficient, when
ay=aj o+ P * 4w2a * wza cosy. (31) =16.5, leads tar=660.008. The linear frequency shift is; ¢

=6.9599<10 2. In Fig. 4, we show the frequency-response curve
lﬁ)&éhe uncontrolled case wherg=1 andu=0.05. Clearly, for the
considered sag level, the second mode of the arch is of the soft-

whereK,=K;+K,.
The frequency-response equation for the steady-state amplit

is given by ening type. Poin,; (S,) corresponds to a supercritic@ubcriti-
o o 2 cal) pitchfork bifurcation.
o= — (_5 +—a?|+ _‘; —4u? (32) In the presence of control input, the activation threshold for the
wy 4wy w3 parametric resonance is obtained fr¢&®) letting K2=4u2w3.
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Fig. 3 Regions of activation /nonactivation of the principal parametric resonance in
the plane of the disturbance frequency detuning and gain when b=16.5 and u=0.05

Substituting the expressiori1) and(22) for K; andK, into K,
for fixed disturbance level and damping, we determine the ran
of control gain where the parametric resonance is not activated
UM<U.<U® where UL?=63m%/b(ugF ug ;). Within this

ybstituting the expressions fér; andK; into (34), we obtain

g cancellation regions in the plane of disturbance and control
gains for different phase anglés . Evidently, on account of34),
range(lightly shaded region in Fig.)5there is a locus of control Fsm?)\;venglﬁhnai ?LZ Iggiggﬂgt? Qrtl Or]:agqignsslg:rlgtpﬁygizglrllynrﬁign?r? gful
gains where the effective parametric coefficient becomes ze 'enzp e (— m/2,m12). Figure 5 shows clearly that.=2n is
that iS'Ut(:3):6,3772uB/b- It is worth emphasizing that requiring e opt?mal phaée angle because the associated region is non-
the control gain to be within the cancellation region in Fig. ferminating indicating that, in principle, cancellation is achievable
entails enforcing the system to be in subregioriRig. 3) where  for any disturbance level. A variation of, by 6 deg renders the
the parametric resonance is annihilated for any frequengygion terminating thereby entailing that past a disturbance thresh-
detuning. ) ] ) o old, cancellation cannot be achieved. However, this occurs for

It is interesting to investigate the sensitivity of the developeghiner high values of disturbances. On the other hand, for low-to-
contrc_)l strategy to yarlatl_ons in the relative phase and frequen%dium excitation amplitudes, small changes in phase angle do
detuning. We first investigate the effect of the phase variatiopgy practically vary the cancellation region. Nevertheless, Fig. 5
with perfect frequency tuningi.e., Q=€). To this end, the 559 shows that significant increases in phase angle variations, as

analysis is simplified by neglecting third-order contributiongypected, degrade the control performance until it becomes inef-
which are not expected to influence significantly the resonanggive wheny.= /2.

activation threshold. The region of resonance cancellation is ob-
tained as

Results And Discussion

Within the outlined regions of resonance cancellatiBiy. 5),
the optimal gains are determined via the presented optimization
scheme. Therefore, for the given nondimensional Bagl6.5,
damping coefficientw=0.05, and disturbance levelz;=1, we
computed the cost whed,, varies in the rang&("'=28.936 to
U®=46.432 where the parametric resonance is cancelled and
determine, accordingly, the optimal control gain as the value
where the cost is minimum. Clearly, in this case, the only stable
solution for the amplitude is the trivial solution. Accordingly, the
I solution for the displacement field at steady state can be expressed
as

K2+ K2+ 2K K,coa) <4 u’ws. (34)

W(X,t)=2 cosQt[ B(x) +U,(x)]+ 2{cog 20t)[ x7(x) + xg(X)

i + Xo(X) ]+ x10(X¥) + x12(X)}. (35)

0.0 — 71 ' T T 1 1 Thus, using(35), we computedw(x,t) when U, is equal to
20 15 10 g 5 0 5 UL, U@, andu®. Here, we note that the convergence of the
first and second-order shape functions expressed as infinite
Fig. 4 Frequency-response curve of the uncontrolled arch series is very fast. In fact, numerical tests conducted with
when b=16.5, #=0.05, and uz=1. Solid (dashed ) line indicates MATHEMATICA, showed that, for the given sag level, three/four
stable (unstable ) solutions. terms are sufficient for convergence. Using five terms, we ob-
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Fig. 5 Regions (shaded) of nonactivation of the principal parametric resonance in the plane of the distur-
bance and control gains for different control phase angles when b=16.5 and u=0.05
tained 8(15): 1.6341x10°° and (i) K;=17.006, K,= —13.058, /\
and o.=—7.6441x10"% when U,=28.936; (i) K;=—K,

=17.006, and o,=—1.926x10" 2 when U,=637%ug/b
=37.684; (i) K;=17.006, K,=—20.954, ando,=—2.543
x10"? when U.=46.432. Computation of the cost according to
Eq. (29 shows that it is minimum wherJ,=U"=28.936.
Hence, we assume this control gain as the optimal control gain.

It is interesting to compare the optimally controlled case with
the uncontrolled case when the frequency detuning-is— 10
andug=1, b=16.5, andu=0.05. First, we compare the steady-
state responses. Then, we compare the transient responses in the
presence of initial conditions within the basin of attraction of the
uncontrolled parametrically resonant response.

The steady-state deflection for the controlled case is given by
(35). On the other hand, the steady-state uncontrolled displace- A
ment field, to second order, is expressed as

w(x,t)=a coa{%(ﬂt 'y)} $o(X)+2 cosQtB(x)

x1(X)+2 cos(20t) x7(X)

1
+a COE{E(QH- v)

1
+ 5612[005’((“— YIx3(X) + xa(X)]

1
+aX5(x)cos{§(SQt—y) +2x10(X) (36)

—

where ¢ is given by(61) insertingU.=0 in it.

We computed the stable steady-state response amplitude and
phase wheno=-10 and ug=1 and found a=1.579 and
y=—13.42 deg. The period of oscillation =0.182 and the g 6 Uncontrolled (thin line ) and optimally controlled  (thick
cost isJ=2.890. In Fig. 6, we show the uncontrolled steady-staifie) dynamic deflections at seven discrete times equally
deflections contrasted with the optimally controlled deflectionspaced within a period of oscillation when b=16.5, ©=0.05,
(magnified ten times in the scale of the uncontrolled deflectionggz=1, o=—10, and U,=28.936
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Fig. 7 Time histories of the uncontrolled and optimally controlled deflections (=0 and U,=28.936) at

x=1/4 when ug=1, o=—10, b=16.5, u=0.05, p(0)=1.5, and q(0)=—0.95

at seven discrete times equally spaced in a period of the uncon- 1

trolled oscillations(twice the period of the controlled oscilla- + E[(pz—qz)cosQHqu sin Qt]x3(x)

tions). The result is that the overall optimally controlled deflection

at steady state is two orders of magnitude smaller than that of the 1

uncontrolled case and the relative decrease of the cost is 97.5%. + §(p2+q2)x4(x)+Z(Xlo(X)+X11(X))- (39)
Finally, to contrast the behavior of the uncontrolled response

with the optimally controlled response in the transient regime, we

cast the modulation equations and the displacement field inWe integrated Eqg37) and(38) using a variable stepsize fifth-

Cartesian form by using the transformatiod=1/2/(p order Runge-Kutta scheme whp(0)=1.5 andq(0)= —0.95 for

—ig)explof/2t). Using this transformation, the modulation equathe optimally controlled and uncontrolled cases. Using B§),

tions become we computed the time histories of the deflectionsxatl/4 in
whose neighborhood the maximum vibration amplitude is attained
p=—up E(E_U_ E) q- 1 i(p2+q2)q (37) and show the results in Fig. 7. We note that, after the transient dies
s Wy 8 wy out, the response in the controlled case is two orders of magnitude

1 smaller than that in the uncontrolled case. Evidently, as expected,
a X : -

+Z 24 9?2)p. 3g) the decay rate of the transients in the controlled case is not af-
P 8 wz(p asp (38) fected by the control strategy.

. 1/Ke gy
q=—unq+ > w2+0'+ o,
rm%aSt’ to show the robustness of the control strategy with respect
to variations in frequency detuning, we performed some numeri
cal tests. To this end, we introduced the control frequency detun-
QO Q ing as).=2w,+ e, and carried out the perturbation expansion
w(x,t)=(p cos;t+q S|n§t)¢2(x)+2 cosQt(B(x)+U(X))  up to second order. We integrated the obtained nonautonomous
modulation equations in Cartesian form using the same param-
Q - Q eters chosen thus far with different values of frequency detuning
+(P cosyt—q S|n§t) (x1(X) + x2(X)) defined as\o=0— 0. We found that resonance cancellation is
achieved for a wide range of positive and negative frequency de-

The displacement field, to second order, is also expressed in te
of Cartesian components as

30 .30 tunings(i.e., excitation frequency lower or greater than the control
+| p coso-t+q sin-t | (xs(X) + xe(X)) frequency with differences with respect to the perfectly tuned
case in the transient regime only. A small range of positive detun-
+2 cog201t)(x7(X) + xg(X) + xo(X)) ings (approximately 9.7 to J0was found where cancellation can-
3.0

(a) (b)

MO 77 1 T T T I~ T T T T T T T T
0 20 40 l’ 60 80 100 0 20 40 t 60 80 100

Fig. 8 Time histories of the controlled deflections (second-order solution ) at x=1/4 in the detuned case
when (a) Ac=0—0,=—9.55 and (b) Aoc=8.95 and ¢.=0, U,=28.936, 0=—10, b=16.5, u=0.05, ug=1,
p(0)=1.5, and g(0)=—0.95
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not be achieved resulting in unbounded growth of the response in 1

the investigated second-order solution. However, past this rangef xs— 16w3xg=U o(B' ")+ B (UL )+ ¢/ (UB' ) + EuBug
cancellation is recovered again. Figure 8 shows the response (46)
of the system in two detuned cases wheh Ao =—9.55 with
a frequency variation of about 13.8% afly Ao=28.95 with a 1

frequency variation of about 13%. While in the negatively Lx9—16w5xe=U WU )+ 5 W UUe) (47)
detuned case, no appreciable differences are noted, in the

positively detuned caséprior the onset of instability alAo 1

~9.7), the presence of a large-amplitude excursion in the initial ~ Lx10=B"(B'¢')+ 5 W(B B)+ ZusB"+ULUY")
phase of the motion and modulation in the response are observed

although the response decays with the same rate as in the per- 1 o

fectly tuned case. + 5 ULUe) (48)

Conclusions Lx11=B(Up" ) +ULB ¢ )+ " (UB") (49)
In this work we have demonstrated the effectiveness of a nopHPiect to the boundary conditions

linear control strategy to cancel the parametrically forced oscilla- xi=0 and y/=0 at x=0 and x=1. (50)
tions of a shallow arch and further minimize the residual nonreso-
nant oscillations. In particular, the control strategy inhibitdhe functionsy;, in turn, are given by
activation of the principal parametric resonance using a point ac- K.
tuator at the midspan of the arch. The control algorithm is open n=iwox;—i —L ¢, j=102 (51)
loop because state parameters are not used for feedback. The dif- 2w,
ficulty arises because the disturbance input and actuator are not — i 3wy =56 (52)
physically collocated and the control action is linearly orthogonal (ERERr? CEI I AR
to the excited modéirst antisymmetric mode The key idea is to nj=4iwyxj, =789, 710=71,=0 (53)
rely on part of the nonlinear controller action which is not or- ) . )
thogonal to the mode and further has resonant effects onto it.  S0Iving (40) and(50) and using(51), we obtain

We show that a perturbation analysis can be used to develop K
intuition as to the proper form of the control input. In this paper,a  x;=d;¢(x), 7;= 2—' da(x), j=12. (54)
one-half subharmonically resonant control law is used for sup 2
pressing the parametric resonance by enforcing the effective para-remove the indeterminacy associated with the arbitrary con-
metric resonance coefficient to be below the activation threshogiantsd we impose that the functiongs, and 5, and y, and 7,
This condition yields the control input in phase with the disturare orthogonal to the adjointd,,1)@,(x). The result is
bance in the optlmal case. On the other hand, the optimal gain
value that minimizes the resulting steady-state vibrations, accord- i . )
ing to a chosen cost functional, is also determined. Xi:m%(x)v 7= —lwyyj, =12 (55)

The technique is shown to reduce the overall vibrations by or- 2
ders of magnitude with respect to the uncontrolled case. The 1®elving the remaining boundary value problefdd)—(49) with
bustness of the proposed control methodology with respect ioundary conditiong50), we obtain the following shape func-
phase and frequency variations has also been demonstrated. #ms:
plication of perturbation techniques to problems of this type

i wzdj_

seems to provide a unified approach that may be applicable to a _ 4b _ 4b 56
broad class of weakly nonlinear distributed-parameter systems Xs= 7 2 sm77x Xa= T ey X (56)
with either noncollocated inputs or linearly uncontrollable modes.
B 63ug 3 bU.
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X7 42 212 st
7*(b“—126)“(b“—510
Appendix U, Ug 4(b*+63) _
= sin wx
Boundary Value Problems And Solutions. Xs 78(b%—126) | (b%>—126)(b?—510) i
2., _ H— o
Lx;—w5x;=0, j=12 (40) 2 Sops 1(2k+1)2
1 1| [(2k+1)4—256][ (2k+1)*— 64
Lxa~ dwdxa=y W/ ($383) (41) H o ]
1 X sin(2k+ 1)7-rx] (59)
LXa=5 ¥ (b3) (42)
1 2bU? w? < g
" ’opt = + — SIn X
Lxs5—9w5xs= 2[<B ¥+ 5Us 43) 7 b?-510| né(b2-1267 2 "
Lxe—9wixe= BxUsu') (44) by 2 Soc1(2k+1)2
1 1 m8(b%2—126) k=1 | [(2k+1)*—256][ (2k+ 1)*—64]
_ 2. iR oo R R - Z
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2bU? 2 2

e
a4 (b?+2) | 7*(b?-126% 2

1

X10— —
~ bug(b?+252) .
274(b%+2)(b?—126)2

_ bUﬁ i Sok+1
m8(b2—126) k=1 | (2k+1)?[(2k+1)*—64]

X sin(2k+ 1) rx (61)

n X

b2U.ug 6 _
= SIN X
w8(b?—126) | (b?—126)(b%+2)

1 Sok+ 1 .
+ = E sin(2k+ 1) wx
231 | (2k+ 1) (2k+1)*—64] A )

X11

(62)
where
1 4 2 Shiq(2k+1)?
278 (b?—126)2 =1 [(2k+1)*—64]?
and s,y ;= sin (2k+1)/2].

oc):

1

(63)
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Economics, and Electrical Engineering, This paper presents the general form of the explicit equations of motion for mechanical
University of Southern California, systems. The systems may have holonomic and/or nonholonomic constraints, and the
Los Angeles, CA 90089 constraint forces may or may not satisfy D’Alembert’s principle at each instant of time.

The explicit equations lead to new fundamental principles of analytical mechanics.
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Introduction It assumes that at each instant of timheduring the motion of the

. o . . mechanical system, the constraint forcesndavork under virtual
Since its inception more than 200 years ago, analytical mechafisplacements.

ics has been continually drawn to the determination of the equa-This seemingly sweeping assumption is indeed a tribute to the
tions of motion for constrained mechanical systems. Followingenius of Lagrange, becaugg) it gives exactly the right amount
the fundamental work of Lagrandgé] who bequeathed to us theof additional information regarding the nature of the constraint
so-called Lagrange multipliers in the process of determining thef¥ces in a general constrained mechanical system so that the
equations, numerous scientists and mathematicians have eguations of motion areniquelydetermined, and are thus in con-

tempted this central problem of analytical dynamics. A comprd@'Mity with practical observation(2) in the mathematical mod-
hensive reference list would run into several hundreds; hence g of a mechanical system, it obviates the need for the mecha-

shall provide here. by way of a thumbnail historical review of thnician to investigate each specific mechanical system at hand and
P » Dy way Yo determine the nature of the constraint forces prevalent;(@nd,

. o ) (?Isyields equations of motion for constrained systems that seem to
In 1829, Gausg2] introduced a general principle for handlingyork well (or at least sufficiently wellin numerous practical
constrained motion, which is commonly referred to today asityations.

Gauss's Principle; Gibb§3] and Appell[4] independently ob-  However, there are many mechanical systems that are common-
tained the so-called Gibbs-Appell equations of motion using thgace in Nature where D’Alembert’s principle is not valid, such as
concept of(felicitously choseh quasi-coordinates; Poincafg], when sliding friction becomes important. Such situations have so
using group theoretic methods, generalized Lagrange’s equatid@sbeen considered to lie beyond the compass of the Lagrangian
to include general quasi-coordinates; and D6l in a series of formulation of mechanics. As stated by Goldstgid], “This [to-
papers provided an algorithm to give the Lagrange multipliers féal work done by forces of constraint under virtual displacements
constrained, singular Hamiltonian systems. Udwadia and Kalaggual to zerdis no longer true if sliding friction is present, and
[7] gave the explicit equations of motion for constrained mecharil® Must exclude such systems from duegrangia formula-

cal systems using generalized inverses of matrices, a concept : ATd Pars[ll]_ (p. 14 in his treatise on analytl_cal_ dynamlcs_
was independently discovered by Mod8d and Penros9]. The writes, “There are in fact systems for which the principle enunci-

use of this powerful concept, which was further developed ffOl?gtﬁqu[?Vﬁlﬁmbbeét?osgﬁgfelg i.n.t.higobeosolsc'?t hold. But such sys-

the late 1950s to the 1980s, allows the generalized-inverse eqUge,ngiraint forces thato work under virtual displacements are
tions (Udwadia and Kalab47]) to go beyond, in a sense, thoSe.jied nonideal constraint forces, and such constraints themselves
provided earlier; for, they are valid for sets of constraints thge often referred to as being nonideal. While it is possible, at
could be nonlinear in the generalized velocities, and that could figes, to handle problems with holonomic, nonideal constraints
functionally dependent. Thus the problem of obtaining the equgike sliding friction) by using a Newtonian approach, to date we
tions of motion for constrained mechanical systems has a histafy not have a general formulation for obtaining the equations of
that is indeed as long as that of analytical dynamics itself. motion for systems where we have nonholonomic, nonideal con-
Yet, all these efforts have been solely targeted towards obtastraints, i.e., nonholonomic constraints where the constraint forces
ing the equations of motion for holonomically and nonholonomido work under virtual displacements. The aim of this paper is to
cally constrained systems thail obey D’Alembert's principle of include such systems within the Lagrangian formulation of me-
virtual work at each instant of time. This principle, though introchanics, and further to develop the general form of the explicit
duced by D’Alembert, was precisely stated for the first time b§duations of motion for constrained systems that may or may not
Lagrange. The principle in effect makes assumptiombout the bey D’Alembert’s principle at each instant of time. The approach

nature of the forces of constraint that act on a mechanical syst%tf(g;oﬁpse[rlezis [blfi;eg nc()erlhArn]ezlitr |2|§§ sb Las ﬁ)n?hg '; edn'gregle gtt rLré)_m
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M(q,)§=Q(q,4,t), q(0)=do, §(0)=qq (1) The General Form of the Explicit Equation of Motion
for any Constrained Mechanical Systems

where q(t) is the n-vector (i.e., n by 1 vectoy of generalized  We begin by stating our general result in the following three-
coordinatesM is ann by n symmetric, positive-definite matriQ  part statement.

is the “known” n-vector of impressedalso, called “given’) (1) The general “explicit” equation of motion at timefor any
forces, and the dots refer to differentiation with respect to timeonstrained mechanical systemvhether or not the constraint
By unconstrained, we mean that the components ofntkector forces satisfy D’Alembert’s Principle at that timei$ given by

(o can be arbitrarily specified. By “known,” we mean that the

n-vectorQ is a known function of its arguments. The acceleration, Md=Q+Q°=Q+Q/+Qy;

a, of the unconstrained system at any titns then given by the —Q+M¥2B* (b—AM Q)+ MY —B*B)z

relationa(q,q,t)=M1(q,t)Q(q,q,t).

We next subject the system to a setrmaf=h+s consistent, ®)
equality constraints of the form where the matri8=AM~Y2 B is the generalized inveréef
_ the matrixB, andz(q(t),q(t),t) is some suitabl@-vector.(When

¢(q,)=0 @ zis C!, Eq.(6) yields a unique solutiohThe matrixA is defined

and in relation (4), as is themvector b. The n-vector Q is the im-

pressed force. By “explicit” we mean here that the acceleration
Wq.a,0=0 3) n-vector,d, on the _Ie_ft-hand side of E(q_6) is explicitly expressed
4.9, ' in terms of quantities that are functions qf ¢, andt on the
where ¢ is anh-vector andys an s-vector. Furthermore, we shall right-hand side. . c
assume that the initial conditions, and ¢, satisfy these con- Alternatc_aly st_ated, the total constraint foneeector,Q°, at any
straint equations at time=0, i.e., ¢(qo,0)=0, &(Qo,d,,0)=0, Instant of timet is made up of the sum of two compone@S and

and #(qg,0,0)=0. Qg that can be explicitly written as
Assuming that Eqs(2) and (3) are sufficiently smooth,we . - .
differentiate Eq.(2) twice with respect to time, and E¢B) once Qr=M"B"(b—AM™"Q), (1)
with respect to time, to obtain an equation of the form and
A(g,9,0)§=b(q,q,t), (4) Q%=MY(1-B*B)z 8)

where the matriXA is m by n, andb is the m-vector that results  (2) To mathematically model given constrained mechanical

from carrying out the differentiations. We place no restrictions ogystem adequately, the mechanician mspecify the vector

the rank of the matriA. S 2(q,4,t) in the third member on the right-hand side of E6). at
This set of constraint equations includes, among others, thgch instant of time. This may be done by inspection of the spe-

usual holonomic, nonholonomic, scleronomic, rheonomic, catgfic system at hand, by analogy with other systems that the

static, and acatastatic varieties of constraints; combinations gechanician may have dealt with in the past, by experimentation

such constraints may also be permitted in E4). Furthermore, \ith the specific system or similar systems, or otherwise.

the functions in(3) could be nonlinear i, and them constraint  (3) However, no matter how the mechanician comes up with the

equations need not be independent of one another. ~~ prescription of then-vector z for adequately modeling aiven
It is important to note that Eq(4), together with the initial constrained mechanical system under consideration, specification
conditions, is equivalent to Eq&2) and(3). of this n-vector at each timeuniquely determine®;,;, and hence

The equation of motion of the constrained mechanical systgpy, acceleratiom-vector,§(t), of the constrained system. Such a

can then be expressed as prescription ofz(t) is equivalentto prescribing the work done by

. . Cfm . . all the constraint forces under virtual displacements at that tjime
M(qg,t)§=Q(q,q,t) +Q%(q,q,t), q(0)=do, a(0)=qo in the following sense.

®) (a) When the vectoe(t) is prescribed, it can always be expressed
where the additional “constraint forceh-vector, Q°(q,q,t), as
arises by virtue of the constraints that are imposed on the uncon- z(t)=M"Y4q,t)C(q,§.t) )

strained system, which we have described by @g. Since the

n-vector Q is known, our aim is to determine generalexplicit since,M is a positive definite matrix. The total work doné/

form for Q¢ at any timet. :=01Q¢, by all the forces of constraint undénonzerg virtual
We shall see below that in any constrained mechanical systesigplacements at timet, is then given by

the total constraint force-vector, Q°, at each instant of timg e T )

can be thought of as made up of two compone@S=Q° W(t)=v(t) Q" =v(t) 'C(q,q,1). (10)

+Qp; - The first component corresponds to the force of constraink) when, for a given specific constrained mechanical system, the
Qf, that would act were all the constraints ideal at that instant ofvork done,W, at timet by the forces of constraint under virtual
time the second componer®;;, arises because of the nonideaHisplacements is prescribed through specification of theector
nature of the constraints. This latter componensitsation spe- C(q.q,t) such that
cific and needs to be specified by the mechanician entrusted with T )
modeling the mechanical system. However, we shall show that W(t)=v(t) C(q,q,1), (11)
this component too must always occur in the explicit equation
motionin a specific form

In what follows, for brevity, we shall suppress the arguments
the various quantities, unless necessary for purposes of clarifi
tion.

%s determines the equation of motion of the constrained system
uniquelyat timet. This equation of motion is obtained by setting
%Q)le’z(q,t)C(q,q,t), in Eq. (6). The work doneW(t),

ay be positive, zero, or negative, at the instant of time [

—Uwe-assume throughout this paper that the presence of constraints does not chang&ome of the basic properties of the Moore-Penrose generalized inverse that are
the rank of the matriM. This is almost always true in mechanical systems. used throughout this paper may be found in Chapter 2 of Raf].
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We note from Eq(9) above, that prescribing to be the zero
n-vector at any time, is equivalent to specifyin€=0 at that
specific timet, and then by(10), the constraint forces dao work
under virtual displacements and therefore they satisfy
D’Alembert’s principle at that instant of time In what follows
we shall also show that when the constraints do no work under
virtual displacements at timegbecause of Eq10), then-vectorC
must belong to the range spaceAf¥; the third member on the
right in Eq.(6) then becomes zero at that time. Further, if through-
out the motion of the constrained system the work done by the
constraint forces under virtual displacements is zero, then the third
member on the right-hand side in E&) disappears for all time.
The equation of motiori6) then becomes

Mg=Q+Q°=Q+Qf=Q+M¥B"(b-AM'Q), (12)

of proportionality isM¥?B™; the second is proportional to

an n-vector z that, in general, needs specification at each
instant of time, the matrix of proportionality beirg ¥4(I
—B'B), whereB=AM %2 This vectorz is specific to a
given mechanical system and needs to be prescribed by the
mechanician who is modeling the system. Whether or not
the constraints are ideal, the first component is always
present and constitutes the constraint force at the instant of
time t that would have been generated were all the con-
straints ideal at that time. The second component depends
on the nature of the constraint forces generated in the spe-
cific mechanical system that is being modeled; it prevails
only when the total work done by the constraint forces un-
der virtual displacements differs from zero.

Proof of the General Form of the Equations of Motion

which is identical to that obtained by Udwadia and Kal@bpfor
systems that obey D’Alembert’s principle. Equatiqd?) is
equivalent to the Gibbs-Appell equatiofeee Ref[15]). We then

for Constrained Systems
We begin by considering the “scaled accelerations” defined by

see that the compone® in Eq. (7) therefore gives the constraintthe relations

force at timet that would be generated were all the constraints =M% (16)
ideal at that time And Qg; explicitly gives the contribution to the y i
total constraint forceQ®, made by the nonideal nature of the a=M"1Q=M"%; 17)
constraints. and,
Were the acceleratiom=M ~1Q, of the unconstrained system B vy 1o
at time't to be inserted into the equation of constraiat, this ge=M Q=M Y7". (18)
equation would not, in general, be satisfied at that time. The extesy} Eq. (5), we then have
to which the constraintEq. (4)) would not be satisfied by this . .
accelerationg, of the unconstrained system at tirnavould then Qs=as+ds. (19)
be given by Furthermore, Eq(4) can be expressed as
e=b—Aa=b—AM!Q. (13) Bg=b, (20)
The force of constraint can now be rewritten as where
Q°=Q+Q%=MYB*e+MY(1-B*B)z.  (14) B=AM"'Z (21)

Also, the effect of this constraint force in altering the acceleration Consider the matrices=B"B andN=(1-B"B), where the
of the unconstrained system can be explicitly determined. For, thtrix B” is the Moore-PenroséVIP) inverse of the matrix8.
deviation, Ag, at time't of the acceleration of the constrainedThe matrixT is an orthogonal projection operator sind@*@)"
system from that of the unconstrained system becomes, by E¢B*B, and T?=(B*B)(B*B)=B*B=T. Also, N is an or-
(6), thogonal projection operator sincé {B*B)"=I1—(B"B)T=I

Ag=g-a=M B*e+M VA1-B'B)z.  (15)

—B'B, andN?=N. SinceR"=R(BT)®A\(B), any n-vectorw
has

a unique orthogonal decompositiow=B"*Bw+ (I

Equations(14) and(15) lead us to a new fundamental principle—B*B)w; and so also oun-vector{. This yields the identity

of Lagrangian mechanics which we now state in two equivalent
forms.

Gs=B"BYs+(1-B"B)Ys. (22)

1 A constrained mechanical system evolves in such a wayUsing relation(20) in the first member on the right, and relation

that, at each instant of time, the deviatid, of its accel-
eration from what it would have been at that instant had
there been no constraints on it, is given by a sum of two

(19 in the second member, we obtain

components: the first component is proportional to the excomparison of Eq(19) with Eq. (23) then yields

tent, e, to which the unconstrained acceleration does not
satisfy the constraints at that instant of time, the matrix of

proportionality being the matriM ~*%8™; the second is \yhich can be solved faiC to yield

proportional to am-vector z that needs, in general, to be
specified at each instant of time, the matrix of proportion-
ality being M~Y(1-B*B), where B=AM~*2 The
specification oz at any time, is dependent on the nature

of the forces of constraint that are generated. Its specificir somen-vectorz
tion for a given system at hand is tantamount to the speci- Equation(18), then gives

fication of the total work done under virtual displacements
by all the forces of constraint at that time. Such a specifi-

ts=as+B"(b—Bag)+(1-B"B)§:. (23)
B*Bg=B"(b—Bay) (24)
4s=B"BB"(b—Bay)+{I—(B'B)"(B'B)}z
=B*(b—Bay)+(I-B*B)z (25)
Q°=MYB"(b—Aa)+MY(1-B"B)z (26)

cation of the work done at each instant of time uniquelgnd the general equation of motion of the constrained system, by
determines the equation of motion of the constrained syggq. (5), becomes

tem.
2 At each instant of timé, the force of constraint acting on a

constrained mechanical system is made up of two compaherez is somen-vector.
To obtain the unique equation of motion fospecificmechani-

nents: the first component is proportional to the extentn

Md=Q+Q"=Q+M B (b—Aa)+M A1 -B"B)z (27)
g.e.d.

which the unconstrained acceleration of the system does mai system, the mechanician needs to prescribe the vector
satisfy the constraints at that instant of time, and the matr{q(t),q(t),t) at each instant of time. Specification of the vector
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z(t) yields explicitly and uniquely the compone®f; of the con- work. So far, no general equations of motion have been discov-
straint force,Q°, at each instant of timé. In fact, given an ered within the Lagrangian formalism in situations where this cen-
n-vector z at a specific timet, we can form then-vector C  tral principle of analytical dynamics is not applicable. _

—MY2z at timet. The vectorC cannow be interpreteds provid- This paper provides the general explicit form of the equation of

ing the work doneW=0TC, by the constraint force-vectorQ° motion for any holonomically and/or nonholonomically con-
under virtual displacement's at timet. strained mechanical system. The equation is

We now show thaQg; can also be uniquely determined at each Mg=Q+M¥B*(b—AM™IQ)+MY(1-B™B)z. (33)
instant of timet by specifying the work done by the constrain . . .
force n-vector, Q% under virtual displacements at that '[ime.tl—he n-vectorQ is the given force, th_en byﬁq/zmatrlx A+ar.1d the
Proof A virtual displacement is any nonzersvectorv such Mrvectorb are defined in Eq(4), B=AM 7% andB" is the
that Av=0 (see Ref[15]). Using Eq.(21) this relation can also generall_zed inverse @. The equation applle_s to all constralned_
be written asAv =(AM~Y)MY% =B(M¥%))=Bp=0, where mechanical systems whether or not they satisfy D’Alembert’s prin-
we have denoted thevectorM Y% by . Thus a virtual aisplace- ciple. The second member on the right in &83) explicitly gives

o .
ment can also be considered as &mynzerg n-vector u such that the force of constraint); thatwould have beegenerated at time

Bu=0. Using Eq.(27), the work done by the force of constraintt Were all the constraint forces ideal, and thus satisfy
u#der all virtgal?jisplacements is then given by D’Alembert’s principle. The third member on the right in E§3)

explicitly gives the contributionQ¢;, to the total force of con-
W:=0"Q°=0"(Qf+ Q) straint because of the presence of nonideal constraints.
_ 4 4 To obtain the equation of motion for a given, specific, mechani-
=vMY¥B7(b—Aa)+o M1 -B"B)z cal system, theqmechanician needs %0 provFi)de theector
=u"B*(b—Aa)+uT(I-B*B)z. (28) z(q,q,t) suitably at each instant of time, thereby uniquely speci-
) ) . ) _fying the third member on the right in E¢B3). The provision of
The first member in the last expression on the right of equatigfis vectorz(t) depends on the judgement and discernment of the
(28) is zero sinc@Bu=0 impliesp.'B* =0. Hence the component mechanician and may be determined by experiment, experience,
Qy of the total force of constrainf)®, does no work under virtual intuition, inspection, or otherwise. However, no matter how this
displacementsEquation(28) then becomes vector is arrived at, the total work doné/(t):=vT(t)Q°(t), by
o TAC_ TAC —  To T/apl/2 the force of constraint under virtual displacements) at any
Wi=v Q™= Qn=p z=v (M772). (29 {nstant of timet is always given by T(t)C(t), where then-vector
Let W(t) to be prescribed at timeby the mechanician through C(t)=MY%(q,t)z(q,§,t). This work, W(t), may, in general, be
a specification of then-vector C(q,g,t) so that W:=pTQ°¢ positive, zero, or negative.
=pTC. Then by Eq.(29), we have We show that to model givenconstrained mechanical system
adequately one needs, in general, to provigere thanjust the

T 12,y — . T
v (M¥Z)=v'C. (30) equations of constraifEgs. (2) and (3)), be they holonomic or
Sincev is such thatAv =0, this requires that nonholonomic. While at each instant of time the compoi@hof
7=M~Y(C+ATw)=M"Y2C+Bw 31) the total constraint force-vector,Q°, is determined solely from

_ ' . . . ' the kinematical description of the constraifiEgs.(2) and(3)), to
wherew is any ar_bltrarym_\/ector. Using this expression farin  determine the componei®$; one always needs to rely on the
Eqg. (27) we obtain theunique equation of motion of the con- mechanician’s discernment and judgement. However, as shown in

strained system to be the equation above, this componésee also Eq(8)) mustappear
Mé=0+0=0+0°+0%=0+MYB*(b—A in a_specmc formin the explicit equation of motion of the con--
A=QFT Q=R+ Qi+ Qn=0Q ( 3 strained system. When the mechanical system satisfies
+MY(1-B*B)M~Y2C, (32) D'Alemberts principle at every instant of timeQ¢,(t)=0, and

the third member on the right it83) becomes zero. Then our
e . . general equation yields the known equation of motidtb]) for
_W(EI,QCOYV see that Eq(6) 'S.'dem'cal o Eq.(32) VTV'th £ constrained systems that satisfy D’Alembert’s principle.
=M ! The compongnt Qt in the range space ch —the It is perhaps noteworthy that though the equations of motion of
second member on the right in E§1)—does not affecQy,;, and  gyen very simple mechanical systems are often highly nonlinear,
therefore the equation of motion of the constrained system.  the general form of the equation of motion obtained here relies on
Though then-vector C(t) specifies the work don&V:=v"Q°®  techniques from linear algebra. The fundamental principles of
=p"Q%=0v"C, by the constraint force under all virtual displace-analytical dynamics obtained in this paper may have been impos-
mentsv at timet, Eq. (32) states that, in generaQ;;#C. At sible to state in such a simple form without the concept of the
instants of timet when W= (M3 (M Y2C(q,4,t))=0, generalized inverse of a matrix, a concept first invented by Pen-
M ~Y2C belongs to the range space®¥, and hence by Eq32, rosel9]. _ o
QF,=0 since (—B*B)BT=0. If further, W=0 for all time, then The equation of motion obtained in this paper appears to be the

the force of constraint satisfies D'Alemberts principle, an implest and most general so far discovered for mechanical sys-

Qg(t)=0; the equation of motion for the constrained system theﬁmS within the framework of classical mechanics.

reduces to that given iflL2). At instants of timet whenM ~*2C
belongs to the null space &, Qf;=C. In general, then-vector
M ~Y2C can have components in both the null spac®@ind the "

T H : A 1] Lagrange, J. L., 178 Mecanique AnalytiqueMme Ve Courcier, Paris.
range space . V,Vle/ no'te that at each instant of tlme.’ it is only [2] Gauss, C. F., 1829, “Uber Ein Neues Allgemeines Grundgesetz der
the component ol ~Y2C in the null space oB that contributes to Mechanik,” J. Reine Agnew. Mathé, pp. 232—235.

Qf;, and hence to the equation of motion of the constrained syst! ﬁibtﬂsyzl W-,4 ;83 “On the Fundamental Formulas of Dynamics,” Am. J.
ath., 2, pp. 49-64.
tem. [4] Appell, P., 1899, “Sur une forme generale des equations de la dynamique,” C.
i R. Acad. Sci., Paris]29 pp. 459-460.
Conclusions [5] Poincare, H., 1901, “Sur une forme nouvelle des equations de la mecanique,”
. . . . C. R. Acad. Sci., Parisl32 pp. 369-371.
The equations of motion for constrained systems obtained tQg) pirac, P. A. M., 1964 ectures in Quantum Mechanic¥eshiva University,

date have all been based upon D’Alembert’s principle of virtual ~ New York.

since (—B*"B)B"={B(1-B*B)}"=0.
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Exact Analysis of Dynamic Sliding
Indentation at any Constant
Speed on an Orthotropic or

.merock | Transversely Isotropic Half-Space
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A plane-strain study of steady sliding by a smooth rigid indentor at any constant speed on
a class of orthotropic or transversely isotropic half-spaces is performed. Exact solutions
for the full displacement fields are constructed, and applied to the case of the generic
parabolic indentor. The closed-form results obtained confirm previous observations that
physically acceptable solutions arise for sliding speeds below the Rayleigh speed, for a
single critical transonic speed, and for all supersonic speeds. Continuity of contact zone
traction is lost for the latter two cases. Calculations for five representative materials
indicate that contact zone width achieves minimum values at high, but not critical, sub-
sonic sliding speeds. A key feature of the analysis is the factorization that gives, despite
anisotropy, solution expressions that are rather simple in form. In particular, a compact
function of the Rayleigh-type emerges that leads to a simple exact formula for the Ray-
leigh speed itself[DOI: 10.1115/1.1464874

Introduction Rayleigh speed along the material surface. The analysis begins in

Studies of rapid sliding contact by rigid indentors allow insigh”‘[he next section with the basic equations for the material.
into the operation of mechanisms, and has been modeled, e.g.
[1-4], as a dynamic process involving linear isotropic elastic soj5__ . .
ids. More recently, Georgiadis and Barb] and Brock and éasw Equations
Georgiadig 6] have shown for, respectively, smooth and frictional Consider a half-space, defined in terms of Cartesian coordinates
contact, that physically acceptable solutions may not exist for slig& Y. 2 as the regiory>0. The half-space material is of a class of
ing speeds in various portions of the sub, tran, and supersofif€adr homogeneous anisotropic solids whose nontrivial governing
ranges. Similar behavior is seen for sliding on hyperelastic isotrgduations in plane strain in the absence of body forces are

pic solids under prestregs7]). That study treats, in the manner of C1aU xxt Caally yy T (C13+ Cag) Uy xy = pil (1a)
[8,9], sliding contact as the superposition of infinitesimal defor- ’ ' ’ .
mations upon the possibly finite deformations due to prestress. Cadly, ot Caglly,yy+ (Cagt Cas) Uy xy=pUy (1b)

Thus, the anisotropy induced by the prestress influences solutigiy are augmented by the associated stress-strain formulas
behavior.

The present article complements efforts suchilas?] by treat- 0x= Caalx x T Caally y (22)
ing |n|t|a_lly uns_tre_ssed sphds that are either orthotr_oplc or trans- 0y = Caally y+ Cyally (2b)
versely isotropic in their rest states. A plane-strain analysis of
steady sliding is performed, the rigid indentor is smooth, and the Oxy= Cag(Uy y T Uy x). (20

sliding speed can be any constant value. In keeping with standatigese equations hold for both orthotropic and transversely isotro-
definitions([6,10]), the subsonic range refers to speeds below thic materials, where theandy-axes are axes of material symme-
shear wave speed, the transonic range denotes speeds betweemtiiehe (u, ,uy) are the(x, y)-components of displacement, while
shear and dilatational wave speeds, and the supersonic range( neand ( )s denote differentiation by time and a varialsleespec-
fers to speeds that exceed the dilatational wave speed. An timely. The constantsgyy,Cq3,Ca3,C44) are a subset of the elastici-
bounded half-space is treated. The results will, therefore, be méss c;(i,k=1,2, ... ,6) that appear in the generalized Hooke'’s
applicable when the sliding duration is brief enough and the itaw ([11]), andp is the mass density. Equati¢d) is a special case
dented body large enough to neglect the effects of other bourd-a more general form that involves four constants that can be
aries. linearly related to various subsets of ([12]). Discussions of

Exact solutions are obtained, and key steps in the analysis &éations between crystal structure and the elasticities can be
the factorization of certain functions in the integral transforffPund in[13,14. In the present case, the isotropic limit can be
space that give, despite anisotropy, simple expressions for fiéracted by setting;;=Css=\+2pu, C13=\, Cqy=p, where
quantities. One factorization, in particular, produces a function &+ are the Lame’ constants.

: The half-space is at rest when a smooth rigid indentor of infi-
the Rayleigh type, and allows a compact exact formula for the . - o oI ;
yieigh typ P nite length and invariant profile in thedirection is pressed into

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF the haIf-spacg Surfacﬁ._ 0 .Wlth compressive forcnéper unit Of. .
MECHANICAL ENGINEERSfor publication in the ASME GURNAL oF AppLiEDME-  1€NGtH N. The indentor is simultaneously translated in the positive
CHANICS. Manuscript received by the ASME Applied Mechanics Division, April 11,X-direction with a constant speed Eventually, a dynamic plane-
2001; final revision, November 6, 2001. Associate Editor: A. K. Mal. Discussion o§train state of steady sliding is reached, as depicted schematically

the paper should be addressed to the Editor, Prof. Lewis T. Wheeler, Department of—: FH [ f _
Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and wﬁﬁ) F.Ig' 1. As Indlca.ted the.re’ it is convenient to translate the C_O
be accepted until four months after final publication of the paper itself in the ASM@rdmates(xv Y, 2) with the indentor, so that the boundary condi-
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Y pic limit. Because displacements in steady motion can be deter-

—— mined only to within an arbitrary rigid-body motion, boundary
condition (3c) can be replaced by
dV(x)
= (xel) 9)

ous almost everywhere. This latter requirement, as well as the
assumption, implicit in Fig. 1 an@a—c) and (9), that multiple

\ + contact zoneg¢[4]) do not in fact arise, can be justified in part by
requiring that ¥/,dV/dx,d?V/dx?) be finite and continuous for

. . L ) xeL. Then, the resultant of, on the contact zone should be the
Fig. 1 Schematic of sliding rigid indentation specified compressive forceN, and the contact zone parameters
L. must be determined as part of the solution. Finally, two uni-
lateral constraint$[5]) must be satisfieda) contact zone normal
stress is nontensile, ari®) indentor and half-space surfaces do

] Uy ="gx
X . . . .
alongy=0. In addition, displacements and their gradients should
L_ L vanish wheny/x?+y?—, y>0 and be nonsingular and continu-

0yy=0; (32) not interpenetrate.
o,=0(xel), (30)
=V(x)(xel). (3c)  Solution Candidates

In Fig. 1, x=L. locates the leading and trailing edges of the Following a standard([17]) procedure for two-dimensional
indentor contact zone. The symHols used to represent both themixed boundary value problems in classical elasticity, the solution
contact zone itself, and its width=L, —L_ . The functionV(x) to this problem is obtained by first considering E¢®—(8) and

is the normal motion imposed by the indentor in the contact zonae boundedness/continuity conditions, but wiga,h and(9) re-

The constant& . are a priori unknown. placed by the unmixed conditions
Because the process is one of steady sliding in plane strain,

field quantities depend only o, y), and( ) in the inertial frame Oxy=0, oy=0o(X) (10)

can be replaced by the operatew () x. For convenience, there- for y=0, whereo(x) represents the contact zone normal traction;

fore, the dimensionless quantities it must vanish identically foxe L, and should be continuous at
c c c v x=L.. The so!u;ion to this simpl_er p_roblem will provide candi-

a= 2 = y=1+aB-m?, m=1+ 8 o=— dates for the sliding contact solution ife(x) can be found such
Cyq Caa Cas’ vy that(9) is also satisfied.

4) Solutions to(6)—(8) and (10) are found by integral transform

are introduced, wher@y, 8, 7, m) follow from [15], and the speed t€chniques, and expressions fok (,uy ) for all y>0 are given
in the Appendix. For the subsonic sliding case{®@<v,) use of

Caa 5) (A13b) and (A1) in (9) gives the equation
0=/
' p A(b+a) [ o(t)dt  dV(x) ] "
is, in the isotropic limit, the classical rotational wave spgdd|). mcaR L t=x  dx (xel). (11)
Equations(1) and (2) become Here/ denotes Cauchy principal value integratiof, a, B, b, R)
(B—C)Uy gt Uy yy+ MUy =0 (6a) are defined byA4) and (A7) and, as in the Appendix, the symbol
' ’ ’ L affixed to an integral signifies integration over the real interval
Uy sx T (2= C?)Uy yy+ MUy =0 (Bb) (L_,L,). The relative simplicity of the left-hand side, when

compared with(A13b) itself, follows from the observation made

and in the Appendix, that setting=0 allows an explicit cancellation
1 of terms proportional td-a
C—MUx=BUx,x+(m— Luy,y (78) Equation(11) is a standard Cauchy integral equatii7])
whose solution is

L ooe(me —cuR =L [dv(t) [Li—t dt

C440y (Mt ™ o(x)= wA(;ia) —X/,F - _t—x (xel).
1 (12)
c_44‘rxy: Uy + Uy - (70) The result is appropriately bounded lat , but boundedness as

. . . x— L, occurs only when
For purposes of illustration, we consider, aftgt5,16, the * y

constraints de(t) dt
2\Jap<y<l+aB (1<B<a) (8a) Lodt oL VL, -t

a+B<y<l+aB (1<a<p) (8b) This req_uirement serves as one equation for determiningThe
other arises from the requirement thalN be the resultant oé,
2a<y<l+a? (1<B=a). (8c) on the contact zone:

(13)

dilatational wave speeds associated with ¥axis of material (14)

symmetry arise as distinct, real-valued branch points in the com-
plex c-plane. The class of materials governed (8 includes Substitution of(12) into (14) and the use of standard tabl¢8])
beryl, cobalt, ice, magnesium, and titanium, as well as the isotrgives the more explicit form

As will be seen, conditior{8) guarantees that the rotational and J' (x)dx=
L
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C44R dV(t) L+_t v
dt=N. (15) —
A(b+a) J, dt Vi-L_ "

For sliding in the transonic(<v <./Bv,) speed range, the result

(Al4b) and (9) give the Cauchy singular integral equation x X
o(t)dt
2 r_
e (C2Ab’ —aB'T)a(x)+ (c2aA+b’B'T) = ﬁ — | W
dVv(x) b4 L -<—L *—’
= dx (xel) (16) y

where(Ad), (A5), and(Al5h) hold and, again, the cancellation of (a) (b)

terms that occurs whey=0 has been exploited. Followifd.7],

the solution to(16) is Fig. 2 (a) Surface deformation schematic for subcritical slid-
ing; (b) surface deformation schematic for physically unac-

x)= —aVE C44\/— | xel) 17 ceptable sliding.

where the operatdrand elgenvalue; are defined as )
whereL .. can be obtained from the formulas

1/L,—x\?

I(g;x)=g(x)c057-rv+; xiL ) sinwuﬁg(t) 2V;+Vy(L,+L_)=0 (23)

mC4V,RL2
t=L_\" dt Nihtaatahiul (230)

T (XE L) (18a) 8A(a+b)

L=

L, i In view of (10), unilateral constrainta) requires thato(x)<0
—— tan,lg edT-cA” 11 1 o (1 Which, in light of (22), means that/,R>0. Study of (A7) and
T a ab’T—c’A? 2 2 ' (A9) in the Appendix shows thaR<0(0<c<cg) and R>0(cg

<c<1), wherecgrv, is the Rayleigh speed associated with the

The counterparts to the auxiliary conditiofis) and(15) are x-direction. The former case implies thet<<O0, i.e., the sliding

dv(t) [t—L_\? dt indentor is concave upwair@ig. 1), while the latter requires that

(t)

f ar L —t) L =0 (1%) V,>0, i.e., the indentor is concave downward. Although the

L . n N . ; " 4
former situation seems more plausible, imposition of unilateral
v constraint(b) provides closure.
canK dv) (t_ L di=N. (1%) It is noted that(22) is both bounded and continuoGganishe
AVa?-p? ), dt \L,—t at the contact zone edggs-L .. . Study of(A13) shows that this,

in turn, guarantees continuity oti{ , ,u, ,) there. However, tak-
ing the derivative of(A13b) and lettingy=0 gives, in view of
(23p), an integration that can be performed with standard tables

Finally, for sliding speeds in the supersonicXBv,) range,(9)
and (A16b) lead directly to the results

cuR dV(X) ([18):
U(X)Z—A/(b'-ﬁ-a/)w (xel) (20a) 1 \/ﬁ F
R’ uy,xx:V2|:1_§( x—L_+ x—L+) (x¢l). (24)
m[V(L+)_V(L‘)]: N (@00) s s approximately the half-space surface curvature outside the

contact zone. FoW,<0, (24) behaves as-{©,x—L.), which
suggests the schematic Figap for the deformed surface. For
V,>0, however,(24) behaves as<{,x—L.), which suggests
|nterpenetrat|on—and violation of constraif)—unless the arti-

fice depicted in Fig. @) is adopted. This essentially requires that
the indentor dimensions be defined by the contact zone parameters

where @A’,a’,b’,R") are defined by(A15b) and (A17) and, in
this case, boundednessxat L .. is controlled more directly by the
form of V(x). The translational part of any rigid-body motion:
cancels out in20b).

Equations(12), (17), and(20a), along with their auxiliary con-
ditions, constitute in light ofA13), (A14), and (A16), respec-
tively, the solution candidates for the sliding indentation problem.”;

The actual solutions are those that satisfy in addition the unllate{ﬁgn s;;r;é?;r:y,s:)heeend sausl;f)?:?;t:e:ja%l\ﬁtr? Ilg;‘ré?ré:(?t?oﬁmlst;n& SelOW

constraintsa) and (b). <crv, . This behavior is analogous to that for the isotropic case
([5).
Problem Solution: Subsonic Case

To illustrate the solution identification process for subsonic (Problem Solution: Transonic Case
<v<uv,) sliding speeds, the generic parabolic indentor character-

ized by the function For transonic ¢,<v<.Bv,) sliding speeds, the forn1) is

again used to illustrate the solution identification process. In this

1 instance,(17)—(19) and standard table$18]) give the bounded
V(X)=Vo+Vix+ §VzX2 (21)  and continuous formula
is considered, where thé, are real constants. Substitution(@fl) CaV2 VK 14 v
into (12), (13), and (15) gives, upon the use of standard tables ~ “(X)=— \/—bz(L+_X) TUx=Lo)7Y (xel). (25)

(18],

Clearly, constraint(a) can be satisfied only i#/,>0. Thus, it

L, —xJx—L_ would appear that constraifiy) cannot be satisfied for transonic
XVx=L- (xel) (22) sliding unless the situation depicted in FigbRis allowed.

CaqV2R

o=~ A@a+b)
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Fig. 3 Surface deformation schematic for supersonic sliding
and for the single allowable transonic speed

However, (18b) shows thatv=0 whenc=c*(1<c*<.,p),
where

ap—(m-1)°

c*=
a+m—1

(26)

and (8) guarantees a real value. Thé¢h7)—(19) reduce to the
degenerate case

_ \ﬁ ap—(m-1)>  dV(x)
o(X)=Cas B m-1+BJym—1+a dX

(xel).

@7)

For (21) it can be shown thaiV/dx in (27) is replaced by,(x
—L_), and both unilateral constraints can be satisfied \fgr
<0. The auxiliary conditions

Vy+V,L =0, (28)
C44V2\/; aB—(m-1)* 5

- - L2=N (2
2 VB m—ligim—17a (220)

define the parameterk.. .
(23a,b), these conditions do not guarantee continuityo¢k) at

the leading edge=L, of the contact zone. Indeed, a finite dis
continuity occurs there. The surface deformation schematic in F
3 shows that trailing edge=L _ is also the point of zero indentor

slope, i.e., point of maximum normal displacement under the
dentor.

This limit result is also consistent with isotropic woff5));
there, a value that would corresponccto=v2 at which transonic
sliding could occur was derived. In the isotropic linit=3=1
+m, and(26) reduces to the same value.

Problem Solution: Supersonic Sliding

For supersonicy(>/Bv,) sliding speeds, combining20) and
(21) and then imposing both unilateral constraints gives

__CaRV L L 29
U(X)—W(X— -) (xel) (29)
whereV,<0 andL. are determined from
Vi+V,L_=0, (3%)
CaR'VoL?
CET I (300)

Equation (29) shows that, as in the transonic casec*v, (1

<c*<B), the contact zone traction loses continuity at the leadfable 2 Contact zone width parameter

ing edge. Again, Fig. 3 depicts the surface deformation, (86g

locates the trailing edge at the point of maximum normal surface

displacement under the indentor.

Comments

Table 1 lists relevant properties for the five materials identifieﬁggnsium
earlier as being representative of the orthotropic/transversely is@anium
tropic class defined by8). It is seen that, despite differences in
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Unlike their subsonic counterparts

Table 1 Properties of orthotropic /transversely isotropic
materials

a B m C4q (GP3 Cr
beryl 3.62 4.11 2.01 68.6 0.956
cobalt 4.74 4.07 2.37 75.5 0.962
ice 4.57 4.26 2.64 3.17 0.959
magnesium 3.74 3.61 2.3 16.4 0.943
titanium 3.88 3.47 2.48 46.7 0.936

the parametersda, 8,m,c,,), the Rayleigh speeds are, as fractions
cg of the corresponding rotational speed, similar in value.

To illustrate the effects of sliding speed and material properties
on the contact zone generated, consider the specialMasé in
(21): For subcritical (B<c<cg) sliding, (23) yields the expres-
sions

L.==* L 3la
= — El ( )
[1V5] [2A(a+b)

for the contact zone edge locatiohs with respect to the trans-
lating indentor, and the zone width Calculations of(31b) for
various subcritical values af are given in Table 2. The entries
show that, for a given parabolic indentor profile and compressive
load, the zone width decreases with sliding speed for all five ma-
terials at low speeds, but becomes unbounded as the c(fest
leigh) speed is approached.

In summary, then, this article has presented exact solutions for
steady dynamic sliding at any constant speed by a smooth rigid
indentor on a class of orthotropic/transversely isotropic half-
spaces. As in corresponding isotropic elastic analyses for linear
isothermal([5]), linear thermoelasti¢[6]), and hyperelastic iso-
thermal([7]) materials, physically acceptable solutions have been
found to exist for sliding speeds below the Rayleigh value. In the
{ansonic range, only one allowable sliding speed exists, and con-

.tact zone traction is lost at the leading edge. Physically acceptable

YWiutions exist for all supersonic sliding speeds but, again, the
contact zone is discontinuous at the leading edge.

The solution procedure makes use of mixed boundary value
problem solution techniques from classical elasti¢[t/7]), and
variations of Cauchy singular integral equation solutions em-
ployed in[6,7,19. In addition, convenient factorizations in inte-
gral transform space, aftgt6], allow a simplification of solution
forms, despite the problem anisotropy. In particular, a compact
exact formula for the Rayleigh speed associated with the material
symmetry axis aligned with the surface emerges.

Solution results demonstrate that, for a given indentor profile
and compression force, contact zone widths achieve minimum
values at high but sub-Rayleigh values of the sliding speed. While
insight into the problem of wear/high-speed mechanism operation
is possible from such a result, the effects of friction and tempera-
ture have been neglected here. This work, therefore, along with
results such af6,7], is currently being used as the basis for stud-
ies that include both effects.

v
\/—|N2|L (UGPa'?) ver-

sus dimensionless crack speed

c=0.001 c¢=0.1 ¢=03 c¢=05 ¢=07 c¢=09
beryl 0.2206 0.1716 0.16 0.1712 0.1989 0.3384
cobalt 0.1954 0.138 0.142 0.1518 0.175 0.286
0.9817 0.6857 0.7084 0.755 0.8739 1.484
0.4395 0.3199 0.3297 0.354 0.4155 0.785
0.2577 0.1895 0.1953 0.2104 0.2479 0.502
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Appendix
Consider the bilateral Laplace transfoff20]) and its inverse

. » 1 )
F:f F(x)e™PXdx, F(x)=ﬁJ FeP*dp (Alab)

wherep is imaginary, and integration i6Alb) is along a Bro-
mwich contour in the-plane. Application ofAla) to (6) in view

pl :ﬁ m—AQefayv‘Bv‘T, e by/=p
X cyul p(b—a)R B(b—a)R
(A8a)
pQ AT NP R ey T e byRTR
Y oacy p [(b-a)R H(b—a)R '
(A8b)

of (7), (10) and the boundedness/continuity conditions gives l& light of previous remarks, the coefficients of the exponential

coupled set of linear ordinary differential equationsyithat can
be solved to give

Pl =Cae PP+ %Cb }pp e PP (A2a)
pgy:—m(za Ca \/_Ep e VPP Ce PR (AZD)

terms in(A8) exhibit the branch cuts ofA, B), and are not sin-
gular whenb=a. Indeed, because the exponential terms also be-
come identicalunity) wheny=0, evaluation ofA8) on the half-
space surface leads to an explicit cancellation of terms
proportional tob—a.

In particular,R is analytic in thec-plane cut along In)=0,
|Re()|>1, and exhibits the real roots= + cg(0<<cgr<1). Ratio-
nalization of the relatiorR=0 gives a cubic equation io? that
corresponds exactly to one obtained for the roots of a transversely

where the dimensionless coefficients are given by the formulagsotropic Rayleigh functiorf{15]). That, is,cgv, is the Rayleigh

mB%b & mab _J-p &
a= i' b:_P_pi (A3a)
D Ca4 D \/E Cyq
D=aP?-bB?Q? (A3b)
in view of the definitions
P=y+mB’, Q=m+y, ¢=aa’~A? y=ab’-B?
(Ada)
1 1
Va(a,b)= — VT+T2—4A2B2= — (\T+2AB* \T—2AB)
o) 2
(A4b)
JVa(a+b)=\(A+B)Z—m? (A4c)
T=A2+B2-m? A=\a\B—c? B=\1-c2. (Add)

Introduction of the branch cuts Ip(=0, Ref)<0 and Imp)

speed parallel to the-axis of material symmetry for the class of
solids treated here, aridlis itself the essential factor of the Ray-
leigh function. The form ofR is, however, simpler in form than
standard functions, whether for isotrop{El0]) or anisotropic
([15]) materials. As an alternative to the cubic equation solution, a
general approack{21]) yields cg in a form that is analytical to
within a simple quadrature:

[aB—(m—1) G
—————— Gp,
Vap(1+a)

1 fv?t ., Cyt*—1 dt
— an ————— —.
T J1 t2\Jap—t2 t
Here(8) guarantees that the coefficient®@f is real and positive.

A similar approach([22]) has also yielded a Rayleigh speed, but
two more complicated quadratures arise due to use of a Rayleigh

function without factorization.
In the isotropic limit, the branch point#\5) collapse into the

CR—

Gg= (A9)

=0, Re)>0 for ({p,/=Pp), respectively, guarantees that theilyyigin as isolated real roots, so that a factorization process based

real parts are non-negative in their cut planes. Therefordafdm)

real and positive, boundedness(8®2) for y>0 is assured.
Introduction of the branch cuts Im)=0, |Re@)|>yB and

Im(c)=0, |Re()|>1 for the quantitiegA, B), respectively, guar-

antees, similarly, that they have non-negative real parts in a cu

complexc-plane. The quantitie&, b) share the branch cuts 04,
B), respectively, but the restrictior{8) guarantee thafa, b) also
exhibit branch points defined by

(a—1)2c?=y(1+a)—2a(1+B)xi2mVa\y— a—B.
(A5)

These also define roots ®f—a? and, indeed, the denominator

term D in (A3b) vanishes wherb=a. Even thoughc takes on

only positive real values here, this apparently singular behavi

does not in any event effecii{,0,): Whenb=a the exponential
terms in (A2) are identical and, by usingA4) and the related
formulas

ad’y=—B?%p, aab=AB, (A6)
it can be shown that the resulting numerator termgAB) also

G+ ip+m?=0

vanish wherb=a. This behavior can be made more explicit, an

the expression§A2) simplified, by allowinga+b to be continu-
ous across branch cuts associated Wi8), even though 4,b,b
—a) remain multivalued there. The®4) and (A6) can be used
to show that

D=ABy(b—a)R, R=c’A+BC, C=(m—1)°-A2%

(A7)
The quantityR has only the branch cuts dfA, B) along the
Re(c)-axis. In view of (A7), (A2) can be written as
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on (A7) does not have the advantage of extracting complex branch
points. However, the simplification indicated 48) could still
prove convenient.
tIn light of (Ala),

o= f o(t)e Pidt (A10)

L

where the symbol affixed to the integral operator signifies that
integration is over the real interval ( ,L ). The left-hand sides
of (A8) are the transforms of first derivatives with respectxto
which, in view of the rigid-body motion superposition noted in the
body of this article, are sulfficient for purposes of a problem solu-
%Qn. When Kv<uv,, (4) gives 0<c<1. This ensures thd4, a,

, b) are all real and positive. Thusy (,/Bv,) are the rotational
and dilatational speeds associated with the material symmetry axis
aligned with the half-space surface, ang €<1 corresponds to
subsonic sliding. LikgA2), (A8) is bounded for(A, a, B, b) real
and positive, so that substitution intA1b) along with (A10) and
interchanging the order of tHg p)-integrations reduces the inver-
éion process to the generic integrals

1 \/__p p(x—t)—kVpyV=p,
oy f( B )e dp (k=ay,by). (All)
The integrands are both analytic for Rg€0, so that the Bro-

mwich contour can be the entire Ip)axis. Performing the inte-
gration yields, with the help of standard tablg$8]),

1 (k,x—t)

T (Xx—t) 2+ K2 (A12)
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The results

3 Ay Q mB?
cuna i e | 0y e
RE e
B A
Cadlyx = b=a)R fL O 75 ary?
P m
5 o (L)

follow for y>0. As implied above, although the situatibr-a
does not arise foc real, the expression®13) are finite in any
case, and the factdr-a is cancelled fron(A13) wheny=0.

For 1<c< /B (transonic sliding the parametergA, a) remain

positive real, butB, b) are now imaginary. Therefore, the process
used for(A13) must now consider the behavior in the complex

c-plane noted above in order théA8) remains bounded foy
>0. Application of (Alb) then yields

_b'B'Q czaaszZCA
C44UX,X_ ,n_w L a(aZ_bZ)K y
B’ @a’C—c?A?

T2 w@=oHK T

mo(t)dt
t—x)%+a’y?

b c?ea’?-B2C A a(t)dt
a(a?-b)K 7B’ [t—x—b'y
c?A%— aa’C o ALl
+ ma(XJr y) (Alda)
_b'Q [ [aad’C—c?A?
Catyn="2" | | at@= b2k &Y
AB/BZC—CZaaZ a(t)dt
AR @K Y [T aty?
mP [c?aa®—~B?C A [ o(t)dt
cay| a(a®—b?)K 7 ) t—x—b'y
c?A%— aa’C " o ALl
+ AW@—HK a(x—=b'"y) (Al4b)
for y>0. Here(Ad4) is augmented by the definitions
K=c*A?—B2C? (Al15a)

B'=vc?—1, V2ab'=V\T?-4A?B2-T. (Al5h)

It is understood that the nonintegral terms(#&l4) appear only

whenx+b’yelL, and the integrals that are grouped with these

for y>0. Here the first and second terms, respectively, in both
(Al6a,b) vanish unlesg+a’'y e L andx+b’'ye L. This behavior
indicates that the half-space surface is undisturbed unleds.
Moreover, depending on the form of these terms, and the non-
integral terms in(A15), could exhibit lines of discontinuity
+a’'y=L. orx+b’y=L. that radiate from the moving contact
zone edges. I16A16), the additional definitions

N =NV B, Naaa =T \Te_anlE,

R'=c?A’+B'C (A17)
arise.

It can be shown thatA13) and (Al4) are continuous at=1,
and that(A14) and (A16) are continuous wheo= /3. A key step
in the demonstration is the use of the stand@2®]) result

k ol k—0
(t_x)—z_‘rkzﬂﬁ (t—x) (k—0+)

where é is the Dirac function.

(A18)
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Bounded Noise Excitation

The moment Lyapunov exponents of a two-dimensional viscoelastic system under bounded
noise excitation are studied in this paper. An example of this system is the transverse
vibration of a viscoelastic column under the excitation of stochastic axial compressive

load. The stochastic parametric excitation is modeled as a bounded noise process, which
is a realistic model of stochastic fluctuation in engineering applications. The moment
Lyapunov exponent of the system is given by the eigenvalue of an eigenvalue problem. The
method of regular perturbation is applied to obtain weak noise expansions of the moment
Lyapunov exponent, Lyapunov exponent, and stability index in terms of the small fluctua-
tion parameter. The results obtained are compared with those for which the effect of
viscoelasticity is not considered. [DOI: 10.1115/1.1445143]

1 Introduction

The study of the dynamics of many engineering structures un-
der random loadings, such as those arising from earthquakes,
wind, and ocean waves, which can be described satisfactorily only
in probabilistic terms, leads to a dynamic system of the form

X(1) =f(x(1).x(1),&(1)), 1

where &(r) denotes a vector of stochastic processes characterizing
the randomness of the loadings. It is of practical importance to
investigate the dynamical stability of system (1) under the sto-
chastic excitations &(). For engineering applications, the stochas-
tic excitation has been modeled as a Gaussian white noise process,
a real noise process, or a bounded noise process.

A white noise process is a weakly stationary process that is
delta-correlated and mean zero. Its power spectral density is con-
stant over the entire frequency range, which is obviously an ide-
alization. A white noise process is frequently adopted as a model
for noise because of the availability of mathematical theory, such
as Ito calculus, in dealing with white noise processes.

A real noise &(t) is often characterized by an Ornstein-
Uhlenbeck process and is given by

dé(t)=—ayé(t)dt+ ayedW(t), 2)

where W(r) is a standard Wiener process. It is well known that
&(r) is a normally distributed random variable, which is not
bounded and may take arbitrarily large values with small prob-
abilities, and hence may not be a realistic model of noise in many
engineering application.

A bounded noise 7(¢) is a more realistic and versatile model of
stochastic fluctuation in engineering applications and is normally
represented as

n(t)=cos[ vot+ o, W(t)+ 0], (3)

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
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in which 6 is a uniformly distributed random number in (0,27).
The inclusion of the phase angle 0 in Eq. (3) makes #7(t) a sta-
tionary process.

Equation (3) may be written as

n(t)=cos Z(1),
dZ(1) = vodi + aed W(1), “

where the initial condition of Z(¢) is Z(0)= 6. The correlation
function of #(7) is given by

1 0'3
E[n(t+7)n(t)]=R(7)= 5 C0s Vo7 exp| — 7|7‘| ,

and the spectral density function of #7(r) is

+o
S(w)=f R(7)el"dT
1 1

2
+
Y w— v0)2+a'g 4w+ v0)2+0'3

=0y

It may be noted that the mean-square value of the bounded noise
process 7(t) is fixed at E[ »*(t)]=1/2. The spectral density func-
tion can be made to approximate the well-known Dryden and von
Karman spectra of wind turbulence by suitable choice of the pa-
rameters vy, 0, and &q. In the limit as o approaches infinite,
the bounded noise becomes a white noise of constant spectral
density. However, since the mean-square value is fixed at 1/2, this
constant spectral density level reduces to zero in the limit. On the
other hand, in the limit as o, approaches zero, the bounded noise
becomes a deterministic sinusoidal function.

The bounded noise process (4) was first employed by Stra-
tonovich [1] and has since been applied in certain engineering
applications by Dimentberg [2], Wedig [3], Lin and Cai [4], and
Ariaratnam [5].

The sample or almost-sure stability of the trivial solution of
system (1) is determined by the Lyapunov exponent, which char-
acterizes the average exponential rate of growth of the solutions of
system (1) for ¢ large, defined as

1
Nxny= lim7log ||x(t)H, 5)

t—>
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where ||x(#)|| denotes the Euclidean vector norm. The trivial solu-
tion of system (1) is stable with probability one (w.p.1) if the top
Lyapunov exponent is negative, whereas it is unstable w.p.1 if the
top Lyapunov exponent is positive.

On the other hand, the stability of the pth moment of the trivial
solution of system (1), E[||x(¢)||”], is determined by the moment
Lyapunov exponent

1
A (p) = lim—log EL[x(1)|"], ©

11—

where E[-] denotes expected value. If Ay, (p)<<O, then
E[|x(t)|?]—0 as t—. The pth moment Lyapunov exponent
Ayy(p) is a convex analytic function in p with A,,,(0)=0 and
A,’(([)(O) is equal to the the top Lyapunov exponent A,y . The non
trivial zero Oy(;y of Ay()(p). i.e. Ay()(9x)) =0, is called the sta-
bility index.

However, suppose the top Lyapunov exponent A, is negative,
implying that system (1) is sample stable, the pth moment typi-
cally grows exponentially for large enough p, implying that the
pth moment of system (1) is unstable. According to the theory of
large deviation, although the solution of the system [|x(#)||—0 as
t—o w.p.l at an exponential rate A, there is a small probabil-
ity that ||x(¢)| is large, which makes the expected value
E[||x(2)]|?] of this rare event large for large enough values of p,
leading to pth moment instability.

Hence, to have a complete picture of the dynamical stability of
system (1), it is important to study both the sample and moment
stability and to determine both the top Lyapunov exponent and the
pth moment Lyapunov exponent.

A systematic study of moment Lyapunov exponents is pre-
sented in reference [6] for linear It0 systems and in reference [7]
for linear stochastic systems under real noise excitations. A sys-
tematic presentation of the theory of random dynamical systems
and a comprehensive list of references are presented in [8].

Although the moment Lyapunov exponents are important in the
study of dynamic stability of randomly perturbed systems, the
actual evaluations of the moment Lyapunov exponents are very
difficult. Only a few results on the moment Lyapunov exponents
have been published. Using the analytic property of the moment
Lyapunov exponents, Arnold et al. [9] obtained weak noise expan-
sions of the moment Lyapunov exponents of a two-dimensional
system in terms of & p, where € is a small parameter, under both
white noise and real noise excitations. Khasminskii and Mosh-
chuk [10] obtained an asymptotic expansion of the moment
Lyapunov exponent of a two-dimensional system under white
noise parametric excitation in terms of the small fluctuation pa-
rameter &, from which the stability index was obtained. Sri Nama-
chchivaya and Vedula [11] obtained general asymptotic approxi-
mation for the moment Lyapunov exponent and the Lyapunov
exponent for a four-dimensional system with one critical mode
and another asymptotically stable mode driven by a small-
intensity stochastic process.

In recent studies ([12] and [13]), Xie applied a procedure simi-
lar to that employed in Khasminskii and Moshchuk [10] to obtain
weak noise expansions of the moment Lyapunov exponent, the
Lyapunov exponent, and the stability index of a two-dimensional
system exhibiting pitch-fork bifurcation under both real noise and
bounded noise excitations in terms of the small fluctuation param-
eter.

There are many viscoelastic systems in engineering applica-
tions. The dynamic stability of viscoelastic systems has been in-
vestigated by many authors. Ariaratnam [14] studied the almost-
sure stability of a single-degree-of-freedom linear viscoelastic
system subjected to random fluctuation in the stiffness parameter
by evaluating the top Lyapunov exponent and the rotation number
using the method of stochastic averaging for integro-differential
equations due to Larinov [15]. Ariaratnam [5] determined the top
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Lyapunov exponent of a linear viscoelastic system parametrically
forced by a bounded noise excitation by the use of the averaging
method for integro-differential equation ([15]). Potapov [16] stud-
ied the almost-sure stability of a viscoelastic column under the
excitation of a random wide-band stationary process using
Lyapunov’s direct method. Potapov [17] considered the numerical
evaluation of Lyapunov exponents of linear integro-differential
equations, describing the behavior of stochastic viscoelastic sys-
tems.

However, there are no publications available on the evaluation
of moment Lyapunov exponents of viscoelastic systems. This pa-
per is the first to deal with the determination of small noise ex-
pansion of the moment Lyapunov exponent of a two-dimensional
viscoelastic system under bounded noise excitation, which is a
realistic model of noise in engineering applications.

2 Formulation

2.1 Equation of Motion. Consider the transverse vibration
of a viscoelastic column under the excitation of a stochastic axial
compressive load P(7). The equation of motion is the partial
differential equation

&*v + v

+ &UJrEIl ’RaU+P
mo e FEI(1=R) S5 +P(7)

e x* =0, )

ax?
where v(x,7) is the transverse deflection of the column, x the
axial coordinate, 7the time parameter, m the mass per unit length
of the column, ¢ the damping constant, E/ the flexural rigidity of
the column, R the material relaxation operator given by

Rv=f R(7—s)v(s)ds, R(71)=gyye °F07, ®)
0

in which v, is a constant characterizing a measure of the material
relaxation, k, a constant representing the material relaxation rate,
€>0 a small parameter. If the column is simply supported, the
transverse deflection may be taken as

©))

S
v(x,r)—q(T)smf,

where L is the length of the column. Substituting Eq. (9) into (7)
yields the equation of motion for ¢(7)

d*q(7) dq(7)
T2 t2efce—— T ol 1-R=p(n)]q(7)=0,
or
d*q(7) dq ()
S +2e’co——+ g1 —po—epé(n)]q(7)
—s'yowgf e 20Ty (5)ds =0, (10)
0
where
c El [ m\?
2670~ w5=;(2>’

1

P(T)=E

L 2
(;) P(1)=pot+epoé(r),

in which &(7) is a stochastic process of mean zero. In this study,
&é(1)=cos z(7) is a bounded noise process, in which
dz(7)=vydT+ opedW(7), (11)

or
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(1) =vyr+ o W(7)+ 86, (12)
where W(7) is a standard Wiener process in time 7, and 6 is a
random phase angle required to make the bounded noise &(7) sta-
tionary.

Equation (10) can be simplified by removing the damping term.

—&7coT

Letting g(7)=x(7)e and substituting into Eq. (10) results in

’x(7) I
+wl—epcosz(T)]x(P)—e¥ | e 2% 5)x(s)ds
dr? o
=0, (13)
where
42
“’2:“’(2) L=po— ° 620 ) ,U«:H_(z), Ko=Ko—€%Cq,
% 0
7’0:7’0‘0(2)-

By applying the time scaling r=w7, Eq. (13) can be further
simplified to yield

d’x(1) Lo
a7 +[1—eucos ((z)]x(t)—ayfoe ex(1=9) x(5)ds =0,
(14)
where {(7) is a random process given by
d{(t)=vdt+o°dW(t), (15)

in which W(r) is a standard Wiener process in time ¢, and

2 2
_ Yo@Wo _ Kg—&7Cp Yo 9o
K=—T—7", v=—,

YT w 1) \/;

From the definitions of the Lyapunov exponents and the mo-
ment Lyapunov exponents, it can be easily shown that the
Lyapunov exponents and moment Lyapunov exponents of systems
(10), (13), and (14) are related as follows:

)\q(T):_8200+)\x(7—):_SZC()+w)\x(f)’ (16)

Ayn(p)=—e*cop+ Ay n(p)=—2’cop+ oA, ().

Without loss of generality, the moment Lyapunov exponent of
system (14) is studied in the remaining of this paper.

2.2 Eigenvalue Problem for the Moment Lyapunov Expo-
nent. The approach employed in this section was first applied by
Wedig [18] to derive the eigenvalue problem for the moment
Lyapunov exponent of a two-dimensional linear Ito stochastic sys-
tem.

Letting

x3(t):J' e U =3)x(5)ds, (17)
(

0

the two-dimensional viscoelastic system (14) and (15) may be
considered as a four-dimensional system as follows:

X1 Xy 0
X —1+eucos(t + 0
2\ [ M {()]x +eyx; di+ dw.
X3 X1~ EKX3 0
14 v o
(18)

Apply the transformation
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X|=acos ¢,

_ql X2
a=\/x%+x§, P=ap=(x%+x§)”/2, @=tan '(x—),

1

X,=asine, x3=ab, x;=¢,

19

which is an extension of the Khasminskii transformation [19]. The
1t0 equations for P, ¢, and b can be obtained using It0’s lemma

P epP sin o(u cos { cos ¢+ yb)
@ —1+& cos @(ucos { cos o+ yb)
d = . .
b cos @ —eb(k+ p cos ¢ sin ¢ cos ¢+ yb sin @)
4 v
0
0
+Y o [ 9W- (20)
o
For small values of &, da/dt=0(e) and de/dt=—1+O(e), and
hence a(t)=aytea;(t)+ ..., o(t)=—t+ee(t)+ .... From

Eq. (17),

t
x3(t):J’ e =9 q(s)cos @(s)ds
0

t
= f e eI gy cos s+ 0(g)]ds
0

agsint TeKt)

T l+ek?

ekapy(cost—e
1+&%k?

+0(e)

=a,sint+0(e),
and
x3(t) agsint+O0(e)
A apt0(e)

Hence, for small values of ¢, the range of b(¢) may be taken as
—1=b()<I.
Applying a linear stochastic transformation

S=T(e,b,0)P, P=T '(¢.b,0)S,

b(t) =sint+0(e).

0<ep<2m, —1<b<l, —o<(<om,

the It0 equation for the new pth norm process S is given by, from

It0’s lemma,

1
ds= EazT{pL vT;—T,+cos @T),+ e[ (u cos { cos @+ yb)

X(p sin @T+cos ¢T,) —b(k+ u cos { sin ¢ cos ¢

@n

+yb sin )T, ] Pdt+oT PdW.

For bounded and nonsingular transformation 7(¢,b,{), both
stochastic processes P and S are expected to have the same sta-
bility behavior. Therefore, T(¢,b,{) is chosen so that the drift
term of the Ito differential Eq. (21) is independent of the processes

@(1),b(t), and {(t), so that
dS=ASdt+oT,T~'SdW. (22)

Comparing Egs. (21) and (22), it is seen that such a transforma-
tion T(¢,b,{) is given by the following equation:
(Ly+eL)T=AT, 23)

where
l,
L,T= i T+ vl —Tyt+cos T,
L\T=L;T+cos{-LT,
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L T=b[pysin@T+ycos eT,—(k+ybsing)T,],
Ly T= pcos ¢(p sin 9T +cos ¢T,— b sin ¢T)).

Equation (23) defines an eigenvalue problem for a second-order
differential operator of three independent variables, in which A is
the eigenvalue and T(¢,b,{) the associated eigenfunction. From
Eq. (22), the eigenvalue A is seen to be the Lyapunov exponent of
the pth moment of system (14) or (18), i.e., A=A () (p).

In the following section, the method of regular perturbation is
applied to the eigenvalue problem (23) to obtain a weak noise
expansion of the moment Lyapunov exponent for system (18).

3 Weak Noise Expansion of the Moment Lyapunov
Exponent

In this section, the method of regular perturbation is applied to
obtained a weak noise expansion of the moment Lyapunov expo-
nent A, (p), i.e., the eigenvalue A of the eigenvalue problem
(23) for small e.

Applying the method of regular perturbation, both the eigen-
value A, (p) and the eigenfunction T(¢,b,{) are expanded in
power series of € as

Ax(f)(p) = z snAn(p)’

n=0

T(cp,b,o:go &"T,(¢,b,0),
(24)

in which 7, (¢,b,{), n=0,1, ..., are periodic functions in ¢ of
period 27r. Substituting the perturbation series (24) into the eigen-
value problem (23) and equating terms of equal power of ¢ yields
the nth-order equation, n=0,1, ...,

0

LOTn+LlTn—1:E Aan—k' (25)
k=0

To simplify the expressions of the results in this paper, the
following notations are employed:

1
vi=(v=1)7>+ 7o,

1
T V,IZ(V+1)2+ZO'4,

1 1
vi,=(v=2)2+ 0%, v_,=(v+2)>+ 20'4,

4
vi,=v'—4+ -0 2 =V2—4—l¢74
*2 4 ’ *2 4 ’
V. =1/2—1—la'4 Viy=v2+4+ -0t
*1 4 > +2i 4 .

3.1 Zeroth-Order Perturbation. The equation for the
zeroth-order perturbation is LyTy= AT, or

o> T, dT, JT,

N dTy
2 0 Vet e

+cos o ——=AyT,.

b (26)

From the property of the moment Lyapunov exponent, it is known
that Ax(,)(O)=Efzos”An(0)=0, which results in A, (0)=0 for
n=0,1,.... Since the eigenvalue problem (26) does not contain
p, the eigenvalue Ay(p) is independent of p. Hence, Ay(0)=0
leads to Ay(p)=0. The solution of Eq. (26) is taken as

AO(p):O9 TO(§D7b9§):1

Since Ay(p)=0, the associated adjoint differential equation of
(26) is

(27
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ot P*TE  ITE 9T
5 oA TVt
2 9¢ al  de
Applying the method of separation of variables and letting
T5(@.b,0)=F{(@,b)Z§({) leads to
1 (o2 d*z}f  dZ}
zi\2 ar Uar )"

aTg
—cos ¢ —=0.

b (28)

1 IFE IFg
_ - + —_— =
Fi\ " a9 %
For the F{(¢,b) equation, letting k=0 yields F&(,b)
=constant. Hence, F{(¢,b) can be taken as F{(¢,b)
=dE(@)BiE(b), where
N 1
Of(p)=5-. 0=¢<2m 29)
which is the probability density function of a uniformly distrib-
uted random variable ¢ between 0 and 27, and
1
Ba"(b)=§, —l=<ep=<l, (30)
which is the probability density function of a uniformly distrib-
uted random variable b between —1 and 1.
The Z(’)k equation becomes, for k=0,

1 25 .
S0 ZE—vZE=0,

5 31)

and the solution is given by

2v
?5)-

For Z&({) to be bounded, C,=0 and Z({)=C,=constant.
Note that {(t)=vt+ oW(t)+ 6, which is a linear function vt
with superimposed noise o W(t), and {(¢) appears as an angle of
a sinusoidal function cos ¢, which is a periodic function of period
27r. Hence, after folding, the angle {(¢) may be considered as
taking values between 0 and 2. Z{f({) may then be chosen as

ZE=C+Cyexp

1
ZE()=5—, 0s=¢(<2m, (32)
21
which is the probability density function of a uniformly distrib-
uted random variable between 0 and 2.

Hence T¢(¢,b,0)=PF(@)BE(L)ZE(L) represents the joint
stationary probability density function of the independent random
variables ¢, b, and ¢, in which ¢ is uniformly distributed between
0 and 2, b is uniformly distributed between —1 and 1, and { is
uniformly distributed between 0 and 2.

3.2 First-Order Perturbation.
equation is

The first-order perturbation

L0T1:A1T07L1T0. (33)

Since the homogeneous equation L,7T,=0 has a nontrivial solu-
tion as given by Eq. (27), for Eq. (33) to have a solution it is

required that, from the Fredholm alternative,
(AIT()_LIT()!Tg):Os (34)

where T¢(¢.b,{) is the solution of the adjoint Eq. (28) as ob-
tained in Section 3.1, and (F,F,) denotes the inner product of
functions F;(¢,b,{) and F,(¢,b,{) defined by

2m 1 2m
(FI,FZ)ZJ f J’ Fl(‘P,b,g)Fz(él’,b,D
(=0Jb=-1J¢=0
XD (@)BF(b)Z5({)dedbd{.
For the simplicity of analysis, define the inner product for func-

tions F,(¢,b) and F,(¢,b) as
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(F\.Fy)= f J 0 1(@,0)F>(0,0) P (¢)B (b)dedb.
b=— =

Because (7, 7¢)=1 and

L,Ty=(Lp+cos {-Lll)T():fél)(go,b)-‘rcos g'fm (¢.b),

cos,1

where  f3(¢.b)=LyTo=pybsing, and [} (¢.0)=Ly T,
=pusin @cos ¢, the first-order perturbation of the moment
Lyapunov exponent is, using Egs. (29), (30), and (34),

A1:(L1T0,T3<)

=(f(@,b),Fi(@,b))+E[cos {1-(f1) (@.b),F(@,b))
=0, (35)

in which E[/({)] denotes the expected value of the random func-
tion h({) with ¢ being the uniformly distributed random variable
between 0 and 2.

Hence, Eq. (33) becomes

(‘P b)—"—COS{ gcosl((Psb)’

where g (¢,b) = *fol)(ﬁpvb), 8o (9:0)= = fiol1(¢.b). Equa-
tion (36) is in the form of Eq. (50) and the solution is given in the
Appendix by Eq. (66).

From the Appendix, the solution of Eq. (36) is obtained as

LoT\= (36)

T\(¢.b,0)=G{(¢,b)+cos {-GL)) ((@.b)+sin -G (¢.b),

sin, (37)

Cos,

where

G (@.b)= fosgg”[w—r,ﬁ—sin(w—r)]dr,

r,B—sin(¢—r)]-c,(r—s)dr,

G \(¢.b)= f ganly—
0

Gihi(.b) =~ f gl 9= r.B=sin(y—r)]-s,(r=s)dr,
in which ¢;(r—s) and s,(r—s) are as defined in Eq. (65), and the
substitutions —s= ¢, B=>b+sin ¢, and s— — have been em-
ployed after the integration.

3.3 Second-Order Perturbation.
second-order perturbation is

The equation for the

LoT,=A,Ty—L,T,. (38)

From the Fredholm alternative, for Eq. (38) to have a solution, it
is required that

(AzTo_L1TI’T6k):0- (39)
Since, from Eq. (37),
Ly T1=(Lyptcos {- L[ GG (¢,b) +cos {-G

-GG\ (e, b)]

() (@.b)+sin g

=f82)(<p,b)+k21 [cos k¢-f2) (@,b) +sinkZ - f2),(@.b)],
where
(2) (1) ! (1)
fO (Qp’b):LIOGO (‘Pab)+lechos,l(¢ab)’

2 (@.b)=L1GLL (@0.0)+L,G(@,b),

cos,1
fgizn),l(%b)=L10G£iln),1(<P,b),
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1 1
f@ale:b)= FLuGGL(@.b).  fila(.b)= 5 L1Gli(e.b).
and noting that E[ cos k{]=E[sin k{]=0, k=1,2, ..., one obtains
the second-order perturbation of the moment Lyapunov exponent

p(p+2)uPo?v.y,

32V+2V,2 (40)

Ao =(Li T T = (5 F§)=

In Section 2.2, it is shown, although not in a vigorous manner,

that the range of the variable b(t) is —1<b(¢)<1. To ascertain

this conclusion, assume that the range of b(r) is —by<b(?)

<b,. Following the same procedure, one obtains the second-
order perturbation of the moment Lyapunov exponent as

p(pH2)bopl ot vy,
2_ .

R2vi,v,

Ignoring the viscoelastic effect, i.e., setting y=0 in Eq. (14), sys-
tem (14) becomes a two-dimensional system under bounded noise
excitation. The resulting moment Lyapunov exponent should re-
duce to that obtained in Xie [13], which is the same as Eq. (40). It
is obvious that the value of b, should be taken as 1.

Equation (38) becomes

LoTy=g(g.b)+ >, [coskl: g2 y(@.b)+sinkl - g2 (@.b)],
k=1

41)

where  g(9.0)=A,—fP(0.b), gl (@b)=—f (@),

g% ((@.b)y=—1% (¢.b), k=1,2. From the Appendix, the solution

sink

of Eq. (41) given by Eq. (66) is
2
T5(L,@) =GP (@,b)+ >, [cosk(- G2 (¢,b)
k=1

+sink§-G£i2n),k(<Psb):|s “2)

where, for k=1,2,

G (@.b)= J DLy r.B—sin(y—r)1dr,
0
(ccz)zk ¢] b)_f [gcosk ck r— S)+gsmk Sk r—s)]dr,

G(mzn)k((Pab)ZJ [*g(cig,k'sk(rfs)+g§i2n),k'Ck("*s)]dry
0
in which the functions g, gﬁl 0 85 4+ in the integrands are all

functions of [¢—r,B—sin(y— )], and the substitutions Y—s
=¢, B=b+sin ¢, and s— — o are taken after integration.

3.4 Third-Order Perturbation.
tion for the third-order perturbation is

From Egq. (25), the equa-

LoT3=A,T,+A3Ty—L,T,. (43)

According to the Fredholm alternative, for Eq. (43) to have a
solution, it is required that

(AT +A3Ty— LT, ,T¢)=0.
Since, from Eq. (42),
2

LyTy=(Lygtcos{-Lyy) GE)Z)(QDJ?)"‘}{Z] [coskl- G(cgg,k(%b)

+sin k- Giﬁﬁkw,b)]] =1 (@,b)+ >, [coskl
k=1
) (@,b)+sinkl-£3) (@.b)],
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where

7(@.0) = LG+ LG

cos,l

1
+LyGy+ 5 LG

cos,2

13 (@.b)=Ly G2

cos,1

sin, 1 sin,2 »

1
fm (‘Pab):L]()ng),lJr ELHG(Z)

1
73 (@.b) =L10G£(2;Z,2+ ELHG(Z)

cos,2 cos,1

1
fgn),z(%b) :LloGgﬁf,z"‘ ELIIGEQI ,

1 1
Falsleb)=5 LGl fQ(eb)=5LuGR),

and noting E[ cos k{|=E[sin k{]=0, k=1, 2, 3, the third-order per-
turbation of the moment Lyapunov exponent is

As=(Li T T§) = ATy TH = (16" F§) = Ax(GG  F§)
=—py2(9p>y—6py—16pKk+ 16K)/48
+p {327 WPy v v, —ppll64(vP— 1) (1P —4)(50
+1)+166*(5v* = 561*— 15)—4 0¥ (512 +24) — 50'7]

+2560°v v ovs H(2048v, v vy ,vs). (44)
3.5 Moment Lyapunov Exponent and Lyapunov Expo-
nent. The weak noise expansion of the moment Lyapunov ex-
ponent is obtained as
Agn(p)=e*Ay+e A3+ 0(e%), (45)
where A, and A; are given by Egs. (40) and (44), respectively.

The procedure of regular perturbation presented in Sections
3.1-3.4 can be extended easily to higher-order terms and can be
carried out using a symbolic computation software such as Maple.
However, the numbers of terms involved in higher-order expan-
sions increase drastically, and the higher-order terms obtainable
are limited by the computer systems.

When the effect of viscoelasticity is absent, i.e., when y=0,
system (14) is a two-dimensional dynamic system under bounded
noise parametric excitation. The moment Lyapunov exponents
A (1y(p) can be obtained from Eqs. (40) and (44) by setting y=0:

p(p+2)puo?v.y,
Az_ 32V+2V_2 ’ AS_O’

which are the same as those obtained in [13].
The Lyapunov exponent for system (14) can be obtained from
Eq. (45) by using the property of the moment Lyapunov exponent

dA»(p)
(1)
=gy TEMate Nt O, o)
p=0
where
2 2 2
MOV, 1 YR Vg

Npy=——", A3=——9y’k+
2 16V+2V,2, 3 3 y K 8V+1V,1

3.6 Stability Index. By definition, the stability index is the
nontrivial zero of the moment Lyapunov exponent. For system
(10), the moment Lyapunov exponent is given by

Journal of Applied Mechanics

Ayn(p)=—g*cop+ oA (p),

and the stability index 9,

o(n 18 given by A (6, =0, or

Ax(t)(éq(r))_szc 5q(7'):Ov (47)
where c=c(/w.

Expanding the stability index J,(, in power series of & as
Sy(n= S¢_oe¥8,, substituting it into Eq. (47) along with Eq.
(45), expanding, and equating terms of equal power of ¢ yields the
equations

2 2
0 (0p+2)vain;
g2 8, —c+—'u (ot 2)v i =0
32V+2V,2

s

61(6p+ I)MZUZVtZi

16V+2V,2

La Y982 y—66,y
48 0 0 0

e —CO0y

— 168k + 16K) — Sy yu*{ —256v v _, v+ S[64(v2—1)
X(2P—4)(5v7+ 1)+ 160*(5v*— 5612 — 15) —40¥(51°
+24)=50"- 3280, v_ v, (2048v, \v_ vy ,v_y)

=0, (48)

Using a symbolic computation software such as Maple, these
equations can be easily manipulated and solved for &;,i
=0,1,..., to result in

32CV+2V,2

2 2

60:_2“1‘ N
MO Vip;

(49)
8, =8Y96u 0 v s v v_ [~ uPv, +2Y(y T K)viav_y]
—cpt ot vy v vy {—3uP[4480°— 16(144—To*) v*
+4(528—2560*—70%) 1> — (256+5280* + 14408+ 70'?)]
+256y(21y+8K) v\ v_ v oV )
+3O7202V+1V—1(V+2)2(V—2)2(_M2V;2
+ 12920 v_ ) H[3ub 0 (vay) (16v* — 3212+ 85* 1 + 16

+8c*+0%)].

4 Numerical Results and Conclusions

In this paper, the moment Lyapunov exponents of a two-
dimensional viscoelastic system under bounded noise parametric
excitation are studied. An extension of the Khasminskii transfor-
mation is employed to convert the two-dimensional viscoelastic
system under bounded noise excitation into a four-dimensional
system in terms of P, ¢, b, and {. An approach original applied by
Wedig to two-dimensional It0’s system is used to set up the ei-
genvalue problem for the moment Lyapunov exponent. The
method of regular perturbation is applied to obtain a weak noise
expansion of the moment Lyapunov exponent in terms of the
small fluctuation parameter. Weak noise expansions of the
Lyapunov exponent and stability index are also obtained.

When the viscoelastic effect is not considered, i.e., when y=0,
system (14) is a two-dimensional system under bounded noise
excitation. In the absence of noise perturbation, i.e., when =0,
the two-dimensional system (14) under bounded noise parametric
excitation (15) is further reduced to the Mathieu’s equation. It is
well-known that parametric resonance occurs when the nondimen-
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Fig. 1 Moment Lyapunov exponent A, (p). £=0.05, u=1, k=5, y=0, 0=0.5.
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Fig. 2 Moment Lyapunov exponent A, (p). £=0.05, u=1, k=5, y=0, o=1.

AX[I)( PJ 0.04

”h‘m“mmum\l\m

hh!h‘

:MMMMM@@m‘\‘m‘\\‘\\‘\'&.

Fig. 3 Moment Lyapunov exponent A, (p). £=0.05, u=1, k=5, y=1, 0=0.25.
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Fig. 4 Moment Lyapunov exponent A, (p). £=0.05, u=1, k=5, y=1, 0=0.5.

sional excitation frequency »/2 is in the vicinity of 1, 1/2, 1/3, When the noise fluctuation parameter o is not zero, the
1/4, . ... For system (14) without the viscoelastic effect and noise  bounded noise is a sinusoidal function with noise superimposed.
fluctuation, the primary parametric resonance occurs in the vicin-  The larger the value of o, the noisier the bounded noise cos {(7),
ity of »=2, while the secondary parametric resonance occurs in  resulting in a smaller effect of the parametric resonance. The ef-
the vicinity of v=1. fect of primary parametric resonance can be clearly observed from
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Fig. 5 Moment Lyapunov exponent A, ,(p). £=0.05, u=1, k=5, y=1, o=1.
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Fig. 6 Moment Lyapunov exponent A ,,(p). €=0.05, co=1, pg=0, wo=1, uo=1, Kq

=5, ’YO=0, 0'0=0.5.

the typical plots (Figs. 1 and 2) of the moment Lyapunov expo-
nent A, (p) for system (14) given by Eq. (45) without the vis-
coelastic effect.

Typical results of the moment Lyapunov exponents for system
(14) are plotted in Figs. 3—5, while those for system (10) are

shown in Figs. 6 and 7. The viscoelastic term has a significant
effect on dynamic stability of the system. This is clearly seen by
comparing Figs. 1-2 and Figs. 3-5, Figs. 6 and 7. In general, the
viscoelasticity has a stabilizing effect, which may be seen more
clearly by plotting the stability index later in this section.

Fig. 7 Moment Lyapunov exponent A, (p). £€=0.05, co=1, pg=0, wo=1, po=1, Ko
=5, yo=1, 0¢=0.5.
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For the viscoelastic system (10), typical results of the Lyapunov
exponent N\, are shown in Figs. 810 for y,=0, 0.5, and 1,
respectively. The effect of parametric resonance when v is in the
vicinity of 2 can be clearly seen. It can also be observed that the
viscoelastic term has a stability effect in the sense that the
Lyapunov exponent A, is reduced with the increase of the value
of Yo -

The stability index is one of the single most important param-
eters in characterizing the dynamic stability of a stochastic sys-
tem. From the definition of the stability index, it is clear that the
larger the value of the stability index, the more stable of the sys-
tem in the sense of moment stability.

For the viscoelastic system (10), it can be concluded that the
viscoelasticity renders the effect of parametric resonance more
prominent in the vicinity of v,=2. The noise term has a destabi-
lizing effect in the sense that the stability index J, is reduced
with the increase of the noise intensity parameter o . It is also
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Fig. 9 Lyapunov exponent A, . £=0.05,
=0.5.

observed that the effect of parametric resonance diminishes with
the increase of the noise intensity parameter o,. As expected, the
damping term has a stabilizing effect. It is found that the effect of
the relaxation rate is not very significant, although it reduces the
effect of parametric resonance when the values of k| is increased.
The viscoelasticity has a stabilizing effect in the sense that the
stability index is increased with the increase of the parameter ;.
It should be noted that the application of the method of regular
perturbation in determining the moment Lyapunov exponent is
based on the assumption that the noise fluctuation parameter o is
not small so that the eigenvalue problem (23) is not singular.
Hence, the results obtained in this research cannot be used to
deduce the results for the Mathieu’s equation by setting o to zero.
In the case of small noise fluctuation, i.e., o is small, a method of
singular perturbation has to be employed to determine the moment
Lyapunov exponent, which will be studied in future research.

r0.0012
g(T)

-0.001

Ko

€0=0, po=0, wo=1, Ko=5, 70=0.5, ¢
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To solve Eq. (54), consider the equation
. a o & d 0. 5o
Appendix o Tﬁ_ﬁ g“ P(s,{t,z)= s<t, )

Solution of LT (¢,b,{)=f({)g(w,b). Consider the partial
differential equation LyT(¢,b,0)=f({)g(¢,b), or
o’ & g 9 d
+eos ¢ - | T(9..0)=f(D)g(@.b).

T e
(50)
Introducing an auxiliary time 7’ to Eq. (50) leads to
(i cr L0 7 )
(%,-i-z a{2+V&§ P +cos ¢ —|T(p,b,;t")
=f({g(e,b). (51)
Applying the transformation
=3 te). s=3('—g). f=bising,
or the inverse transformation
t'=y+s, e=¢—s, b=pL—sin(y—ys),
Eq. (51) becomes
J 0'2 7 d
wtTaEt &g) T(hB.8:5)=F(£)gL 5.8~ sin(y—5)],
(52)

Applying Duhamel’s principle ([20]), the solution T(#,8,{;s)
to Eq. (52) is given by

T(.B.Lis) = L V(. B.Lisir)dr, (53)

where V(i,8,{;s;r) is the solution of the homogeneous equation
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P(t,¢;t,z)=limP(s,;t,2)=8(z— ).
sTt

Equation (55) is the Kolmogorov’s backward equation for the
transition probability function P(s,;t,z). It is well known ([21])
that the transition probability P(s,{;t,z) is also the fundamental
solution of the forward or Fokker-Planck equation, i.e., for the
initial condition s and ¢ fixed,

L C|PGs.sin =0, 1>

— 2ty | P(s. Gtz t>5,

gt 2 oz 56)
P(s,{;8,2)=1limP(s,{;t,2)=8(z— ).

tls
Applying the Fourier transformation ([20])
_ o
P(s.(it.k)=FP(s.{i1.2)]= N e"P(s,{31,2)dz
T J —x

to Eq. (56) leads to

aP (1 _
E+(502k2—wk>P 0,
(57)

ik¢

ﬁ(s,{;s,k)= e

1
N2
Equation (57) can be solved using the method of characteristics to
give

P(s,{3t,k)= exp

L 'kp(l 2k —i k)(t* )} (58)
\/ﬁ l 20' 8% S)|.
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Applying the inverse Fourier transformation

P(s,0it,2)=F '[P(s.0:t.k)]= “ikp(s, Lot k)dk

1 oo

to Eq. (58) leads to

1
P(s,51,2)= ﬁj

1
- 502k2(r—s)]dk.

+oo

exp[i[(I—ZH v(r—s)]k

—

Using the integral formula

oo Vo [ ¢
exp(*gx—p2x?)dx= —ex (—), >0,
j p(£gx—p-x7) p Pl P

—®

as in Formula 3.323(2) of reference [22], one obtains

1 2= n]?
P(s.Lit,2)= exp[—[ ol (s
V27O Zo-z(t)
where
Hon=C(+v(t—s), Ug(,):a'z(t—s). (60)

Hence, for the initial condition {(s) fixed, z(¢) is a normally
distributed random variable with mean u,(,, and standard devia-
tion o, , the probability density function of which is given by
Eq. (59).

From Egs. (54) and (55), the solution V(,8,{;s;r) to Eq. (54)
is given by

V(h.B,Lss5r)=glyp—r.B—sin(¢—r)] f, F(2)P(s,{ir.2)dz,

(61)

where

E[f(Z(r))]:fi f(2)P(s,{ir,2)dz,

is the expected value of the random variable f(z(r)) with z(r)
being the normally distributed random variable as defined in (59)
and (60).

Combining Egs. (53) and (61), the solution to Eq. (52) is given
by

T(.B.L3s)= fog[lﬂ—r,,3—Sin(tﬂ—r)]E[f(Z(r))]dr.

(62)

The solution T(¢,b,{) to Eq. (50) is obtained by replacing ¢
=y —s,b=B—sin(y—s), and passing the limit s— —oo.
For the special cases when f({)=sin k{ or cos k{, one has

sinkz(r) _ 1 *t*(sinkz
E coskz(r)| | /2770.7(” _., |coskz

[Z*/M(r)]z
Xexp[ ——F—1dz
zo-z(r)
1 sinku,
_ 2.2 z(r)
=exp| =5 k7o, {cos k,U«z(r)]’ (63)

in which the integral formulas

tee sin[p(x+2N\)]
f eXp(_q2x2){cos[p(x+)\)]]dx

— o

Fl )

- TCXP W cos p\

Journal of Applied Mechanics

as given in 3.896(1) and (2) of reference [22] have been em-
ployed. Substituting Eq. (60) into (63) results in

[ sin kz(r)]

cos kz(r)

sin k{
=ck(r_s)[cos kl

coskl
+sk(r—s)[ —sink{]’

in which the following notations are used:

[sk(r—s)

1
_ 22
ci(r—s) Ko

2 z(r)

sinkv(r—s)
coskv(r—s)

] =exp ] . (65)

Substituting Egs. (64) into Eq. (62), one obtains the solution of
Eq. (50) as, when f({)=sin k{ and cos k¢, respectively,

SIsink-cp(r—s)+coskl s (r—s)
T(w’ﬁ’g;s):fo[cosk§~ck(r—s)—sinkg'-sk(r—s))

Xgly—r,B—sin(y—r)]dr. (66)
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Width-Wise Variation of Magnetic
Tape Pack Stresses

A model is developed for predicting the stress and displacement fields within a magnetic
Y. M. Lee tape pack, where those _qua_ntities are allowed to vary _in both_ the pack’s radial and
Assor; Mer;1 ASMIE transverse (.cross-tape) directions. As has been the case in previous analyses bgsed upon
i ' one-dimensional wound roll models, the present approach accounts for the anisotropic
J. A. Wickert anq nonlinear cqnstitutive properties of the.layer_ed tape, f_and the incremental manner in
s Fellow ASME whlch_the pack is wou_nd. Fur_the_r, such _\Nldtth_se variation _eﬁg_cts as dlfferentlal_hub
compliance and nonuniform winding tension, which can be significant in data cartridge
design, are also treated in the model. The pack is analyzed through a two-dimensional
axisymmetric finite element model that couples individual representations of the hub/
flange and layered tape substructures. The bulk radial elastic modulus of the tape, which
depends on the in-pack radial stress, is measured for a variety of media samples, and a
reduced-order model is developed to capture the nonlinear modulus-stress correlation.
The stiffness matrix of the hub/flange at its interface with the media provides a mixed
boundary condition to the tape substructure. In this manner, design-specific hubs can be
readily analyzed, and criteria for their optimization explored. Simulations of several
cartridge designs are presented, and the roles of hub compliance and wound-in tension
gradient in setting the pack’s stress field and cross-tape width change are
discussed|[DOI: 10.1115/1.146091]1

Department of Mechanical Engineering,
Carnegie Mellon University,
Pittsburgh, PA 15213-3890

1 Introduction and higher speeds-7-10 m/$ to increase capacity and reduce

Magnetic data storage on flexible media has played an impcgrgcess time, tape mechanics problems, for which solutions had

A ; een engineered, often recur. For instance, reductions of tape
tant role in computer systems since the early 1950s. Tape Systefllikness and data track width provide the direct means to in-
currently span a broad range of consumer and enterprise stor

C . - : ) . . Bfse volumetric storage density, and therefore the capacity of a
applications, including audio, video, instrumentation, and CONken sized cartridge. On the other hand, as the media becomes
puter systems. Within the next decade, compact tape cartridgesiifner its handling and mechanical stability become more prob-
computer data storage are projected to provide several terabytega{atic. Over roughly the past decade, media substrates have been
capacity through a nearly 50-fold growth in areal density angqyced in thickness from some 30n to 5 um, and as track
substantial reduction in media thickness. In the rapidly movingjigths fall to several microns, the dimensional stability of the
computer industry, tape storage systems remain competitiyRdia in the presence of aggressive in-pack stresses likewise be-
through their low storage cost per megabyte of data and their highmes critical. Uneven or excessive compressive stress within a
capacity. The technologies of magnetic and optical disk recordinghrtridge can cause tape layers, individually or together, to buckle
at least presently, do not offer the same combination of advaf-the pack’s radial direction, axial direction, or both. The photo-
tages, and while other emerging technologies do offer strengthsgitaph of Fig. 1 depicts a so-called spoking defect in which the
one or more areas, overall they do not meet the entire settape layers buckled locally to such an extent that an internal gap
performance needs that tape cartridge drives address. formed. Such buckling is facilitated by the combined conditions

One application of magnetic tape systems is backup/restak low radial stress, and high compressive circumferential or
missions on medium-to-large scale computers and networks. Tihensverse stresses.
number of cartridges required for such applications can grow toTraditionally, research on the stress field in magnetic tape packs
the hundreds or thousands for systems in the graphics, mediealother types of wound rolls has emphasized one dimensional
imaging, and entertainment industries. For instance, a large syadels wherein the hub and tape are each treated as being infi-
tem with a thousand gigabytes of on-line disk capacity can requirgely wide, and with uniform mechanical properties and tension
about 3000 to 5000 gigabytes to hold several full and daily incr@cross the width. Based on the constitutive properties specified for
mental backups. Although a primary use of tape systems is féf¢ media, the one-dimensional models can be categorized
off-line and archival data storage, mass storage systems are tobEgadly into four groups: linearly elasti¢1-3)), linearly vis-
supplemented by automated robotic libraries that make tape stgpélastic ((4—6]), nonlinearly elastic((7-11), and nonlinearly
age a nearly on-line computer peripheral. With growth in networRdscoelastia[12]). Such studies consider only radial and circum-
based business and information retrieval systems, the accessibff§gntial stresses, treat the media as being orthotropic, specify that

and reliability of vast data libraries on magnetic tape remains &% nub has uniform cross-tape compliance, and ignore effects
important technical issue. associated axial and shear stress componghs).

The tape pack itself is generally modeled as a layered structure

As tape technology continues to migrate towards thinner medieh_ h is developed i I ; f ioned
substrateg~4—5 um), lower winding tensiong~0.28—0.56 N Which is develope incrementally as a succession of pretensione

hoops that are shrunk-fit onto the underlying pack. That process is
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF a nonlinear one to .the extent that the eff(_actlve rad.lal elastic mOd”'
MECHANICAL ENGINEERSTor publication in the ASME durNAL oF AppLiEDME-  1US Of the tape region, at the bulk level, is a function of the inter-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Mar. 1Jayer radial stress which in turn changes as the pack is formed. In
2001; final revision, Nov. 22, 2001. Associate Editor: R. C. Benson. Discussion @hort’ the mechanical properties of a wound tape pack are often

the paper should be addressed to the Editor, Prof. Lewis T. Wheeler, Department,of: ; : ;
Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and Whﬂlte different from those of a Smgle isolated Iayer because of

be accepted until four months after final publication of the paper itself in the AsMENtrained air and surface asperity contact. Accordingly, the bulk
JOURNAL OF APPLIED MECHANICS. radial modulus plays an important role in pack stress modeling
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Fig. 1 Magnified view of a region in a magnetic tape pack ex- !
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([8,9,14)). Since the media’s substrate is typically a polymer such

as PET(polyethylene terephthalater PEN (polyethylene naph- Fig- 2 (&) An axisymmetric hub that is also symmetric with
thalate, viscoelastic effects, although not considered here, set fgSPect to the pack's midplane, and  (b) model of the hub and
manner in which wound-in stresses relax over time. Other effedf®® l2yer substructures

including wound-on tension losses, temperature, humidity, and fi-

nite deformation have also been studied in various applicatio
([3,10,17).

Certain two-dimensional stress models have been considef
with a view towards understanding stress dependencies wh
arise due to thickness variations across the wifith—17). The
nonuniform widthwise winding tension was simulated by stackin
web layers having varying widthwise thickness. Each of the
approaches was based on the assumptions that the pack coul

partitioned across its width into a discrete number of segme TS . g~ .
that do not couple, and that the stresses and displacements way of motivation, Fig. 4 indicates how the collocated point

developed are width-independent. Notably, shear-extension d g’.‘l ,Comgltﬁmfl:_ﬁ of tpesef ttvr\]lo hub_de5|grtls chqnges acrosT_ the
bending-extension coupling were ignored in those treatments. Med!ds widih. 1he ralic ot the maximum-to-minimum compii-

In what follows, a two-dimensional axisymmetric finite elemeni"c® values for the symmetric hub design is roughly 5:1, and the

model is developed in order to analyze the magnetic tape pa{ayo is roughly 4:1 for the asymmetric design. The cross-tape

stress problem. The internal stresses are allowed to vary bot cpmpliance variation Is significant in each case, z_and sets _the
the pack's radial and axial directions, and four stre oundary condition afforded to the layered tape region at its in-

components—radial, circumferential, axial, and shear—as well face with the hub. In what follows, the effects of differential
Wo displacements’—radial and a{xial—’are determined. THWIb compliance are explicitly treated in the pack stress model in
present approach is appropriate for treating realistic cartridge hQifi€" 10 develop a stress simulation of greater fidelity than is
designs, nonuniform widthwise tension profiles which can res ailable through existing conventional one-dimensional models.
from guiding imperfections, and the tape’s cross-track wid In Figs. 2 and 3, the tape has thicknésand it is wound layer

change. Experiments are further discussed in which the bulk comm- layer into a nearly cylindrical shape having outer radiyand

pressive radial modulus is measured for several media specim ger rgﬂfilusrl\fl .c%r.n.rgonl ‘l’v'th thehhuhbs winding Iacﬁ suhrfacE.
A reduced-order treatment of individual layer and nonlinear inte -ormed Iromi individual Jayers which areé conceptually shrunk-

face compression is discussed in order to model the experime {pnto one another in an '”Cfeme”‘?' quasi-static manner, the tape
data and incorporate it into the stress analysis. region is treated as being a composite material having bulk aniso-

tropic and nonlinear material properties. In general, the hub is an
.. . integral solid structure, and it is often made of fiber-reinforced
2 Finite Width Tape Pack Model plastic. In short, the material properties of the hub and tape re-
A magnetic tape pack is formed by winding a continuougions can be substantially different.
stream of media, having specified tension and speed, onto a huldn order for the analysis to properly account for various hub
In general, the hub will have a radial stiffness that varies across gsometries, the tape pack is conceptually separated into the hub
width, and the hub’s geometry and materials are designed aad tape substructures following the approach developétidh
chosen to meet various functionality requirements. Shown illu¥he respective subdomains are dendted {(r,6,z):r <r;0<6
tratively in Fig. da) is the so-called 9840-style cartridge hub<2w,—w/2<z<w/2} over the hub, and7={(r,6,2):r¢<r
which has a plane of symmetry with respect to the media’s cef-r,,0< <2, —w/2<z<w/2} over the tape. For the symmetric
terline. The central rib at the hub’s centerline reinforces the strulstb shown in Fig. 2, the hub’s winding face and outer radius are
ture and allows more tape to be wound at higher tension. Since the same. For the asymmetric hub of Fig. 3, the winding face is

ﬁasmges and the hub connect only through a press-fit snap lock, the
i(gfness afforded to the hub by the flanges is neglected in this
e. Figure @) depicts a second type of hub design, termed
80-style, which is a common format in the tape storage industry
nd which has no particular midplane symmetry. The cartridge’s
o flanges are formed from different materials, and the struc-
's cross-sectional geometry is generally step-shaped in order
(o acilitate attaching the hub to the drive motor’s spindle.
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Fig. 3 (@) An axisymmetric hub having no particular midplane symmetry, and
(b) model of the hub and tape layer substructures

located at a different radius than the hub’s outer radjuewing with the potential variety of hub materials and geometry, the hub
to presence of the flanges. The substructures couple through iteelf is analyzed through a commercial finite element package,
interfacial hub stiffness matriK ;; which affords a mixed bound- andK, is extracted by sequentially applying unit loads along the
ary condition to the tape substructure. In order to effectively dehub-tape interface, and inverting the flexibility matrix so obtained.
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Fig. 4 Collocated point radial compliance of (a) the symmetric hub of Fig. 2,
and (b) the asymmetric hub of Fig. 3

360 / Vol. 69, MAY 2002 Transactions of the ASME



The stress field and displacementsZidevelop as each layer, aTable 1 Baseline parameter values used in the pack winding
pre-tensioned cylindrical shell, is fit to the underlying pack. As thease studies
nth layer is added, for instance, the cumulative stressewithin

the pack are expressasd, ,+Awo,, where o,,_, is the stress Property Symmetr|i-|CUb Asymmetric
developed upon winding the first through-1)st layers, and
Ao, is the incremental stress associated with addition of the fifdpdulus,E 2.5 GPa 3.5 GPa

th laver oisson ratioy 0.43 0.43

n Yer. . - . . . . Outer radiusy 11.43 mm 25.00 mm

As thenth layer is added7 is discretized with bilinear axisym- Tape

metric elements. The governing equations comprise equilibriufgnsion,T, 10N
constitutive, and compatibility conditions, and they are functiorwi’é?r?evrv‘)f layersNL fg%on;n
of nodal displacementa={uw}', whereu(r,z) andw(r,z) are Thicknessh 10.0 um
the radial and transverse components. The stiffness matxsn Bulk radial modulusg, 7000/(1+10.70; °™) MPa
Kr=3NEkE, wherek? is the stiffness matrix for each element Circumferential modulusg, 7 GPa
andNE is the number of elements fis representation. Thexg3 ~ [ransverse modulug, 9 GPa

- - Shear modulusG,, 100 MPa
elemental stiffness matrix becomes POISSON ratioy = vy = v, 0.3 —
kfzzwf B/E;B;dA®, (1)
Ae

whereA¢® is the element's —z cross-sectional are®; is the de- 3 Media Bulk Radial Modulus
rivative of the strain-displacement relation, aBdis the materi- Region 7 is well approximated as being orthotropic and axi-
al's elasticity matrix. In turn, the structure-level stiffness matrix o§ymmetric, and so some four elastic mod , E,, E,, and
the entire pack becomés, =K+ K+, where proper assembly of G,) and six Poisson ratioév, s, vy, Vgss Ve Var, andv,y)
the matrices accounting for the interfacial nodes at, is im-  must be specified to complete the formulation. The values for
plied. In addition, the nodal loads for the entire pack are evaluatgfbse material properties, exclusive®f, are developed follow-
asF=3NE f where the elemental nodal load is given by ing the discussion presented in referefit8|, and they are listed
in Table 1.
o T R T . T . The media’s substrate, magnetic and tribological coatings, and
fi=2m | NitirddA®+2m [ BiDidA°—2m | BjoodA” interfaces each contribute ®,. The radial modulus was mea-
oA A A (2 sured through compression tests conducted with a conventional
materials testing machine. Each stack of experimental media had
Here N; is the bilinear shape function, ang; and oy; are the dimensions 102 m12.7 mmx12.7 mm. When such samples

initial strain and stress for each element. The governing equatidi§ €xtracted from an existing pack or larger format pancake, it is
becomeK p(a)a=F and are written in terms of the nodal disp|acep055|ble for |_rr_eg_ular or dlst_orted edges to b_e present, and such
mentsa. effects are minimized by having the compression plates be smaller
Solutions are subject to specified displacement and tractibhdiameter than the samples’ lengths. A'5 kN load cell was used
boundary conditions. For instance, the boundary conditions forl& measure the applied force, and an extensometer with gage
cartridge with the symmetric hub of Fig. 2 include vanishingndth 25.4 mm and 20 percent extension to measure the displace-
transverse displacement at,,0) in order to suppress the rigid Ment across the sample. During manufacturing, a wide web of

body motion. The general traction boundary conditions includeMagnetic media is slit into many individual streams of tape, which
in turn are wound on large format hubs so as to store the media

* vanishing traction at all hub surfaces excluding the positionemporarily prior to forming data cartridges. The diameters of
with specified displacement boundary conditions, such pancakes typically vary from 200—300 mm, and the samples
* 0,=0,=0 over the upper and lower tape surfaces used in these studies were cut from such pancakes.
=*w/2 andr €[r¢,r,], For a particular experimental media, Fig. 5 illustrates a repre-

* 0,,=0 ando,=T(z)/(w(r¢+(n—1)h)) over the outer tape sentative stress-strain response over five successive tests. The be-
surfacer =r, andze [ —w/2w/2] havior during the first load cycle differs somewhat from the sub-
wherer; andw are the hub’s inner radius and the tape’s width, anﬁequent ones as most of the air entrapped between adjac_ent layers

e - ) o IS expelled during that first load-unload cycle. The experimental
the winding tensionT () is specified. ata are fit to a polynomial through least squares regression, and
As the media’s bulk radial modulus is known to depenga : poly ! ug qu 9 on,

strongly on stress, as each layer or group of layers is added to ﬁbulk modulus is determined by differentiating the stress-strain

existing pack, a truncated Taylor expansion is used to linearize {fepression. Figure 6 depicts measured response of the specimen
é\éer a full load-unload cycle, and the behavior is clearly path-

governing equations about either an initial estimate or a converg 0 endent. The area enclosed by the loading and unloading curves

result obtained from calculation at the preceding state. Compure'presents.the eneray dissi ateg durin theg f0CESS as cgused b

tion through Newton-Raphson iteration begins by evaluakng pr €rgy dISsIp h g the pro y
the internal material damping and interfacial friction, among other

at an initial estimate®. In the first iteration, the nodal displace- ) .
AP . factors. Such path-dependent behavior can be used to simulate the
ments becomey =K, (a*)F. The vector of imbalanced nodal full winding and unwinding process

loads in the second iteration becom#$,=F—Kp(a)a;. The | grder to examine potential variability i, for media
|ncremepltal nodal displacementsa |n_the s_econd iteration are samples extracted from a single pancake, and namely from the
Aa,=Kp*(ay)Af, and the cumulative displacements at thaiame tape stream and widthwise position on the manufacturing
stage become,=a; +Aa,. Iteration proceeds until the solution\ep, samples were removed from the pancake from three different
satisfies a specified convergence criterion expressed in termsgfii, each at a different circumferential location. Because the pan-
the norm»°=SAa?/S af. When 7, falls below a specified toler- cake is substantially larger than a typical data cartridge and the
ance, say 10° as in the case studies below, the solutions are saittess field within it varies substantially with position, each
to have converged relatively, and iteration is terminated. With tlsample was presumably produced and stored under a different
nodal displacements so obtained, the stresses over eléraesit stress history. It is an objective here to assess variabiliti,in
incremented byA o,,,=D;(Bia — ) + oo;, and the cumulative associated with the production process, quite aside from the
stresses advance tq,_;)+A0c,. wound roll model itself. Measured moduli for the nine media
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Fig. 5 Measured stress-strain response in compression of a magnetic tape
stack over five loading cycles; sample dimensions: 102 mm X12.7 mmX12.7

mm

samples are shown in Fig(aj, where some variability among the In considering a media stack under uniform compression, its
samples depending on radial location within the pancake is ebiulk deformation arises both from compression of the substrate
dent. At a fixed value of stress, say 2 MHg, varies between layers and compliance of the surfaces. ConsideNrdayers, there
roughly 800 and 1200 MPa, ar20 percent about its mean value.are N—1 interfaces formed by adjacent contact of the magnetic
The three samples taken from the outer periphery of the pancakaface on one layer, and the backcoat surface on another. Both
consistently exhibited loweE, than those extracted from the in-the tape layers and the interfaces contribute to the macroscopic
ner periphery, consistent with the notion of the media undergoistjffness, and this assemblage is modeled accordingly as a series

slight strain hardening as asperities are plastically deformed dof-elastic springs. Specifying that the substrate deforms linearly
ing the pancake’s formation. during compression, the elastic constant contributed by the tape’s

Stress, MPa
=
oo

-1.6
-0.75 -05 -0.25 0

Strain, percent

Fig. 6 Typical measured stress-strain response of a magnetic tape stack over
a single load—unload cycle; sample dimensions: 102 mm X12.7 mm X12.7 mm
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Fig. 7 (a) Variability of the measured bulk radial modulus for nine nominally
identical media samples. (b) Measurements averaged over all samples (@ ® ®
®), and the least-squares fit to the modulus model (—); c=161
X 10" N'mm*?6 and m=3.26.

substrate for each layer ig=EA/h, whereE andA are the elas- the contour diagrams shown as insets in the figures. With respect
tic modulus and apparent contact area for a single layer. The realthe circumferential stress, the maximum value occuns an
area of contact, in turn, increases with the compressive I0gk tape’s edges at the positiéhl.43;+6.35 mm. Further,o,
([18]). The interfacial stiffness changes in response to its deffaries from—7.73 MPa at the edges te1.21 MPa at the center-
mation with constank;=(cA;)™, wherec andm are constants |ine for the pack’s first layer. Notablyr, is compressive at the
determined subsequently through a fit to the data. For pure Heglcics innermost radial positions, grows to become tensile in the
zian contact of similar materials, for instanae=16E*8/9 and outer layers, and precisely equals the winding stress at the outer-
m=1/2, whereg is the radius of an individual asperity’s summit.mqst |ayer. The bold demarcation line in the contour diagram inset
Extension to rough but nominally flat surfaces in contact is dig Fig. 9 indicates the loci of points where,= 0, in order to aid
Cuasn?ﬂarb %cl)?%pressive loa®, the stack’s total deformation be-in unqlers_tanding th_e '905‘“005 of such pack buckling defects as
seen in Fig. 1. In this simulation, the transverseand shearr,,

comes A=NAg+(N—1)A;=~N(As+A;)=N(P/ks+ P/k;) for L ; .
large N. By definition, the strain in the media’s stack is stresses are _S|gn_|f|cant only near the hL_lb-tape |nterf§ce and arise
=A/(Nh) = (P/k.+ P/k;)/h=PI(E,A). Following algebraic ma- from the strain mismatch between the different materials forming
‘H and7. Since the edges of the pack model are traction free and
couplingv,, between the andz directions is almost zerar, and

1 )1 o, are likewise negligible away from .

A
P ®3)
h m+1/cmpm 4.1 Cross-Track Media Width Change. The in-pack
as a function of applied stress. The unknown parametersdm stresses in turn cause the tape’s width to change slightly, and as

are determined by fitting the experimental data through a led8f Pack would be subsequently unwound, those dimensional

square method. Figureh) demonstrates the manner in which EqEhanges would be reflected as variations in the spacing of data
(g) captures the mgease{ul?ed data. qtracks. Figure 10 shows the predicted tape width changeas a

function of position along the tape’s length based on the stress
4 Stress Field With Symmetric Hub Design f!elds of Figs. 8.—9.. To the extent that the V|scoe'last|c relf'ixatlon
_ ] _ i _ time of the media is long when compared to the time required for
Flgures 8 and 9 deplct the predlcted radial and cwcumferenttﬁe pack to unwindAw would be measured and Compensated by
stress distributions as functions ofand z for the hub design of the read-write head’s servo system. The width change is calcu-
Fig. 2 and parameter values as given in Table 1. Pack formatipfled by subtracting the tape’s transverse displacements at the up-
was simulated with a winding tension of 1 N having uniformper and lower edges, and the difference increases gradually from
stress 7.87 MPa over the tape’s cross section. In Figr,8n-  the outer periphery with a rapid increase ngéarThe maximum
creases from zero at the pack’s outer periphery to reach its mayijye reached in this case study is about or 1100 ppm,
mum compressive value 6f2.45 MPa along the hub-tape inter-yhich is in fact greater than the roughly5n data track width on
face at the locationr(z)=(11.43,0) mm of the hub's central 5 modern drive. As shown in Fig. 10, more than 35 percent of the

reinforcement rib. The radial stress is less compressive near k is subjected to a width change greater than a single track
tape’s edges where the hub has greater compliance. For the {jg§h

layer on the hubg, varies from—1.48 MPa at the tape’s edges to

—2.45 MPa at the centerline, an increase of some 70 percent4.2 Cross-Tape Tension Gradient. Figures 11 and 12 illus-
Such cross-width variation of in-pack stresses is significant trate the radial and circumferential stress fields as functions of
Figs. 8—9 over only about one-third of the pack, as indicated land z for a pack wound under tension that varies linearly across

nipulation, the bulk radial modulus is expressed

E,=E[1+
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Fig. 8 Radial stress field in the symmetric hub case study. The insets depict
the hub’s cross section and a contour representation of o, overthe r—z plane;
constant tension, NR=100, NZ=80.

the tape’s width. Such a situation arises when the tape bends in thén Figs. 11 and 12, the tension is specified to vary from 0.75
transport path either as a result of guide misalignment or tape the bottom edge=—6.35mm to 1.29 at the top edge
lateral motion. The tension profile is approximated by a quadrati€6.35, whereT is the nominal tension. The resulting tension
function asT(z)=c,z?+c,z+cy, Wherec,, ¢;, andc, are set profile becomes T(z)=(z/2w+1)T, over z=[—w/2w/2].

by specified values at the tape’s edges and centerline. Cross-tape variations ef, ando, are more prominent in Figs. 11
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Fig. 9 Circumferential stress field in the symmetric hub case study. The in-
sets depict the hub’s cross section and a contour representation of o, in the
r—z plane; constant tension, NR=100, NZ=80
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Fig. 10 Predicted change in tape width. The maximum value at the hub-tape
interface is about 14 um, or 1100 ppm.

and 12 than for the case of a uniform tension profile in Figs 8 arttarger than 1.7:1 as in the uniform tension case study. Component
9. Along the tape’s higher tension edge, both the radial and ciry has a more uneven distribution, and the ratio of the extreme
cumferential stresses in Figs. 11 and 12 have higher magnitudeslues here is 9.4:1, with the maximum compressive value of
As was the case in Figs. 8 and 9, the maximal compressive radiall.1 MPa occurring af11.43,6.3% mm.

stress occurs at the location of the central reinforcement rib isIln some circumstances, the winding tension is known to roll-off
located. With respect to the extreme valuesrpfat the first layer, at both edges of the tape in a manner well approximated as
the ratio of the maximum and minimum values is 2.4:1, somewh@{z) = (— (z/w)?+ 1)T,. The radial and circumferential stresses

Radial stress ., MPa

KRR %
ST -:~’~:~:. 2 ~.'~’.,~.~..,~..;~..;.
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on ¥
. “0“ 3
. \QOS\
Rad?

11.43

Fig. 11 Radial stress field in the symmetric hub case study. The insets depict

the hub’s cross section and a contour representation of
linear cross-tape tension gradient,

Journal of Applied Mechanics

o, in the r—z plane;
NR=100, NZ=80.
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Fig. 12 Circumferential stress field in the symmetric hub case study. The
insets depict the hub’s cross section and a contour representation of o, inthe
r—z plane; linear cross-tape tension gradient, NR=100, NZ=80.

resulting from this tension profile are shown in Figs. 13 and 14 Stress Field With Asymmetric Hub Design

Hereo, and o, are less compressive than in the case of uniform ] ] )
tension, but they do vary to a greater extent across the tape'dn the case of the asymmetric hub format of Fig. 3, the in-pack
width. Here the ratios of the extreme values at the first layesfor stress field is expected to be singular at the intersecting corners of

and o, are 2.2:1 and 6.2:1, respectively. the hub’s winding face and the flanges, to the extent that those
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Fig. 13 Radial stress field in the symmetric hub case study. The insets depict
the hub’s cross section and a contour representation of o, in the r—2z plane;

parabolic cross-tape tension gradient, NR=100, NZ=80.
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Fig. 14 Circumferential stress field in the symmetric hub case study. The
insets depict the hub’s cross section and a contour representation of o4 inthe
r—z plane; parabolic cross-tape tension gradient, NR=100, NZ=80.

components are formed of dissimilar materigl$3,19). Stress narrow regions near the hub-tape interface. Figuréo)18hows
behavior at those regions was investigated through a mesh refitree distribution ofo, in the first layer as a function of cross-tape
ment convergence study. Figure(dbshows the predicted radial position. The radial stress converges over some 90 percent of the
stresses along the pack’s centerline and edges as functions ofcrass section aflZ= 80 except for regions adjacent to the corners.
dial position forNZ=40 and 80. Stress, converges well along The domain of convergence expands with increaditfyas the

the centerline and throughout most of the pack, except for tlsegularity further localizes.
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Fig. 15 Radial stress distribution (&) in the down-tape direction at three posi-

tions across the width, and  (b) across the tape’s width at the hub-tape inter-

face; NZ=40 (O O O O) and NZ=80 (—). Shaded zones indicate where the
solution did not converge to three significant figures.

Journal of Applied Mechanics MAY 2002, Vol. 69 / 367



Radial stress o_, MPa

55

45

35

e ©
s 2, 25 Rﬂ(\'\a\ ?os\“O“

Fig. 16 Radial stress field in the asymmetric hub case study. The insets depict
the hub’s cross-section and a contour representation of o, in the r—2z plane;
constant tension, NR=100, NZ=80.

Figures 16 and 17 show the radial and circumferential stresdbg loci of points wherar,=0. It is interesting to note that the
as functions of andz only in the domain over which the solution pack’s bottom edge is not in circumferential compression, evi-
has fully converged. The singular behavior at the corners stronglgntly suggesting that it is more stable from the defect formation
affects o, over the first several layers of tape, and it exhibits perspective than regions near the top surface.
sudden increase in compression near the corners. Even though the
upper portion of the hub is comparatively compliant, the higg
gradients dominate the, distribution. Likewise, stress, varies Summary
significantly along the hub-tape interface from 2.30 MPa at the A finite width model for predicting the stresses and displace-
pack’s bottom edge to-8.97 MPa at the top edge. The boldments within a magnetic tape cartridge has been discussed. Such
demarcation line in the inset contour diagram of Fig. 17 represemt&thwise variations as differential hub stiffness and nonuniform
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Fig. 17 Circumferential stress field in the asymmetric hub case study. The

insets depict the hub’s cross section and a contour representation of o, inthe
r—z plane; constant tension, NR=100, NZ=80.
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Finite Element Investigation of

Quasi-Static Crack Growth in

Functionally Graded Materials
2-u.9n | USing a Novel Cohesive Zone

Mem. ASME F t IVI d I
G. H. Paulino racture oae
Mem. ASME
This work studies mode | crack growth in ceramic/metal functionally graded materials
R. H. Dodds, Jr. (FGMs) using three-dimensional interface-cohesive elements based upon a new phenom-
Mem. ASME enological cohesive fracture model. The local separation energies and peak tractions for
the metal and ceramic constituents govern the cohesive fracture process. The model
Department of Civil and Environmental formulation introduces two cohesive gradation parameters to control the transition of
Engineering, fracture behavior between the constituents. Numerical values of volume fractions for the
University of Illinois at Urbana-Champaign, constituents specified at nodes of the finite element model set the spatial gradation of
Newmark Laboratory, MC-250, material properties with standard isoparametric interpolations inside interface elements
205 North Mathews Avenue and background solid elements to define pointwise material property values. The paper
Urbana, IL 61801 describes applications of the cohesive fracture model and computational scheme to ana-
lyze crack growth in compact tension, C(T), and single-edge notch bend, SE(B), speci-
mens with material properties characteristic of a TiB/Ti FGM. Young's modulus and
Poisson’s ratio of the background solid material are determined using a self-consistent
method (the background material remains linear elastic). The numerical studies demon-
strate that the load to cause crack extension in the FGM compares to that for the metal
and that crack growth response varies strongly with values of the cohesive gradation
parameter for the metal. These results suggest the potential to calibrate the value of this
parameter by matching the predicted and measured crack growth response in standard
fracture mechanics specimer{®0OI: 10.1115/1.1467092
1 Introduction have been extended to study fracture processes in quasi-brittle

. . . - materials such as concretsee, e.g.[5,6]), ductile metals(see,
Functionally graded material&GMs) provide promising can- e.9..[7.8]), and metal matrix compositdE9]).

d|date§ for advan_ced technolo_glcal_ appllcatl({ns—s]_). An FGM Though cohesive fracture models have been successfully em-
comprises amultlphas_e m_aterlal with vqu_me fractl_ons of the_C_OBoned to simulate failure processes in homogeneous materials
stituent materials varying in a pre-determined profile, thus giving,q conventional composites, few studies have extended the con-
a nonuniform microstructure in the material with continuouslyen; 1o FGMs. The difficulty lies in the coexistence of different
graded properties. In applications involving severe thermal gragkjjure mechanisms in an FGM as explained in the next section.
ents(e.g., thermal protection structuje§GM systems exploit the stydies of crack growth through the whole FGM component re-
heat, oxidation, and corrosion resistance typical of ceramics, afgire a new phenomenological model to simulate the fracture pro-
the strength and toughness typical of metals. cess. Jin and Batrdl 0] studied crack growth in the ceramic-rich
Cohesive fracture models have been widely used to simulatgyion in a ceramic/metal FGM by using both a rule of mixtures
and analyze crack growth in ductile and quasi-brittle materials. bnd a crack bridging modéessentially a cohesive-type mogel
a cohesive fracture model, a narrow band termed a cohesive zoBeai and Bao[11] investigated crack growth in a ceramic/metal
or process zone, exists ahead of the crack front. Material behavipaded coating by using a similar, but simpler crack bridging
in the cohesive zone follows a cohesive constitutive law whicmodel. Simple applications of the rule of mixtures to an FGM
relates the cohesive traction to the relative displacements of tignificantly overestimate the fracture toughness compared to es-
adjacent surfaces. Crack growth occurs by progressive decohedigrates from crack bridging mode(g10]). Thus, it appears inap-
of the cohesive surfaces. Dugddi first proposed a cohesive- propriate to employ directly the conventional rule of mixtures to
type model to study ductile fracture in a thin sheet of mild steglormulate the cohesive parameters of FGMs. The modifications
The Dugdale model assumes that a cracked metal sheet defofi@gcribed here provide a more realistic approach to formulate a
elastically outside of the extended surfaces of the crack wher&€@1€sive model suitable for FGMs. , )
narrow bandplastic zong of idealized zero width deforms at the 'Nis work studies crack growth in ceramic/metal FGMs using

constant yield stress of the material. Cohesive fracture mod&£€e-dimensional interface-cohesive elements. While we are not
considering the ductile deformation in the graded background ma-

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF terial, the current StUdy.focuses on presentatlon of the. cohesive
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF AppLEDME-  20N€ model and does incorporate the ductile separation of the
CHANICS. Manuscript received by the ASME Applied Mechanics Division, June 18yraded cohesive material in the analysis of crack growth. Investi-
2h001; final Levils(;ok?, Odcé 15, %001.hAssgciate Edfitor: A. Needlemar?. IIDiscussion gations of crack growth in ceramic/metal FGMs Considering plas-
the paper should be addressed to the Editor, Professor Lewis T. Wheeler, Depart ; ; ; ;
of Mechanical Engineering, University of Houston, Houston, TX 77204-4792, arr?cﬁﬂ’[y I.n the background m.ate”al are in progress. The paper IS.
will be accepted until four months after final publication of the paper itself in th@fganized as follows. Section 2 proposes a new phenomenologi-
ASME JOURNAL OF APPLIED MECHANICS. cal, cohesive fracture model developed specifically for ceramic/
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metal FGMs. In addition to the cohesive energy densities and tR&M indicate thaiB,, plays a far more significant role thah,,

peak cohesive tractions of the metal and ceramic phases, twbich can be simply set to unity. We anticipate that the parameter
other parameters are introduced to account for the overall dama@jg: may be_ experimentally callb(ated by two dl_f'ferent proce-
and other micromechanical effects in FGMs. Section 3 describdgres. The first procedure determingse; by matching the pre-

the three-dimensional finite element formulation with graded solidicted and measured crack growth responses in standard fracture
and interface-cohesive elements for applications to FGMs. Sectiégchanics specimens of FGMs. Instead of using FGM specimens,
4 discusses the method of determining the material parameterérlﬁngﬁfh?gdco%%%es?tléreeaecrﬁpvl\ﬁ%/hs ;rﬁgguéev ;ﬂ?é”}?g;iomag]?tﬁé a
grc;\'\//lvtsh i?gll)?sneg ?é?sgnii;r?ﬁjﬁftig ni%“;@ﬁg;)%ﬁé%%%gCrag(‘)%stitutents. This opens the potential to calibr8tg, for each
FGM. Compact tension, (), and single-edge notched benolvolume fraction level of metal and ceramic, which comprise the

SEB X idered in th ical smulati FGM specimens, i.e B, can become a function of .o in the
EB), specimens are considered in the numerical simulations.osent model. The second calibration procedure may be particu-

Section 6 provides some conclusions and outlines ongoing Wqgg|y yseful if a constan,, fails to generate a match between
to extend the present study. The Appendix summarizes detailsygé” predicted and experimentally measured crack growth re-
the tangent modulus matrix for the cohesive constitutive relatighonses. Experimental determination of tBg. parameter is
applicable to FGMs. presently under investigation for zirconia/stainless steel FGMs.
For the metal phase, the cohesive traction may be derived from

2 A Novel Cohesive Fracture Model a free-energy density functio,,«{ 5,q), in the form([8,14-16)

Generalization of the cohesive zone concept to model fracture
in functionally graded material&~GMs) represents a challenging
task in view of the different failure mechanisms present in an
FGM. In a typical ceramic/metal FGM, the ceramic-rich region
may be regarded as a metal particle reinforced ceramic matvikere § is the normal displacement jump across the cohesive
composite, whereas the metal-rich region may be treated asuafaces andj is an internal variable describing the irreversible
ceramic particle-reinforced metal matrix composite. Though mogrocesses of decohesion. Because in general, the shape of the
els for the failure mechanisms of conventional composites may behesive traction-separation cure— ) is not as significant as
adopted to study the fracture processes in the ceramic-rich the cohesive energy density and the maximum cohesive traction in
metal-rich region, the failure mechanisms operative in the intesimulating fracture in ductile meta(§17]), the free-energy poten-
connecting region which has no distinct matrix and inclusiotial, ¢,.(5,q), may be chosen in a computationally convenient
phases remain unknown. This section thus proposes a volugxponential form(8,14—16)
fraction-based phenomenological cohesive fracture model suitable
for engineering scale applications. The formulation first considers 5 5

1+ —) ex;{ - _.) .
general three-dimensional fracture including both tensile and Sme Sme
shear deformations. Such volume fraction-based formulas have
been used previously to calculate Young’s modulus and the pladtlader loading conditions governed gy the cohesive traction of
tangent modulus of FGMg§12,13). the metal with the above energy potential is given by

d¢
O met™ a_;el' (2

©)

tensile modgmode ) fracture of FGMs, and is then extended to Dmet= eo'cmeté(r:ne{l_

2.1 Mode | Fracture. Let oygy, denote the normal traction
across the surfaces of the cohesive zone necessary to model the ¢ 3 o
propagation of a macroscale crack. We propose that the cohesive Tmet™ €Tme 5Tme &xn - et
tractiono of a two-phase FGMe.g., ceramic/metal FGMcan be

approximated by the following volume fraction-based formula _ c . . .
having a simple functional form Wheree=exp(1), o}, the maximum cohesive traction, am,

the value of at o= - Figure 1a) shows a typical curve for

(4)

B Vined X) T met! 0% op VEISUSS/ 65,
Tigm(X) = O met i hri ; ;
9 Ve X) + Bmel 1= Vine( X) ] For quasi-brittle materials such as concrete and ceramics, the
shape of the cohesive traction-separation curve may play a signifi-
+ 1-Vie(X) . 1) cant role in determining the peak logd.8)). In the present study
1= Ve X) + BeeVmef X) " of ceramic/metal FGMs, however, the failure mechanism of metal

phase plays a dominant role. Thus, for simplicity, this study
adopts the same exponential form as E).to describe the cohe-
sive response of the ceramic material

whereo IS the cohesive traction of the metal,e, the cohesive
traction of the ceramicy (X) denotes the volume fraction of the
metal,x=(X1,X,,X3), andBme(=1) andB.(=1) are two cohe-
sive gradation parameters. The motivation to chddsés that the
cohesive traction of the FGM will reduce to that of the metal N 6 5
whenV,.= 1, and to that of the ceramic whaf},.=0, and the Ocer=€O0Ce 5 ex 5 (5)
two parametersB,e; and B, together with the metal volume

fraction (V,e), could describe the transition of the failure mecha-

1+5
88

cer

nism from pure ceramic to pure metaperative in the intercon- Whe.reager is the maximum cohesive tra(?tlon of the ce.ramlc oc-
necting region which has no distinct matrix and inclusion phase§UT"ing até= &z,. The free-energy potential corresponding to Eq.
The FGM cohesive fracture model, E@), increases the num- () is
ber of material-dependent parameters by ty8a,&, B - Values
for the local separation energies and peak cohesive tractions re- )

lated to the pure ductile and brittle phases are obtained using PDeer™ eo’ger‘sger[l_ ex;{ - y” (6)
standard procedures for homogeneous matefsas[8], for ex- cer

amplg. The material-dependent parametgpg;and 8., describe ) )
approximately the overall effect of cohesive traction reductiofigure Xb) shows typical curves ce,/ o Versuss/ oy, for vari-
(from the level predicted by the rule of mixtujeand the transi- ous values o5,/ Se:-

tion between the fracture mechanisms of the metal and cerami®y substituting Eqs(4) and (5) into Eqg. (1), we obtain the
phases. Our preliminary computations of crack growth in a TiB/Tohesive traction of the FGM under loading conditions as
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where § denotes the rate of. The unloading condition is then
described by

1.0

0.8 1 8< S OF 5<0. (10)

Following the cohesive law for homogeneous materials, the un-

0.6 r ]
Brrax > Omax) loading curve follows the linear relation
04 T max . .
loading Tigm=| 5 — o, if 6<Omax Or 6<0, (11)

0.2 unloading

Nondimensional cohesive traction

where o, is the value ofog, at 6= 64 calculated from Eq.
(7). We note that the irreversibility of the above cohesive law does

traction for metal ) | introduced([19])

oer=Noa+ 1 %0}, (13)

‘ ‘ ‘ where o, and o4 are the normal and shear tractions across the
2 3 4 5 6 cohesive surfaces. Here we assume that resistance of the cohesive
Nondimensional separation surfaces to relative sliding is isotropic in the cohesftengent

b) plane so that

0 1 5 3 2 5 p not influence the results reported in Section 5 since we have only
Nondimensional separation studied crack growth under monotonic loading conditions.
(a) 2.2 Three-Dimensional Mixed Mode Fracture. For gen-
eral three-dimensional mixed mode fracture problems, an effec-
1.0 ; ‘ ‘ ‘ tive opening displacement jump is introducg9])
c
o
5 —— Sgor / Ot =0.06 _ [2 .22
§ 08 + I 8ccer/5;e:=0.15 4 é\ef'ff 5n+ n 55' (12)
[« S © c - . . .
2 Ocar / O = 0.24 whereés, and 5 are the normal and tangential displacement jumps
2 I | - . :
2 0.6 (85, = separation at peak across the coheswe_surfaces._T_he paramgtessigns different
o traction for ceramic, weights to the opening and sliding displacemepjsis usually
g Bre = SEpAration at peak taken asv?). Similarly, an effective cohesive traction may be
]
c
@
£
©
c
o
b=

— [s2 2
Fig. 1 Normalized cohesive traction versus nondimensional 8=+ Iz (14)
separation displacement;  (a) for metal, /0O Versus >
81 8% ; (b) for ceramic, oo /o be VErsus ol 65, (where metal / Os=NOg T O,
ceramic strength ratio, o/, , is taken to be 3 )

(15)

where 65, and 5, are the two relative sliding displacements
across the cohesive surfaces, and and o, are the two shear

tractions.
Vel X) 5 5 With the introduction of the above effective traction and dis-
Tigml(X) = — eo’ ,(—‘) exp{ - —) placement, a free-energy potential in three dimensions is assumed
VinelX) + Bmel 1= Vime(X)] ™ 57 Sne to exist in the same form as that for the mode | cé®ei.e.,
1— Vel X 8 8
T TV fet( )v X) eage,(?) ex[l( - 6T>' bigm( X, et S04 = Vel X)
mel(X)°F Beer/mel om0t 0t )= 0+ Brel 1= Vinef 0]
) P B
The free-energy density function corresponding to the above co- xea;eﬁne[l— 1+ 55—9‘) exp( - 5c_e|”
hesive traction is me me
Vel X) " 1=Vme(X)
Prgn(X,6,0)= Vine(X) + Bmel L= Vine(X)] 1= Vel X) + BoeV me X)
5 8 ¢ so |1 (14 20 oy — 2t
X ea,cneléfne{ 1—( 1+ 5Tme‘) GX% — 5‘;“9‘) } X 90'08,52&,[ 1 1+ 5&” ex;{ 5ger> } )
. 1— Ve X) (16)
1= Vel X) + BeetVmel X) where 532 is the maximum value o attained. The cohesive

law for general three-dimensional deformations is then formulated

1+i ®) as follows:

|-z
exp ——<1|-
&% o
«r o C"’d’fgm C"’d’fgm 9 et (O'eff)
- - = -Zls,,
5eff

(o}
X €0 g, Ce{ 1-

As often assumed for homogeneous materials, the cohesive law o =
of the FGM also follows an irreversible path. The internal variable 9y et I0n

17
describing the irreversible processeg,is chosen asi,.y, the an

maximum opening displacement attained. For updating of the co- o :‘?‘ﬁfgm — Ibrgm ‘95eff: nz(ﬁf) 5
hesive stresses, the loading condition is defined by S 96 et J0s Seit) °’
6=0max and 5=0, (9) where
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_5¢fgm_ Vmet(x) ec’ i
Oeff= 6’5eff B Vmel(x)+ﬁme{1fvmel(x)] me 5(r:ne
é 1_Vmet(x)
xexy - ﬂ) T T Vo0 + BeaN el )

) o
X eage,( 50—) ex;{ - ?) ,

if Sr= oM™ and =0, 18
eff

for the loading case, and

m
Oef . .
O'eﬂ:<5%;x‘) Sefts I Oeg<Om” OF Se<<0, (19)
e
for the unloading case, wherel” is the value ofoey at S
=& calculated from Eq(18).

2.3 Cohesive Energy Density. The cohesive energy den-
sity, or the work of separation per unit area of cohesive surface,

defined by
c _
fgm™— f 0 ( Oet) d St - (20)
0
By substituting Eq(18) into the above equation, we obtain
IS (x)= Vine(X) re
f = t
om VinefX) + Bmel L= Vime(X)]~ ™
+ 1~ VielX) re 1)
1- Vmel(x) + BcervmeKX) cer
1.0 : -
— grr:eﬁ L0 i
= = Bt = 2.0 A1
o et ’
E 08 | --oo- Brnet = 3.0 / /
o === Ber =100 S/ I/
2 /
‘% 06 ¢ /
2 /
.g 04 P B ///
5 02¢ T
2 -
[l n=05, Peer=10
0.0 : : : -
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X/b
(@)
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g 08 Bret = 1.0 i
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> met N Fa)
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Fig. 2 Normalized cohesive energy density T/ T et

(P /T 5et=0.05, Vet (X)=(XI b)), (a) n=0.5; (b) n=1.0

cer
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wherel'; ,andl ¢, are the cohesive energy densities of the metal

and ceramic phases, respectively,

F(r:net: eo-l(':ﬂetﬁﬁ'let’ Fger: ea—ger(sﬁer' (22)

Equation(21) shows that the cohesive energy density follows the
same rule as that of the cohesive traction. Figure 2 shows the
normalized cohesive energy densIt‘fgmll“‘fnel versus the nondi-
mensional coordinatX/b for a ceramic/metal FGM with metal
volume fractionV, .= (X/b)", whereX is the gradation direction
andb is a geometrical parameter, e.g., the thickness of the FGM
specimen. In these figures, the energy rdiig,/T 5 iS assumed
0.05 with B, taken as 1.0. The cohesive energy of the FGM
decreases markedly with increasifige.

3 Three-Dimensional Finite Element Modeling of
Functionally Graded Materials

This section describes the small-displacement formulation of
blgth the three-dimensional solid element and the interface-
cohesive element with graded material properties. In the present
study, the solid elements remain linearly elastic but the material
propertiesYoung's modulus and Poisson'’s rgtimay vary within
the element and thus graded elements are empléked and
Paulino[20]). For the cohesive element, the material properties
follow the functionally graded cohesive law described in Section
2. Figure 3 illustrates the three-dimensional interface-cohesive
and solid elements used in the present work. The interface-
cohesive element consists of two four-node bilinear isoparametric
surfaces. Nodes 1-4 lie on one surface of the element while nodes
5-8 lie on the opposite surface. The two surfaces initially occupy
the same location. When the whole body deforms, the two sur-
faces undergo both normal and tangential displacements relative
to each other. The cohesive tractions corresponding to the relative
displacements follow the constitutive relatioi$7)—(19), and
thus maintain the two surfaces in a “cohesive” state.

Now first consider the stiffness matrix of the isoparametric
solid element. Denote bi;(&,7,4)(1=1,2, ... m) the standard
shape functions of the solid elemdf1]), wheremis the number
of the nodes of the element. The element stiffness matrix is given

by
1 1 1
K=f f f BTDBJ,déd nd, (23)
-1J-1J -1

whereB is the strain-displacement matrik; is the usual Jacobian
of the transformation between paramet(#»,{) and Cartesian
coordinates X1 ,X»,X3), andD is the elastic stiffness matrix. For
functionally graded material&FGMs), the D matrix depends on

8 7
I initially zero thickness

cohesive material;

interface-cohesive element

background material;

3-D solid element

Fig. 3 Interface-cohesive and three-dimensional solid
elements
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spatial position. To calculate the Young's modulus and the Pois- 1.0

son’s ratio in the solid element, we use the following interpola-
tion: T [ n=02
5 0.8
S
m m 5 0.5
E=> NE, »=> N, (24) g 067
i=1 i=1 g
S 1.0
< 04
where E; and vi(i=1,2,...m) are the values of the Young’s g
modulus and the Poisson’s ratio at nodal points, respectively. 2 20
Turning to the cohesive element, the tangent stiffness matrix is S 027
given by ([8]), 5.0
0.0

1 0.0 02 0.4 06 0.8 1.0
Ky= J ) J 1BIo DeotBeordod 7d, (25) Normalized distance

Fig. 4 Volume fraction of metallic phase in a ceramic  /metal

. . . o functionally graded material (FGM)
where By, extracts the relative displacement jumps within the

cohesive element from the nodal displaceme(i)), J, is
the Jacobian of the transformation between paraméig) and
Cartesian coordinates{,s,) in the tangent plane of the cohesive
element, and.y, is the tangent modulus matrix of the cohesive
law (17)—(19) which can be found in the Appendix. For FGMs,

4
ngm: - §Mfgm

Eq. (18) and Egs.(34) and (35) in the Appendix show that the " (Kmett 441gm/3) (Kcert 41gm/3) .
D.,, Matrix depends on spatial position through the graded Vinel Keert 4 11gml3) + (1= Vined (K et 4 sgm/3)
volume fraction of the metal phas¥,,., in a ceramic/metal (28)
FGM. In this study,V is also approximated by the standard ) )
interpolation The Young's modulusEy,, and the Poisson’s rati@sy, of the
FGM are then determined from the following relations:
4 ) 9:"Lfngfgm
Vmet:;L Nivlmetl (26) Efgm_ﬂfgm‘f‘ 3ngm, (29)

) - 3ngm_2ﬂfgm
whereV,(i=1,2,3,4) are the values M at the nodal points Vfgm*z(,ufgm+ 3Ksgm)
of the interface-cohesive elements. The present formulation is .
fully isoparametric in which the same shape functions interpolae/" the present study, the volume fraction of the metal phase
the displacements, the geometry and the material paramet&P4OWs a simple power function, i.e.,

Such a generalized isoparametric formulation has been presented X—=Xmin |"
by Kim and Paulind 20]. Vmel(x):(x—) , (31)

max Xmin

(30)

wheren is the power exponenX is the gradation direction, and

. . . the material properties are graded in the intefg};, ,Xmax- Fig-

4 Functionally Graded Material Properties ure 4 shows the volume fraction of the metal phase for various
This section describes the techniques adopted to obtain wajues ofn.

properties for both the background functionally graded materials The following numerical analysis of crack growth utilizes the
(FGM) and cohesive FGM materials. One of the advantages of theoperties of a TiB/Ti FGM system. Table 1 lists the relevant
present methodology is that each model is developed separat®iterial properties of Tiltitanium monoborideand Ti(commer-
for each material, as described below. This feature introduces siglly pure titanium. The company CERCOM Inc. developed this
nificant flexibility in modeling the actual material behavior. ceramic/metal FGM system in a layered structural form for armor

. . . applications([24]).
4.1 Background Material Properties. Consider an FGM

as a two-phase composite with graded volume fractions of its4.2 Cohesive Material Properties. The functionally graded
constituent phases. The effective properties of an FGM should @ehesive constitutive modé¥) or (18) (three-dimensional case
calculated from those of the constituent materials and the volurhas the following six independent parameters that characterize the
fractions by means of a micromechanical model. Though sucHracture process in a ceramic/metal FGM:

model is not available as yet for FGMs, some models for conven-T'y,.: local work of separation of metal

tional homogeneous composite materials, for example, the self-rger; local work of separation of ceramic

consistent sche_me, may be used for FGMs Wlth reasonable accu&rcnel: peak cohesive traction of metal

racy ([22]). In this study, we use the self-consistent schefaa])

to calculate the effective elastic properties of the FGM. The shear
and bulk moduliwsgm andK gy of the FGM are thus calculated by
the following system of equations:

ocer peak cohesive traction of ceramic

Table 1 Material Properties of Ti and TiB

( ) ( ) Vinelmer (17 VinedKeer r\:\cc))tértlj?uss Poisson’s J ot ol
Migm™ M Migm™— M t t
o me am oer Kmett 4Mfgm/ 3 Keert 4:“fgml 3 Materials (GPa ratio (KJ/CinZ) (Mllgea) (mmr;) (MICDeé) (mcr?;)
+ 5[Vme1/-Lcer(Mfgm_ Hme +(1_Vmer):“meK:U“fgm_ Heen] Ti 107 0.34 150 620 0.089
TiB 375 0.14 0.11 4.0 0.01
=0, 27)
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Fig. 7 SE(B) specimen geometry

Fig. 5 C(T) specimen geometry

Bmet @nd Bee;: cOhesive gradation parameters.

The calibrated values dff,., and o, are the Griffith energy
release ratéunder small-scale yielding conditionand the peak
cohesive stress of the metal phase, which generally lies between
two to three times the uniaxial yield stress. The first equation of
(22) yields the characteristic opening displacemé&pt,. We note
that ductile deformations are present in the background material ~— symmetry plane
when the cohesive characteristic parameters of the metal are cali-
brated following the above procedure, however, such deforma- Fig. 8 Typical mesh for analyses of SE  (B) specimen
tions are not considered in the present study. Nevertheless, this
calibration procedure is used with emphasis on the presentation of
the cohesive model and the effects of gradation paranmi@ter
and metal volume fractioV,,; on the load versus crack growthligament size is thetb,/W=0.6, and the thickness is 4.5 mm.
responses. For the ceramic phase, it is natural to assign the energhle 3 provides the geometric parameters for théBSEpeci-
release rate t®'S,,. For this phenomenological model applicablemens. A layered functionally graded materi&GM) version of
at engineering scales, the characteristic opening displacesfignt the SEB) specimen has been recently testef?8]. From a mod-
is assumed to be approximately the average grain size of cera@lifig point of view, the functionally graded mater{&GM) com-
particles in the ceramic/metal FGM. The peak cohesive tracti@®sition varies from 100 percent TiB at the cracked surface to 100
0%, is therefore determined from the second equatioraf. At ~Percent Ti at the uncracked surface. Thus the volume fraction of
smaller length scales, the local nature of the failure mechanisthvaries from zero at the cracked surface to one at the uncracked
contributes to the characteristic parameters of the cohesive z&ygface. ) ) ) )
model, which may lead to different material parameters and dif- The finite element models consist of eight-node isoparametric
ferent simulation results of crack growth. Calibration of the othei°lid elements and the eight-node interface-cohesive elements.
two parameterg,e and B, follows by matching the predicted, Pue to symmetry considerations, we model only one-quarter of
with measured, fracture behavior. Table 1 lists the relevant cofRach specimen. Interface-cohesive elements are placed only over
sive properties for the TiB/Ti FGM, where the criticilvalues the initial uncracked ligament and have a uniform size of 0.25 mm

(J., as the cohesive enengfor TiB and Ti are taken from refer- for the QT) specimen, and 0.1 mm for the && specimens. The

V.

enceq 25,26 finite element model has eight uniform layers of elements over the
half thickness for the (0O) specimen. For the thicker $B) speci-

5 Crack Growth in TiB /Ti Functionally Graded mens, the model has ten uniform layers over the half thickness.

Materials Figure 6 shows the front view of the typical finite element mesh

for the QT) specimen and Fig. 8 shows the front view of the finite
5.1 Finite Element Models. We performed numerical element mesh for the $B) specimens.
analyses of crack growth for both(D and SEB) specimens, as
illustrated in Figs. 5—-6 and Figs. 7—8, respectively. Table 2 sury
marizes the geometric parameters of th@)Cspecimen. The ab-
solute size for the specimen¥§=50 mm. The initial nondimen-
sional crack length isay/W=0.4, the initial nondimensional

5.2 Finite Element Analysis. The FGM modeling features
escribed in this work have been implemented in the fracture
mechanics research code WARPER7]). In addition to the con-
ventional solid and interface-cohesive elements for homogeneous
materials, this code also incorporates the solid element with

) \ Table 2 Geometric parameters of C (T) specimen
3 N RN Specimen W (mm) B (mm) ap /W
c(m 50 4.5 0.4
& Table 3 Geometric parameters of SE (B) specimens
| =Y 1 by | [s)?/;‘rgetry Specimen L(mm) W(mm) B(mm) a,/W R(mm)
SHEB) 79.4 14.7 7.4 0.1, 0.3 10.2

Fig. 6 Typical mesh for analyses of C (T) specimen

Journal of Applied Mechanics MAY 2002, Vol. 69 / 375



graded elastic properties and the interface-cohesive element
coupled with the functionally graded cohesive constitutive model
described in Sections 2 and 3.

WARP3D supports the conventional interface-cohesive element
for crack growth with adaptive load control, element extinction
and other features. Such computational proced(pesviously
used for homogeneous materjaédso prove essential in analyses
of FGMs to track accurately the cohesive constitutive response.
For the cohesive fracture model proposed in Section 2, the adap-
tive load control parameter becomes the characteristic opening
displacements,., of the metal. The analysis uses a limit of
A8l 65,=0.2 per load step for adaptive load control, whai@is
the largest change of effective opening displacemgmixperi-

Load (kN)

enced by interface-cohesive elements in a given load step. The Crack extension (mm)
element extinction occurs when the average opening displacement (@)

& of the element reachess,,, which corresponds to a cohesive 10 ‘ ‘

traction less than 10 percent of the peak value of the metal mul- - 50 mm—

tiplied by the metal volume fraction. Selection éf,, (of the
metal phasgas the controlling parameter for adaptive load control
and element extinction follows from the analyses demonstrating
that the metal phase largely controls fracture behavior of the
FGM. The cohesive fracture energy of TiB, for example, is less
than 0.1 percent of that for Ti.

Load (kN)

5.3 Crack Growth in C(T) Specimen. The specimen is
loaded by opening displacements applied uniformly through the
thickness at the loading pin. Crack growth is taken to occur when
the interface-cohesive elements ahead of the crack front satisfy
the element extinction condition. Figuréad shows the load ver-
sus crack extension curves for théT¢specimen for various val- Crack extension (mm)
ues of B The power exponenh=0.5 (shape index of the ®)
metal volume fraction defines an overall metal rich specimen.

Because the cohesive traction of the ceramic phase is extremely 10 ‘

small compared with that of the metal phase for the TiB/Ti FGM ' ! =50 mm—
studied, the paramete.., plays a negligible role in determining
the cohesive traction of the FGM. Consequently, we t@ke
=1.0 in the current and all subsequent calculations. Fig(ag 9
shows that for a give, e, the load decreases steadily with crack
extension in the present analyses which do not include plasticity
in the background material. This contrasts with ductile fracture of
metals which show load increases with crack extension during
initial growth followed by load reductions when strain hardening
no longer accommodates the decreasing ligantes®(8] for ex-
amples. The figure also shows that for a given crack extension, a
larger Bet lowers the load. This is consistent with the cohesive
fracture model7) where a largeB,¢ reduces the peak cohesive
traction. Figure gb) and 9c) show similar results for the same
specimen forn=1.0 (a specimen with equal overall metal and ()
ceramic volume fractionsand n=2.0 (an overall metal lean
specimely, respectively. Comparing the results in the three fi
ures, we observe that the load becomes lower for langéthe
result is expected since a largercorresponds to a lower metal
volume fraction, which results in a lower cohesive energy for the
FGM.

Figure 10 shows the load versus crack extension curves for
same CT) specimen studied in Fig.(8 with addition of the
crack growth responses for homogeneous m@tialand ceramic
(TiB) specimens. These two additional configurations provi
bounding solutions for the FGM responses. The load for pure
remains larger than those for the TiB/Ti FGM with varioBge;-
The loads during crack extension for the pure TiB, however, r
main vanishingly small compared to the FGM.

[

Load (kN)

Crack extension (mm)

-ig. 9 Load-crack extension response for the C (T) Ti/TiB
specimen with a,/W=0.4, B=45mm; (a) n=0.5; (b) n=1.0;
I(C) n=2.0

curred at a measured load of 920 Newt@ds The experimen-
al results show that load increases with crack extension during
the initial growth and then decreases with further crack extension.
d%e measured load corresponding to a crack growth of 5 mm is
out 1200 N. Figure 11 shows the volume fraction of Ti in this
IB/Ti specimen. The dottedstepped line shows the property
g_radation in the experimentally tested specimen. A least-squares
approximation yields the power exponemt0.84 in the metal
volume fraction function of Eq(31). Figure 12 shows the numeri-
5.4 Crack Growth in SE(B) Specimen. As a final numeri- cal results of the load versus crack extension responses for the
cal example, we consider an @3 specimen loaded by opening SEB) specimen withB,=16 andn=0.84. For thefBe Se-
displacements applied uniformly through the thickness at thected, the crack initiation load agrees quite closely with the ex-
specimen center plane. A layered FGM version of the specimparimentally measured value. Compared with the experimental
has been recently testé®5]). The first layer of the tested speci-observations after the crack initiatigf25]), the discrepancy in
men consists of 15 percent Ti and 85 percent TiB, while the laste trend of load versus crack extension response arises because
layer (seventh layerconsists of 100 percent Ti. Crack initiationthe present analysis does not consider plasticity in the background
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Fig. 10 Load-crack extension response for the C
specimen with ay/W=0.4, B=4.5mm
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Fig. 11 Volume fraction of Ti in the TiB

material (FGM)

1.0
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material. When the plasticity effect is taken into acco(mbrk

underway by the authorswe expect that the trend of the load
versus crack extension will be more consistent with the experi-
mental observationghe calibrated value oB,,,; may be larger
than 16. Figure 12 also shows the numerical results of the load
versus crack extension for plane-strain and plane-stress models.
Though we have not found differences between the two- 0 0 1
dimensional and three-dimensional responses, we expect that sig-

3 : . .
n=0.84 ‘ 147
PBret =16 a/W=03
o L B=7.4mm i
é -------- - plane stress
et — 3-d
8 | - plane strain
|
'l i
crack initiation load [25]
0 L I L
0 1 2 3 4 5
Crack extension (mm)
Fig. 12 Load-crack extension response for the SE  (B) Ti/TiB

specimen with ay/W=0.3, B=7.4mm, n=0.84

Journal of Applied Mechanics

Load (kN)
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0 1 2 3 4 5
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6 . r !
n=20 E7 o
o B'“e‘_; a/W=03
4l Broet = B=7.4mm ]
2 """ Bmet =5
<
©
(1]
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(0

Fig. 13 Load-crack extension response for the SE  (B) Ti/TiB
specimen with a,/W=0.3, B=7.4mm; (a) n=0.5; (b) n=1.0;
(c) n=2.0

nificant differences will develop with plasticity in the background
material due to variations in crack front constraint and crack front
tunneling.

Figure 13 shows the effect g8, and n on the load versus
crack extension responses for the(BEspecimen. The power
exponentn (shape index of the metal volume fractjois 0.5 in
Fig. 13a), 1.0 in Fig. 13b), and 2.0 in Fig. 1&). Similar load
versus crack extension behavior to that for th@)Cspecimen is
observed for the SB) specimen, i.e., for a giveB,,, the load
decreases steadily with crack extension; for a given crack exten-
sion, a largeB e reduces the load; and finally, the load becomes
lower for largern. BecauseB, ¢ has a pronounced effect on the
load versus crack extension responses, we may expect to calibrate
the values o3¢ from experimental observatiolisee Section )2
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Appendix
In finite element analyses, the tangent modulus md;iXi, j
=1,2,3) for the cohesive mode($8) defined below is needed

where (o-l 10’270-3) = (0'31 ,0'52,0'”), (Ul 102103): (UslvUSZJ.)n).v
andD;;=da;/dv; . HereD;; are the components @, matrix in
Eq. (25). The detailed expression f@;; is given as follows. First

note that
R I
1 (91)]' (959ff (9vi Te ﬁviﬁvj aéeﬁ ﬂl)i (7Uj '
(33)
Itis clear from the above equation tHag =D;; . Use of Eqg12),
Crack extension (mm) (14), and(33) yields
Fig. 14 Load-crack extension response for the SE  (B) Ti/TiB D..= 2 Ueff 7140%(’90«9&_ Ef)
specimen with a,/W=0.1, B=7.4mm; and n=0.5 u=nTs 5% \ 90y Oert)’
4.2
L, 0eff MU ao—eﬁ_ T eff
Figure 14 shows the load versus crack extension curves for the ¢
SEB) specimen with an initial nondimensional crack length O off v§ IOt Oeff
ao/W=0.1. Similar results to that shown in Fig. (83 can be D33:5—+ 5—2( 0 5—)
observed. Therefore, without considering plasticity in the back- eff - Teft | U0l Tef (34)
ground material, the load decreases with crack extension due to ViUo [ 00e  Teit
the decreasing ligament for the laboratory crack size. D1,=D2=7"—5— (—* —) )
Set | 00t O
DD - zw(ﬂaeﬁ_ ﬁ)
6 Concluding Remarks BENT T T2 T 96w Oet)”
This study presents a novel phenomenological cohesive fracture Vol [ I0er  Oei
model for ceramic/metal functionally graded materiéfi<GMs) Dy3=Dj= 772—2( - —)
and the corresponding implementation in a three-dimensional fi- Sefr \ IOt e
nite element method framework. The model has six independeifiere o is given by Eq.(18) and do o /b is
material parameters, i.e., the cohesive energy densities .
(T5etIcen, the peak cohesive tractions of the metal and ceramic Joeft _ Vel X) e(alet) ( 1 @J
phases ¢%e,0%) and two cohesive gradation parameters 98t Vie(X) T Bmel 1= Vine(X)] "\ Sne She
(Bmet: Been 10 represent approximately the transition between the
fracture mechanisms of metal and ceramic phases, respectively. In ><exp( _ %‘) 1= Vine(X)
contrast to existing models that consider only tensile mode frac- Omet! 17 Vine(X) + BeeVmed X)
ture, the present model accommodates three-dimensional tensile c
and shear fracture modes although the numerical examples illus- xe Teer 1— % exd — ﬁ (35)
trate only mode | fracture behavior. Applications of the cohesive Ser Ser 8%’
fracture model to the analysis of crack growth in botfTCand ) .
SEB) specimens of TiB/Ti FGM show that the load to caus&nder loading conditions, and
crack extension in the FGM compares to that for a pure ni&tal o
specimen. In the present study, the load decreases steadily with aeﬁ:(m> off » (36)
subsequent crack extension, which contrasts with ductile fracture Oeit
behavior of metalgthe present analyses do not admit plasticity in Jo omax
the background materialThe results obtained indicate that the eff _ Zeff (37)
cohesive gradation parameter for the metal has a pronounced ef- 9 et oft

fect on the load versus crack extension response. This suggestSne unloading case.
that the parameter may be reasonably calibrated by matching the

predicted crack growth response with experimental observatior??.f
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Reduction of Vibration Caused by
Magnetic Force in a Switched
=wrase | Reluctance Motor by Topology

School of Mechanical Engineering, - - -
Yonsei University, 0 pt t
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Assoc. Mem. ASME The topology optimization of a switched reluctance motor (SRM) excited by magnetic
forces is an important issue to minimize the noise and vibration level. In this paper, the
magnetic force is computed using the Maxwell stress method and the optimization prob-
lem is formulated to minimize the frequency response based on the homogenization design
method (HDM). The developed method is applied to the stator of an SRM to minimize the
deformation caused by the magnetic harmonic excitation. Numerical simulation shows
that this method successfully decreases the vibration level of an SRM.
[DOI: 10.1115/1.1467093

1 Introduction used all three of these methods to calculate the torque of a direct
current(DC) motor and showed that the Maxwell stress method

Zhows the best result with small number of elements. Removing
reducing the exciting forces that cause severe deformation can
duce the vibration of an SRM. However, we must consider that

Among many types of motors, a switched reluctance mot
(SRM) has a very simple structure compared to the other types
motors because there is no wire winding around the rotor. Alsl%

since no magnetization is necessary, the manufacturing cost i magnetic forces work not only as exciting forces causing the
be significantly reduceq 1). These make an SRM a strong cony,yise and vibration but also as driving forces of an SRM.
tender in industrial applications. o In this paper, we consider the frequency response problem of an

However, the noise and vibration level of an SRM is higheggp excited by magnetic forces. The obijective of the design is to
than other competing motors. Vibration in an electric machine Nasnimize the vibration level of the motor. The finite element
a harmful effect on the efficiency of the machine, especially wheethod together with the Maxwell stress method is used to calcu-
the machine work must be accurate and quiet. Cameron and L4a@ the magnetic forces, and the homogenization design method
[2] found that the dominant source of the noise and vibration {gip\m) is applied to obtain the optimal topology. First introduced
the radial deformation of a stator due to radial magnetic forcgsy Bendsge and KikucHi7] for structural topology design, this
They also found that the result is severe when the operating fifiethod has been successfully applied to structural optimization
guency coincides with the natural resonant frequency of the statgfoblems. Diaz and Kikuchig] extended the application of the
The effect of the deformation of a rotor is small compared to thifpm to the dynamic problem and determined the optimal shape
of a stator since a rotor is stiffer than a stator. Colby eE3§Iused of a structure to maximize a natural frequency. Ma e[@]_de-
structural finite element analysis to compute the eigenmodes oféloped a shape optimization method for the frequency response
four-phase SRM and presented heuristic arguments to find th@blem of a vibrating structure.
operating conditions that excite the dominant eigenmodes. WuBased on these studies, we developed a process for minimizing
and Polloc4] derived a concept for the power electric controllexibration of a structure excited by magnetic forces and applied the
to reduce the noise and vibration in a switched reluctance driv@rocess to obtain the optimal topology of a stator in an SRM.

In low-frequency ranges, the flux flow between a stator and a
rotor is the main cause of vibration of an SRM. The flux flow
generates magnetic forces that perform as exciting forces for the . .
vibration. On the other hand, in high-frequency ranges, the fi’k Homogenization Design Method
ripple of the air-gap dominates the vibration. In both cases, toIn this section, homogenization theory in elasticity cases and
analyze and solve the vibration problem in electric machines, ttige concept of the homogenization design method are explained.
method to calculate the forces caused by magnetic flux must Pee homogenized material properties such as homogenized
chosen carefully according to the characteristic of the problem.Young's modulus or density are computed using homogenization

The methods of force calculation based on the finite elemethieory.
method can be classified as follows: the Maxwell stress method
the virtual work method, and the magnetizing current method. It : L . . .
et al. [5] compared these three methods and confirmed that (Ra2P€ Of a design domain is determined by the optimal material
Maxwell stress method and the virtual work method are less se stribution using a composite material composed of variable mi-

sitive to density of mesh discretization: however, the virtual wor, c:gziglg?lggtsiﬁq;gltjizln?)rrglgl:écr)r?tr'lrjg tgéieifnilrzl(terc\:\?huec'[ﬁzrtg ;?LIEUEZF
method is not good in large deformation cases. Hamler ¢64l. part is removed or not, we introduce a characteristic function such

2.1 Homogenization Theory in Elasticity. The optimal

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF that
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- . .
CHANICS. Manuscript received by the ASME Applied Mechanics Division, July 16, 1 in solid
2001; final revision, Oct. 23, 2001. Associate Editor: A. K. Mal. Discussion on the Xa= 0 in void (1)

paper should be addressed to the Editor, Prof. Lewis T. Wheeler, Department of

Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and will _. . .
be accepted until four months after final publication of the paper itself in the ASME Figure 1 ShOWS de3|gr_1 domain composed of the nonh_om(Jge'
JOURNAL OF APPLIED MECHANICS. neous composite material/(yly2y3) represents the micro-
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scopic level coordinate whilg(x1,x2x3) represents the macro- void microstructure
scopic level coordinate. Those two coordinates have the following
relation: Fig. 2 Macro design domain and porous microstructures
X 2
y="~ (2)

) ) ~ 2.2 Concept of the Homogenization Design Method. The
wheree is an asymptotic scale factor between the macroscopiesign domaing?, is composed of a composite material with per-
and the microscopic structure. Doméihis an open connected forated microstructures as shown in Fig. 2. The design domain has
domain ofR® with smooth boundaries. The domain is composegiven boundary conditiong() 4 and 4}, which are the displace-
of infinite number of microstructures, each of which has a hole asent boundary condition and traction boundary condition, respec-
shown in the figurel'; is the traction boundary condition ahg, tively. The unit cell of the microstructure has a rectangular hole,
is the displacement boundary condition of dom&in as shown in Fig. 1. If the size of the hole in the unit cell is 0, the

Using the characteristic function defined in Ef), the equilib- unit cell becomes a solid. On the other hand, if the size is the same
rium of a structure composed of microstructures can be stated agsathe unit cell size, the unit cell becomes a void. During the

weak form: optimization process, the material is transferred from one part to
. - another part in the design domain and finally the optimal material

J £0 ﬁ%d(HJ ﬂdﬂ distribution is determined.
QX ikl IX; X QXPO o2 The optimization problem using the homogenization design

method(HDM) is defined using the total potential energy or mean
compliance of a design domain. As can be seen from(8gthe
weak form, which defines the energy, is formulated using the ho-
mogenized properties such as Young's modulus, density, and the
whereu? is the displacement at equilibriury; is the virtual dis- body force. Thus, to obtain the homogenized properties of a given
placement, and, is the boundary tractiorEﬂ-k,, po, andf? rep- microstructure, we must solve the unit cell problem. The unit cell
resent Young’s modulus tensor, mass density of the solid portidf, ("ée-dimensional microstructure is assumed to have a body
and the body force of the solid portion, respectivalyrepresents Nole of width 1, depth 1b, and height le. The size of body

- - . : - . hale D={a,b,c}, and rotation angl®={¢,6,} are the design
;hsefgﬁg\?vi:of kinematically admissible displacement fields defln\g/griables. AssumindR(®) to be the rotational matrix based on

rotational angle®, we can compute Young's modulus using the
V={v|veH}Q),v=0 on I'y}, I'4:displacement boundary following equation:

whereH(Q) is the Sobolev space. E=R(©)'E"(D)R(O). ®)
Since Eiojk,, po, and f are not homogeneous in the desiguring the optimization process, the design variables of each unit
domain, they must be solved at macroscale and microscale leveksll are changing continuously. Therefore, the homogenized val-
Using the homogenization theory, we can write the weak form ags of Young’s modulus must be obtained by continuously chang-
a0 g 2200 ing the size of the hole for all possibilities of material density.
J H i deQ+J oM i dQ:J fiHUidQJrf tw,dl This is possible if homogenized Young’s modulus can be ex-
Q Q Q Iy

:f f?vidQ+f to;dl' for Vo eV ©)
Q T

Ik ax; ax, “ot? pressed by a function of the design variables. However, homog-

4) enized Young’s modulus is too complex to express as a single

function. Therefore, we calculate the homogenized values only for
where uio represents the average displacement in the microscaleme discrete sizes of the hole, and interpolate the other values by

domain. Ejj,, , p™, andf{' are homogenized Young's modulus the Bezier function.

mass density, and body force, respectivES}kI is calculated us-

ing the characteristic displacement of the unit Cﬁ:'l’l.andfiH can . .

be represented as"=1/Y|fypodY and f*=1/Y|[,f0dY, re- 3 Magnetic Force Calculation

spectively, since they are proportional to the volume ratio of eachThe force caused by magnetic harmonic flux of the air-gap can
unit cell Y. |Y| represents the volume of ([7,9]). have a harmful effect on quiet electric machines if it works as an
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exciting force of the machine vibration. Therefore, accurate corq. (4). Assuming thati is the displacement at equilibrium and
putation of the force in the air-gap is necessary to solve the noisethe virtual displacement, we can define energy bilinear form

and vibration problem in electrical machinery. a(u,v) and load linear fornb(v) as follows:

The Maxwell stress method can be applied regardless of the 0 5 0
material properties. Also, it can be used for linear material prop- a(uv)= | E ou; @dﬂ+ b 07U 40 (10)
erties as well as nonlinear material properties while the integration ' o K IXj 9% Qp ot?

path must be carefully selected for accurate. The integration path
must not include any ferromagnetic material, and it must be posi- "
tioned as far as possible from the ferromagnetic material. Also, the b(V):f fi UidQJFf tiv;dI. (11)
application of this method is restricted to the air-gap part. To @ Tt
calculate the force in the portion that includes a ferromagnetiherefore, we can write the weak form as
material, Reyne et aJ10] suggested a modified stress tensor us-
ing an energy approach. In spite of these limitations, the Maxwell a(uv)=b(v) VveS 12)
stress method is widely used to calculate the magnetic force si
the results using this method are consistent with theory and
perimental results.

Using this method, we define volume force density as

r\'/(\if_?eresk is the space of kinematically admissible displacement.
Ke call the right term of Eq(12) as the mean compliance. At
equilibrium, Eq.(12) can be rewritten as

a(u,u)=b(u). (13)

f,=V o (6)
whereo is the Maxwell stress tensor for three dimensional casd§® €nergy bilinear form shown in E(LO) includes a time de-
and it is defined as follows: rivative term. For nume_ncal ana_IyS|s, the time dlscretlzatl_o_n
) method or the quasi-static analysis can be used. If the exciting
Oxx  Oxy Oxz force is harmonic and the frequency is given, the weak form is
o i o o o simplified without considering the time difference. Assumintp
wol| Y TR be the given frequency for the exciting force, we can substitute the
L Ozx  Oxy Oz displacemenu?, body forcef!", and tractiort; asU;el“!, Fel*t,
[ g2 l|B|2 B.B B.B andT;e'“!, respectively. Therefore, we can write each term of Eq.
1 x 2 =y Xz (13) as follows:
2_1
= Iu_ B)’BX Byf 2 |B|2 BYBZ (7) H (7U| (9Uk 2 H
0 N a(uu= | Ejg=———d0—-0"| p"U; U;dQ (14)
B,B, B.By B2—3|B|? Q ax; dx q
whereB,, B,, andB, represents th&, y, andz directional flux
density value, respectiveljB|? is computed using those values as b(u)= nFiUid(H . T,Udr. (15)
BZ+BZ+BZ. We can compute the magnetic force by integrating ‘
volume force density over an integration path as follows: The objective of the topology optimization can be defined as
minimizing the mean compliance defined as E) to minimize
F:f V odo. g) deformation. However, if the exciting frequency is large, the sen-
% sitivity of the objective function can be a negative value and it is

. o . . hard to apply the optimality criteria method. Ma et [@] shifted
The volume integration is transformed from volume integration @, sensitivity value using shift parameter to make the value as a
surface integration by the divergence theorem: positive one. This method requires additional calculation of the
shift parameter according to the sensitivity of the objective func-
F:J o dA. (9) tion and constraint functions. In this paper, we modified the ob-
A jective function as the square of the mean compliance to satisfy
Although the Maxwell stress tensor can be defined inxhe the criteria:
coordinate, usually it is determined in the normal and the tangen- I 2
tial directions of a material to apply for circular shapes such as minimize tfle(;/k) (16)
motors and generators. In the analysis of a switched reluctance
motor (SRM), we compute the normal and the tangential direawvhere the square value of the mean compliance is used as the
tional forces based on Eq4)—(9) and the relation ok-y andt-n  objective to make the objective as a positive value regardless of
coordinates. the exciting frequency.
In the optimization process, the design variables are updated
based on the sensitivity of the objective function. The sensitivity
s can be computed based on the total potential energy and the rela-
4 Optimization Problem tion of the total potential energy and the mean compliance. Con-
In this section we formulate the topology optimization procesyidering Eq.(16), we modify the total potential enerdly; as
for the frequency response problem. The objective of the optimi-
zation process is to minimize the response of the stator of a Ti(v)=3a%(v,v) = b*(v). (17)
switched reluctance motdiSRM) excited by harmonic loading since Eq.(13) is satisfied at equilibrium, we can derive the fol-
caused by magnetic flux. We obtain the objective function by thgying relation:
weak form of the structure based on the virtual displacement
theory. For the optimization solver, the optimality criteria method Ti(u)= 2a%(u,u) —b?(u)= — 1 b%(u). (18)

is used to deal with the large number of design variables. By the relation of Eq(16) and Eq.(18), we can say that minimiz-

4.1 Formulation of the Optimization Problem. We con- ing the square of the mean compliance is the same as maximizing
sider a design domaif) where the body forcé and tractiort are the value ofT; .
applied as shown in Fig. 1. Using the homogenized Young's AssumingX to be the design variable, and using Et¢) and
modulus, mass density, body force, and ignoring the damping &g. (15), we can derive the variation of; with respect to the
fect, the weak form for a simple dynamic case can be written dgsign variableX and equilibrium displacement as follows:
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AU, U, sensitivity values based on an updating rule. As in the homogeni-
ﬁTf(u,X)=2( J E‘Fj'k'a_ a—dewZJ p"U; UidQ) zation design methotHDM) if the number of design variables is
Q Xj X Q much larger than the number of constraints, the optimality criteria
U g JU method is very efficignt.. . .
[f gH ! (5Uk+—k5Xm)d05Xm Generally, the optimization problem using the HDM can be

o ax ax X defined as follows:
U; minimize f (23)
7w2f pHU; | 0U + — X, | dQ X, %0
Q X
H " subject toh(X)=<0 (24)
+E ﬂ(9—Ui%dﬂéx _lwz &iu- X=x=x, i=12 n (25)
2 )q Xy X 9% ™27 )iy ! ISXSX 2, Ny

T
(?Ui ——S0i$—, i:1,2,...n6 (26)

Uid€Q 68X | —2b(W)b| 8U;+ == 8Xpy . (19) 2 2

m

wheref is the objective function ant is the constraint function
The first and second terms in the bracket can be canceled out wigfined asf ,1dQ <V, whereV, is the pre-defined total volume
the last term by setting= du+ (du/dX,,) 6X,,. Thus, we can ratio. X={x;} is the set of the sizing design variables which cor-

define the sensitivity function to design variatdeas responds to the size of holes in the microstructure in a finite ele-
ment model® ={;} is the set of the orientation design variables

(9_Tf: J H ‘Q_U‘a_ukdg_wzf HU. U.dQ that corresponds to the rotation of the microstructure in a finite
X o ax ax o element modelx! and x" are the lower and upper bounds of

u design variable; , respectivelyn, andn, are the number of the
1 [ 0B dU; dUy 1 ,( " sizing design variable and the number of the orientation design
2 ] o 9% (9_)(1.[9_X|d9_§“’ QngUi UidQ | Variable, respectively.
Using the Lagrangian function and the Kuhn-Tucker condi-
(20) tions, the necessary condition for a stationary point can be written

To satisfy the criteria of the optimality criteria method, this valu&S

must be positive. Since homogenized elastic-moduli are highly 1 of Jh
nonlinear according to the material volume rg{i@]), satisfaction e =—( - —/ —)
of this condition cannot be guaranteed. However, considering that A VAN
an SRM rotates at high speed, the sensitivity value can be positiveere g; is the effectiveness of thith design variable. If the

=1 for xl<x<x! 27)

if the following conditions are satisfied: structure is not in the optimal stage, the value of the effectiveness
JU: 9U is not one. Using the effectiveness, the updating rule for the opti-
J Ei']'kl_i _kdﬂngf pHU; U,dQ mality criteria method is defined as folloW3]:
aX; Ix
b ¢ X! for (e)"x‘=x|
and K+1 Ky 7y K f | — ( oKy 7k U
; . x =19 ()7 or X;<(e) X=X (28)
f Pia Vi Ve o [ 220 vda. (1) X for xi'=(ef) "x{
o Xm IXj X 09Xm k+1

Wherex:( is theith sizing design variable in thkh iteration,x;

Since the ratio of left terms in Eq21) depends on the materialsis theith updated sizing design variable, ands a weighting.

used, the application of the objective function defined in @6) The updating rule regarding orientation design variafjlés

is limited. In the given model of an SRMy must be large enough based on the work of PedersEtt]. Angle 6, must be aligned to

to satisfy the conditions in Eq21). Considering the metallic ma- the directions of principal stresses for materials of weak shear

terial properties such as Young's modulus and density of stestiffness. Since the material used in the topology optimization

used for stator parts, we can compute that the conditions swgually has weak shear stiffness, Pedersen’s work can be applied

gested in Eq(21) are satisfied whem is over than 50 Hzw is the as an updating rule for the orientation design variables.

exciting frequency of the magnetic harmonic force and it is con-

sistent W|th the motor speed. 50 le is approximately 480 rpm amgd Application to a Switched Reluctance Motor(SRM)

the SRM is usually operated at higher speed than 480 rpm. Ac- o ) .

cording to the Colby et al.’s worf{3]), the deformation modes of The homogenization design meth@dDM) was applied to a

an SRM for severe vibration and noise are much higher thanf4 (Six stator poles—four rotor polesype SRM to obtain the

kHz. Therefore, the objective function expressed as in (E6) optimal sh_ape of the stator for minimizing the frequency response.

can be used for ordinary operating conditions. After obtaining the optimal shape, the materlal properties of the
Using the relation of the total potential energy and the meafiructure were changed ag:cordlng to the optimization result and

compliance shown in Eq18), we can define the sensitivity of the ABAQUS was used to verify the effect of the optimal shape.

mean compliance as 5.1 Finite Element Model and Topology Optimization.

ab?(u) y Ui dUy Since the rotor is rotating, the relative position of a stator to a
= dQ—w2 pHUi UldQ
Q Q

Xy K gy 19_X| rotor is changing continuously. We analyzed at three different po-
! sitions to compare the results according to the stator-rotor posi-
‘9E:_j|kl U, dU, ap" tion. Fig_ure 3 displays a finite _element model used to compute the
(—f ———dQ+w2f —U; UidQ). magnetic force. The model is composed of hexahedral three-
o Xy X} X, 09 Xm dimensional elements one layer deep. The air-gap portion between
(22) a rotor and a stator is composed of three layer finite elements and
the integration path for applying the Maxwell stress method is
4.2 Optimality Criteria Method. In the design process, the defined along the middle layer. The stator-rotor position drawn in
design variables are updated at each of the iterations using the figure is defined as position 1 while positions 2 and 3 are
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the value of the flux density. As can be seen from Fig. 4, the
magnetic forces are more widely distributed as the contact area of
the rotor and the stator is larger. The magnetic forces shown in
Fig. 4 are applied as exciting forces to obtain the optimal shapes
for minimizing the frequency response at three different positions.

Figures %a) and §b) display the design domain with boundary
conditions and load conditions. The magnetic forces are applied at
the nodes designated in the Figap The optimization was per-
formed at 100 Hz exciting frequency by changing the load condi-
tions corresponding to the three different positions with 60 percent
volume constraint.

Figure 6 shows the optimal material distributions of the design
domain at three different positions and the black parts represent
high-density material. Figure 7 shows the three-dimensional opti-
mal shapes composed of the selected elements whose density is
larger than the 70 percent of the maximum density. As can be seen
from these figures, more material is distributed around the stator
pole as the contact area of the rotor and the stator becomes larger.
Also, we can confirm that making the material density weak in the
middle part of the stator pole is effective in reducing the weight
without any harmful effect on the vibration level. Figure 8 shows
Fig. 3 Finite element model of a switched reluctance method the convergence history of the optimization process for the model
(SRM) for magnetic force calculation: position 1 representing position 1. We can verify that the objective function

converges well until 100 iterations. This tendency is similar to the

other two positions.
defined when the rotor is rotated counterclockwise from the posi-As shown in Fig. 7, the optimal topology is different according
tion 1 by 10 deg and 20 deg, respectively. As can be seen from tlethe relative position between the stator and the rotor. It is al-
figures, we use a quarter of the motor for modeling because rbst impossible to make a stator that has ‘changing’ material
symmetry. Along the circular edge, the Dirichlet boundary cond#istribution: however, we can designate the locations of the stator
tion is applied while the Neumman boundary conditions are aphat keeps high-density material distribution regardless of the rela-
plied along the symmetry line. Figure 4 shows the vector plot ¢ifve position and we can select such locations for the reinforce-
magnetic forces computed by the Maxwell stress method basedroant in the design modification. If some relative positions such as
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Fig. 4 Vector plot of magnetic force
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Fig. 5 Design domain for the structural optimization of the stator
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(a) position 1 (b) position 2 () position 3

Fig. 6 Optimal shapes at three different positions

(@) position 1 (b) position 2 (c) position 3

Fig. 7 Three-dimensional optimal shapes at three different positions
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Fig. 8 Convergence history of the optimization for the position 1 with 100 Hz
exciting frequency
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quency. As can be seen from the figure, the stator is deformed to
the outward and the deformation at the stator pole edge, which is
adjacent to the rotor pole, is very large. Therefore, we can verify
the results by comparing the displacement at the nodes located at
the edge as designated in Fig. 9.

As can be seen from Fig. 7, the optimal topology for minimiz-
ing vibration shows a hole at the stator pole. However, making a
hole inside of a pole can distort magnetic flux and it can exert a
bad influence upon the motor efficiency. As mentioned in Section
5.1, we focus the modification on changing the material property
of the selected portion shown in FigiaJ rather than removing the
nonselected part to avoid the severe change in magnetic flux dis-
tribution. Therefore, we increased Young’s modulus at the finite
elements that are displayed in Figay while using the original
material in the other part. For the first and second analyses, the
value of Young’s modulus of the elements was increased by 20
percent and 50 percent, respectively. Also, for a comparison, the
value was increased by 50 percent at the elements that are not
selected in Fig. &) in the third analysis. During the analysis, the
material density is assumed to be similar for the selected and
nonselected parts. It can be realized by using the combination of
iron and ferromagnetic alloy such as cast iron-nickel. Figure 10
shows the comparison of deformation magnitude at the selected
nodes. The graph shows the root mean square value afd
y-directional displacements at the nodes. As can be seen from the
graph, increasing Young’s modulus is effective in reducing the
deformation. However, increasing Young's modulus of the ele-
the contact-beginning position or the contact-ending position mugents that are not selected by the optimization process is not
be considered more seriously than others, the multiobjective fungfective in reducing the deformation. Therefore, we can confirm
tion can be an effective alternative to obtain the optimal topologihat not only increasing Young's modulus but also selecting the

The magnetic force is also changed as the optimal matergdpropriate portion to increase Young's modulus is important in
distribution of the stator is changed during the optimization preeducing the frequency response. By these results, we can confirm
cess. In this study, the optimal topology shown in Fig. 7 is used {pat the HDM is valid for the purpose of minimizing the fre-
select the reinforcement part of the stator rather than removing ifigency response.
low-density part as in ordinary “mass-minimization” topology
optimization. The final product of the stator is composed of twg Conclusion
materials that have same ferromagnetic properties but differenli
mechanical properties such as Young’s modulus to minimize the
frequency response as well as keeping the pattern of the magnéft
force. Therefore, we can decouple the magnetic force calculati
and the optimization process.

nodes for comparison
(numbered 1-6 into z-direction)

Fig. 9 Deformed shape by frequency response analysis at
position 1

n this paper, we have discussed on structural topology optimi-
H’on using the homogenization design metfid®M) to mini-
ze the frequency response of a switched reluctance motor
M). We have formulated the objective function as a square
form of mean compliance to guarantee the positive value at ordi-
5.2 \Verification by ABAQUS. We verified the optimal nary exciting frequencies. The magnitude and direction of the ex-
shapes using the commercial package ABAQUS. Considering tleéting force were calculated using the Maxwell stress method. The
the maximum deformation occurs at the beginning of the trangleveloped optimization algorithm was applied to the stator of an
tion period, position 1 is used for the verification. Figure 9 showSRM to minimize the frequency response caused by the magnetic
the deformed shape of the original stator by frequency resporfeeces.
analysis using ABAQUS for position 1 at 100 Hz exciting fre- The final design suggested is the optimal material distribution
of two different materials in the stator to avoid the abrupt change
of the magnetic flux distribution. It is also possible to obtain the
20005 ————— optimal topology of a structure in magnetic fields to maximize the
L magnetic flux([12]). This study can be extended as the multiob-
r 1 jective optimization considering both the magnetic flux and the
 e—— ————%  frequency response to obtain the optimal topology composed of a
0 00045 single material.
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1 Introduction where the only difference from classical elastic theory is that in
e stress and the electric displacement constitutive Bjs(4),

. . . t
In the theoretical studies of crack problems, several differe e stress,,(X) and the electric displacemeBi(X) at a pointX

electric boundary conditions at the crack surfaces in piezoelect ;
materials have been proposed by numerous researierd]). 8pends o (X) and¢ (X), at all points of the bodw and¢
However, these solutions contain stress and electric displacem It the mechr?nmﬁl d|splgcle ment anld Qlectn(;f_ _potenna(;.
singularity. This is not reasonable according to the physical n a,€15,81; Are the shear modulus, pllezoe ectric coefficient, an
ture. To overcome the stress singularity in the classical elas Eelegtnc parqmeter, rgspectlvelya(|x —XI) |s,the influence
theory, Eringer{5] used the nonlocal theory to study the state dinction. As discussed in the papéf$,6)), a(|X"=X[) can be
stress near the tip of a sharp line crack in an elastic plate subjecés§umed as follows:
to antiplane shear. The solution did not contain any stress singu- 1
larity. Recently, the same prob_lems have been resolved in Zhou's a(|X'=X|)= —(/3/a)2 exp[—(/}/a)z(x’—X)(X’ -X)] (5)
papers([6]) by using the Schmidt method. ™

In this paper, the. behavior of two .collinear symmetric ,Cradﬂﬁlhereﬂ is a constant and is the lattice parameter.
subjected to the antiplane shear loading in the piezoelectric mate-
rials is investigated by using the Schmidt method and the nonlocal
theory for permeable crack surface conditions. The traditional
concept of linear elastic fracture mechanics and the nonlo@&l The Crack Model
theory are extended to include the piezoelectric effects. As ex-
pected, the solution in this paper does not contain the stress
electric displacement singularity at the crack tip.

onsider an infinite piezoelectric plane containing two collinear

%9 metric permeable cracks of lengthblalong thex-axis. 2o is

the distance between two cracks. The boundary conditions of the

. . . i . present problem are

2 Basic Equations of Nonlocal Piezoelectric Materials
As discussed if7], for the antiplane shear problem, the basic

equations of linear, nonlocal piezoelectric materials can be writte

7 (x,0)=72(x,07)=—7, b=|x|<1 (6)

BP(x,01)=DP(x,0), $V(x0")=¢P(x0), |x|<e

as follows: 7
aT aT,
a;z (?y”:o 1) w(x,01)=w?(x,07)=0, 0<|x|<b,1<|X| (8)
Px By 2 wixy)=¢M(xy)=0, for (XP+y?) e, (k=12
ox oy )

Note that all quantities with superscrip{k=1,2) refer to the
_ ;o , , , upper half-plane and the lower half-plane.
Tk X) = Jva(|x XDIeaw k(X) +ersd (X)JAV(X'), As discussed ifi7], the general solutions of Eq&l)—(2) satis-
fying (9) are, respectively,
(k=x,y) (3)

wi(x,y)= 2 JxAl(s)e’Sycos(xs)ds,
Dk(X)=fva(|x’*X|)[915W,k(x')*811¢,k(x’)]dV(X'), ™ Jo

(k=x,y) 4 dP(xy)— :—iw(“(x,y)= % f:Bl(S)e’Sycosxsws

- (20)
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whereA;(s), B1(S), Ax(s), B,(s) are to be determined from the5 Numerical Calculations and Discussion

boundary conditions. .
For solving the problem, the gap functions of the crack surface 7y, andDy along the crack line can be expressed as

displacements and the electric potentials are defined as foIIows

(1> 0
fu(0) =w(x,01) —w(x,07) (12) #x0
_ — C —
f (X)) =M (x,0") = $@(x,07). (13) :—f an erfqes)G,(s)J n+1(5 5 )cos{xs)ds
Substituting Eqs(10)—(11) into Egs.(3)—(4), (12)—(13), applying n=0
the Fourier transform and the boundary conditié®)s-(8), it can (21)
be obtained as
1(*— 7o D,=D{"(x,0)
p sfw(s)erfc(ss)cos(sx)ds:c—, b<|x|<1 (14)
0 44
e 1-b
1 (= =—f’n_ anQn f erTC(SS)Gn(S)Jn+1( 5 )COS(XS)
p= fu(s)cogsx)ds=0, 0<|x|<b, 1<|x|<* (15)
0
— — (1)
and f,(s)=0, f,(x)=0, for all s and x. e=a/2B, erfc@)=1 c4 2(%0). (22)

—d(2), ®(2)=2/y7 [ exp(-tA)dt.
So long ag#0, the semi-infinite integration and the series in Egs.
4 Solution of the Triple Integral Equations (_2(_)) is convergent for any \_/arlabbe Equationg21) and(22) give
_ _ i finite stress and electric displacement all algrg0, so there are
As discussed 6], the Schmidt method8]) can be used to no stress and electric displacement singularity at the crack tips.
solve the triple-integral Eq$14)—(15). The gap functions of the The results are plotted in Figs. 1 and 2. From the results, the
crack surface displacement can be represented by the followitlighensionless stress field is found to be independent of the mate-

series: rial parameters. They just depend on the length of the crack and
1+b the lattice parameter. However, the electric displacement field is
- X— —— found to depend on the stress loads, the shear modulus, the length
(X):z Q. pl12172 2 of the crack, the lattice parameter and piezoelectric coefficient
w ntn 1-b except the dielectric parametey,. Contrary to the impermeable
> crack surface condition solution, it is found that the electric dis-
placement for the permeable crack surface conditions is much
1+b)\2\ 12 smaller than the results for the impermeable crack surface condi-
X— - tions.
l_ ——
~ - b) I
2
for bsx<1, y=0 (16)
fu(x)=0, for 0<x<b, 1<x, y=0 17) 2
wherea, is unknown coefficients to be determined aRf'>2 o 14
X(x) is a Jacobi polynomial. The Fourier transformation of Eq. X
(16) is N
— 1 1-b
f(8)= 2, 3iQuGn(S) S Jns1| S5 (18) o
n=0
1 . .
F( n+1+ 2 0 1 2
2 X
—2fm
n: Fig. 1 The stress along the crack line versus x for b=0.1,
1+b al2=0.0005 (PZT-5H)
(—1)"? cos( ST) ., n=0246...
G,(s)= 19
" (—1)(n+D2gjn s,ﬂ n=1,357... o 8l
5| 13,9, 1, —
whereI'(x) andJ,(x) are the Gamma and Bessel functions, re- S
spectively. By substituting Eq18) into Eqgs.(14)—(15), respec- = 4
tively, Eq. (15) can be automatically satisfied. Then the remaining {;
Eq. (14) reduces to the form ) J
w 0
s  erf£5)G,(8)3ys 4| S ds= —
“~ a,Qn o erfa(es)G(s)Jn 1| S 2 cogsx)ds= C44TO' 0 1 2
(20) X
Equations(20) can now be solved for the coefficierds by the Fig. 2 The electric displacement along the crack line versus X
Schmidt method[8]). for b=0.1, a/23=0.0005 (PZT-5H)
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need more time to prepare a Discussion should request an extension of the deadline from the
Editorial Department.

Propagation of a Shear Direction M 10T Lo L ”
Acoustic Wave in Piezoelectric Coupled a1 oge r TTE
Cylinders wherep is the mass density and dot denotes time derivative.

For an SH waval,=u,=0 andu, is independent of. Hence,
the nonzero strain components are

Q. Wang oy, ds 1oy, )

Mem. ASME Siz=—, and Sy, = —. (2

J. Jin The pertinent constitutive relations for the piezoelectric layer can

be reduced to

S. T. Quek T 9= CasSp,—€15E (3a)

Department of Civil Engineering, National University of Tr2= CasSrz— €k (3b)

Singapore, Singapore 119260 D,=€,S,,+ €14, (3c)
Dy=e155y,+ €11E, (3d)

1 Introduction wherecy,, €15, andey; are the elastic, piezoelectric, and dielec-

Acoustic wave polarized in the horizontal shear directighi tric constants of the piezoelectric layer, respectivé@lydenotes
wave have attracted much attention in the topic of smart mateireéssE the electric field, and the electric displacements.
als research because of the following readdn-3)). The particle By employing the quasi-static approximation, the relationship
displacement associated with SH wave has almost zero Compglween electric fiel@E and electric potentia$ can be reduced to
nent normal to the free surface. The absence of the surface normal E=_V

. - : ; : =-V¢ 4)
component avoids fast dispersion of energy into surrounding me-
dium when the subject is immersed in liqui@é]). The properties and the electric displacement can be derived as
of SH wave traveling in the piezoelectric coupled cylindrical
structure are however quite different from that in plate or beam VeD=0. (5)
structured([5,6]). In the case of cylindrical geometry, SH wave is
polarized along the axis of the cylinder with zero particle dis-
placement component normal to the cylindrical surface. The
present paper is concerned with SH wave circulating around a A
long metallic cylinder covered with a piezoelectric layer. Disper- y
sion relations are obtained, which provides potential application
of this structure in the design of nondestructive evaluation of cy-
lindrical structures submerged in water.

2 Formulation of mechanical model h g

The model under consideration involves a long metallic cylin- z
der of radiusa covered by a piezoelectric material of uniform
thicknessh (see Fig. 1 The equations of motion can be written in Metal
cylindrical coordinate system as

\j
=

PZT-4

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Feb. 15,
2001; final revision, Aug. 29, 2001. Associate Editor: A. K. Mal. Fig. 1 Geometry of the layered long cylinder
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Fig. 2 Dispersion curves for the first and fourth modes
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Fig. 3 Dispersion curves of cylinder with different core material

Substituting(2)—(4) into (1) and(5) yield the electromechanical
coupled governing equations,

CaaV2U,+e15V2p=pl, (6)
e1sV°U,— €1,V¢=0, (7)

which can be simplified as
€4V 2u,= pli, (8)

wherec,,=Cq,+ €34 €, and
V2p=0 (9)

wherep=¢—(e15/€1)U;.
The stress can be written as
— d de

Tr2=Cya (9_: + e15? . (10)

The corresponding equations for the metallic cylinder core are

392 / Vol. 69, MAY 2002

V2= (11)
’ !au;
T,=n ar (12)
Table 1 Material properties
Aluminum Steel Gold PZT-4
Mass density p'=2.8 p'=7.8 p'=19 p=7.5
(X10° kg/mP)
Shear modulus =27 w=76 u'=26 Ccypy=26
(X 10" N/m?)
es (kim?) - - - 12.7
€11 (X10°° ¢/m) - - - 6.45
¢, (X10° mis) 3.11 3.12 1.17 2.60

Transactions of the ASME
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Fig. 4 Dispersion curves of an aluminum cylinder with a piezoelectric layer of
different thickness

wherep' is the shear modulus and prime denotes variables of the @1, 0,0)= i, (r)ePP=Y  a<r<a+h (17)
core.

Itis assumed that the poling direction of the PZT-4 layer coifiynere P is the angular wave number andlis the angular fre-

cides with thez-axis and the outside surface of the piezoelectrigyency. SubstitutingL5)—(17) into the governing Eq8), (9), and
layer is electrically shorted. Hence, the electrical potentigi ) gives
throughout both sides of the piezoelectric layer is zero. The out-

side surface of the layer is stress free and the continuity conditions du, n } du, 2 p? U’'=0 (18)
should be satisfied at the interface. The boundary conditions can dr2 rodr ai 2| ¥z
thus be written as ) )
d“u, 1du, , P
¢=0, atr=a+h (13a) W—’_FW*_‘QC_I._Z U,=0 (19)
T,,=0, atr=a+h (13p) dz"/’ZJr E %_ p_|2 o 20)
$=0, atr=a (14a) arz Frar a2 ¥eT
u,=u,, atr=a (14p) Whereqi=p’w’/p, andqi=pw’/Cyy
T,=T,, atr=a (140) Solutions for(18)—(20) ar.e
. . . u,=AJy(qr)e Py, O<r=<a (21)
3 Dispersion Relations oo at)
The harmonic wave solution for both the cylinder core and the U =[BJp(qer) +CYp(acr)le ’ asr=ath 22)
piezoelectric layer can be represented as
ué(rlelt):Ué(r)ei(pﬁfwt)l o<r<a (15) QD:(DrP-i-Er‘P)eI(pa_wt)' asr<a+h (23)

whereJ,(z) andY,(z) are Bessel function of the first and second
Uy(r,0,1)=U,(r)e®’=«Y a<r=<a+h (16) kind. Utilizing boundary conditions afl3)—(14) yield a system of
five equations as follows:

e e
0 23,(BVaP)  —Yo(BVap) aPP aPgrP
€11 €11
—dJp(BVap)  —3Y,(BVaP) P o
0 Cas— g a2 epal it —egpa PP (A
r ar B
€15 €15 _ C}=0 (24)
0 — — aP aPf
o hVaD) o Y(Va) 5
J(aV,p) ~3,(Vap) ~Y,(Vab) 0 0 E
[03,(aV,p) 93 (V,p) Y (Vap)
-M p&r = —Cug para —Cuq4 pﬂra —egpaP ! ejspa P ! |
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where a=(p’c,/pur’)Y?, B=(1+h/a). The phase velocity at References

r=ais given byv,=walp, which can be nondimensionalized as [1] curtis, R. G., and Redwood, M., 1973, “Transverse Surface Waves on a Pi-
ezoelectric Material Carrying a Metal Layer of Finite Thickness,” J. Appl.
—, . _ Phys.44, pp. 2002—2007.
_ 12
Va_ Ua(C44/P) . (25) [2] Lee, C. K., and Moon, F. C., 1989, “Laminated Piezopolymer Plates for Tor-
sion and Bending Sensors and Actuators,” J. Acoust. Soc. 88npp. 2432—

The dispersion equation is obtained by setting the determinant of 2439 . _ .
coefficients Of(24) to be zero. [f3] Sun, C. T, and Zhang, X. D., 1995, “Use of Thickness Shear Mode in Adap-

tive Sandwich Structures,” Smart Mater. Strudt.pp. 202—206.

[4] Boris, D. Z., and Shrinivas, G. J., 1999, “Propagation of Q&iasi Shear
Horizonta) Acoustic Waves in Piezoelectric Plates,” IEEE Trans. Ultrason.
Ferroelectr. Freq. Contrel6, pp. 1298-1302.

H H [5] Sun, C. T. and Cheng, N. C., 1974, “Piezoelectric Waves on a Layered Cyl-

4 Results and Discussions inder,” J. Appl. Phys45, pp. 4288—4294.

The case of an aluminum cylindrical core of radius 0.1 m [6] Chen, C.L., 1973, "On Electroacoustic Waves Guided by a Cylindrical Piezo-
wrapped with a PZT-4 piezoelectric layer of thickness 0.0(.en, electric Interface,” J. Appl. Physi4, p. 3841-3847.
h/a=0.1 is considered. Usin@4), the dispersion curveg, as a

function of p for the first four mode shapes are computed an . .
shown in Fig. 2. It can be seen that as the wave number increae%s,Generahzed Load-Penetration

the phase velocity of each mode decreases. When the wave nmWalation for Sharp Indenters and the
ber is large, the curves approach asymptotically to the Bluestein- . .
Gulyayev wave velocity(6]). This is consistent in view of the [ndentation Size Effect
fact that when wave number is large relative to the curvature of
the cylindrical surface, the cylindrical problem can be reduced to
a plane problem. Z. Y. Lit
School of Aeronautics and Astronautics, Purdue
4.1 Dispersion Curves of Cylinder With Different Metal  Unijversity, West Lafayette, IN 47907-1287
Core. To study the significance of the coupling effect due to
different metallic core, three materials, namely, aluminum, steel,
and gold are considered. The dispersion curves for the first mode
are plotted in Fig. 3. For comparison purpose, the dispersioh Chandrasekar
curves for a pure PZT-4 cylinder and a pure gold cylinder are al§yofessor, Mem. ASME
plotted.

It is noted that the phase velocity of both the coupled steglchqols of Industrial Engineering and Materials
cylinder and the coupled aluminum cylinder approaches t . - . .
Bluestein-Gulyayev wave velocity, since the softer material is t ngineering, 1287 GRIS, Purdue University,

piezoelectric layer. While the asymptotic velocity of the coupledVest Lafayette, IN 47907-1287
gold cylinder is relatively lower, since gold is slightly softer and
denser.

For low wave number, it is noted that the phase velocities of thg, T, Yang

coupled cylinders follow closely that of the respective rotationq\_l,rofessor and Chancellor, Department of Mechanical and
wave propagation velocityc, of core materials, wherec; Environmental Engineering, University of

= u'lp" for metallic material andt, = VC,J/p for piezoelectric cajifornia, Santa Barbara, CA 93106. Mem. ASME
material. The latter values are tabulated in Table 1 and it can be

seen thatc3>c5>ch>cJ, wherec3, c3, cb, cJ, are rotational

wave velocities of steel, aluminum, PZT-4, and gold, respectivelx. . . . ) o

Due to the relatively lowec, of the piezoelectric material, the A dimensional analysis has been made of elastic-plastic indenta-
coupling effect contributed by the piezoelectric layer lowers tH#en of an anisotropic solid, and of a solid showing pressure-
phase velocity of the coupled aluminum cylinder or that of thgensitive yield behavior. It is found that=®?, for indentation
coupled steel cylinder. In contrast, sincB>cg, the coupling Wlth. sharp, self-s[mllar indenters, vyherg P is the load appllled by
effect of the piezoelectric layer induces a higher phase velocity 1:%5 indenter andjis the corresponding distance of penetration of

the coupled gold cylinder with the dispersion curve of the pur&® indenter into the solid. This extends and generalizes a similar
piezoelectric cylinder as the upper bound. result obtained for isotropic solids showing conventional plastic

behavior. When a strain-gradient plasticity is incorporated into
the material model, then it is found that P is no longer propor-
tional to 62. Implications of the results for the indentation size-
ﬁQect and for the determination of stress-strain curves from inden-
ation are discussed[DOI: 10.1115/1.1458557

4.2 Dispersion Curves of Different Thickness of Piezoelec-
tric layer.  From (24), the radiusa can be removed from the
dispersion equation of the controlling geometrical parameter is t
thickness ratioh/a. The nondimensional phase velocityrat a
+h, V,.n=Va(a+h)/a, is used to study the effect of the thick-
ness of the piezoelectric layer by varyifga. The dispersion Introduction
curves(based onV,. ) of the coupled aluminum cylinder with ) )
piezoelectric layer of different thicknesses are plotted in Fig. 4. Measurement of hardness involves loading a hard sphere, cone,

It is noted that as the thickness of piezoelectric layer increas@§,Pyramid indenter into the surface of a material to produce a
the phase velocity decreases. This can be explained by the f&€ll-developed plastic zone and measuring the resulting indenta-
thatc, of piezoelectric layer is slower than that of aluminum cordion size. A hardness value is obtained by dividing the applied
As the thickness of the layer increases, the coupling effect itpad (P) by the projected are@r surface argaof the indentation.
creases resulting in a lower phase velocity. It can be observed that
the Bluestein-Gulyayev wave velocity is reached at lower wave *Presently at MMC Technology Corporation, San Jose, CA.

: : :Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF
number as the thickness increases. However, the lower bounqlll':%HANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME-

Iir_nited by the dispersion curve of a pure PZT-4 cylinder given iBpanics. Manuscript received by the ASME Applied Mechanics Division, Jan. 25,
Fig. 3. 2001; final revision, Oct. 5, 2001. Associate Editor: A. K. Mal.
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Because of the relative simplicity of hardness measurement and P=f(Cij ,A,B,C,D,E,F,d\,5,u,6). (4)

the semi-empirical relation that exists between hardness and the

yield strength of a material, indentation hardness has found widgimensional formulas for each of the above parameters may be
spread us[e a]s a technique for characterizing the plastic propertigiten in terms of the independent dimensionsXaf;; and 6 as

of solids ([1,2]).

A recent trend in indentation hardness testing is the use Quantity Dimensional Formula
depth-sensing indentation methods. In depth-sensing indentatign; Tyer:
a hardness value is derived from a measurement of the penetrailon [Ci114] " 6]
of the indenter into the material rather than from a measurement, [Ci114 Y[ 61°
of the indentation area. An important example of this approach is
nano-indentation. The use of depth-sensing indentation for haf4B.C.D.E,F [Ci11d %[ 6]°
ness measurement requires a characterization of the reéiaatiora)\ [Cyinl'[ 61°
that exists between applied lo&8), distance of penetratiof®) of 11
indenter into the material and characteristic dimensions of tfie [C11119 6]*
indent ([3]). The determination of this relati¢s should also fa- or <10
cilitate efforts aimed at determining the stress-strain curve of‘& [C110T 4]
solid from a measurement of the load-penetration curve durimy [C1111 67°.

indentation([4,5]).
It has been shown recently, using dimensional analysis,Rhat  Using thell theorem of dimensional analysig8]) with C;;4;

o« % for elastic-plastic indentation of an isotropic solid by sharpnd § as the independent dimensions we get

(self-similap indenters([6]). Here, we show that a similar result,

P §2, holds also for the more general case of elastic-plastic in- oo Gt A B C D E F

dentation of anisotropic solids, and of solids which show pressureé® = Cuud | == . == ==2".c=2.. c=2.- c2. ¢ 2

sensitive yield behavior. When a strain-gradient plasticity model is P L L L L AL

incorporated into the analysis, it is found thHa& 5% is no longer di

valid. Implications of these results for the “indentation size ef- c_”“'g ®)

; 1111
fect,” depth sensing indentation and determination of stress-strain
curves from indentation are discussed.

wherell(+) is a function of the dimensionless parameters enclosed
in brackets. ThusP« &2, for cone indentation of an anisotropic
half-space.

Anisotropic Solid If we set

Consider the elastic-plastic indentation of an anisotropic half- D—E—F=3A=3B=3C,
space by a rigid, sharp conical indenter having a semi-apical
angle, 6. The generalized Hooke’s law for elastic deformation is
C1111= Co200= Caa35= (1 —v)E/(1+ v)(1-2v),
aij = Cjjki g (1)
whereC;; is the stiffness tensor of the fourth order. We use the C1125= Cr135= Copgg= vE/(1+2)(1-2v),
following yield criterion proposed by Hil[7], to describe the

onset of plastic flow in an anisotropic solid: Ca325= C1315= C1215=E/2(1+ v)
2f(ai))=A(0y—0,)*+B(0,~ 0,)*+C(0oy—0,)?+2D 17}, and the otheC;j, =0 in Eq.(5), then an isotropic material results
+2Er§x+2Fr§y:1 @) with E and v being its Young’s modulus and Poisson’s ratio, re-

spectively. This is the case studied by Cheng and Chéhg
whereA,B,C,D,E,F are material parameters characteristic of the
current state of anisotropy. Linear terms are not include{jn

since it is assumed that the material shows no Bauschinger effegt, 4 \vith Pressure-Sensitive Yield Behavior
The Levy-Mises formulation for the stress-strain increment re-

lations during plastic flow is Plasticity in some materials such as glasses and ceramics is
often influenced by hydrostatic pressure. For such materials, the
dey=dA[C(ox—0y)+B(oyx—0,)] Drucker-Praget9] yield criterion often provides a good descrip-
tion of the onset of yield. The Drucker-Prager yield surface is
dey=d\[A(oy—0,)+C(oy—0,)] given by
de,= AN Blo,— o)+ Alo;—0y)] 3) F(J1.05)=3— Bli— k=131, ~ k=0 (6)

dy,,=dADT
g g where f,(J;,35)=\T3— Bd1, =0y, J=1/25;S; and S;

dy,=d\NET,y =0i;— P&, p is the hydrostatic component of the stress state,
and 8 and x are material constants wif describing the pressure
dyxy=d\F 7y, sensitivity.

_ _ ) Using the associated flow rule with the yield function set equal
where d\ is a material parameter that can be obtained frofg the plastic potential, the plastic strain increments are
uniaxial stress-strain data.
The indentation load® is completely determined by the con-

stants,Cyj , the parameter#),B,C,D,E,F andd\, the penetra- deP =dn ﬂ (7
tion distanceg, of the indenter into the half-space, the coefficient N Ja

of friction, u, between indenter and solid, and the cone semi-

apical angle(6). Thus, we have whered\ is the aforementioned material parameter. If we con-
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sider indentation of this pressure-sensitive material by a cone, P=f(E,»,K,n,1,8,6). (12)
then the load applied by the indenter can be expressed as e

P=f(E,v,B,K,d\,&,6) (8) Using thell-theorem as before witk and 6 as independent di-

) _mensions, we get
whereE and v are, respectively, the Young’s modulus and Pois-

son’s ratio of the material. By applying tHé theorem as before,

with E and 6 as the independent dimensions, we get @ K -
P=E&IIL v,E,n,I/(S,a . (13)
K
P:Eé‘ZH(,B,E,V,d)\,ﬁ) 9)
) ) ) ) Equation(13) shows thal is no longer proportional té* but is
wherell(+) is a function of the dimensionless parameters e”dosﬂgpendent on an additional parametia’r&l which involves the
in brackets. ThusP« 62 is seen to hold also for this case. indenter penetration deptid).

The analysis leading to Eqe5) and(8) carries over with little  Thys the hardness of the material is no longer independent of

modification for other self-similar indenters, e.g., wedge, ViCkerﬁﬁdentation size, but is dependent among other factorslfof) (
and Knoop. thereby, giving rise to an indentation size effect. It should be

These results imply tha« 5% should hold for a large class of . . A
materials. Furthermore, it is seen that the stateméntsy?, and POSSible to establish the form of the dependenc® oh |/5 by
: y ' péjmencal simulation and/or |ngentat|on experiments.

the hardness being independent of load for self-similar indente ) —
are equivalent. This equivalence poses a challenge to the derivalix and Gad12] indicate that has values of around 1@m for
tion of the stress-strain curve of a material from ®a&ersuss 2annealed copper. Since it is observed experimentally that hardness
relation obtained with a sharp, self-similar indenter. becomes independent of indent sipeload, for sufficiently large
indents, Eq(13) would imply that the parametet/(§) appears in
the function H(-)A such thatP/&% approaches a constant value
Discussion asymptotically ag/5—0.

There is a wealth of evidence available from hardness tests with
pyramid indenters which shows the hardness to be essentially in-
dependent of load when the size of the indent is sufficiently large
([20)). In fine-grained homogeneous materials, this observati@onclusion
appears to hold true for indentation widths in excess of about ten

micrometers. Numerical simulations of _elastic-plastic indentatiqaad (P) is proportional to the square of the indenter penetration
ha\ge also shown the hardness to be independent of (@@ istance(s) for elastic-plastic indentation of solids with sharp
&%) for solids that obey conventional plasticity. Giannakopouloge|t.similar indenters. This relation is found to apply for solids
and Larsor{11] have analyzed the indentation of materials showghoying a wide range of yield behavior. The relation, however, is
ing a pressure-sensitive yield behavior and noted Bvab” ap-  seen to break down when strain-gradient plasticity is incorporated
pears to be a good fit for both Vickers and Berkovitz indentationgyo the material model.
These results are consistent with the findings of our dimensional
analysis.

But how canP= 6 be reconciled with observations of an in-
dentation “size effect’? The size effect refers to a dependence acknowledgment
hardness on indentation size that has been observed in experi- ) . .
ments([10]). Several explanations have been proposed to explajn/Ve would like to acknowledge the National Science Founda-
this effect including an error in hardness estimate due to impreci@? for grant DMI-9800920 that supported this work.
knowledge of indenter tip geometry, the presence of oxide or de-
formed layers on surfaces, and a lack of knowledge of the exact
load bearing area of an indentation due to material pile-up afReferences
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Resonance and the Aging Spring w=lko/m. ®)

For resonance loading the equation of motion becomes

T. J. Lardner N ' . ' muU+cu+kyexd — er]=posiner 4)
Department of Civil and Environmental Engineering, with initial conditions prescribed fou(0) andu(0).

University of Massachusetts, Amherst, MA 01003-5202. " The amount of damping in the system is defined by the damp-

e-mail: lardner@ecs.umass.edu. Fellow ASME ing ratio J= c/2kom which is the amount of damping relative to
critical damping in a system in whick=0. It is convenient to
nondimensionalize Eq4) by writing

The steady-state response of the classic mass-spring-dashpot u c
model when the spring stiffness decays exponentially with time y=—, J= , o=+kg/m
(an aging spring) and the system is excited by a forcing function Uo 2\kom )

whose frequency is equal to the natural frequency of the system
with the constant initial stiffness is investigated. The steady-state
response is obtained in terms of the damping and decay constantseret is the nondimensional time. Equatiéf) becomes
of the system and exhibits an oscillation about a nonzero value.

t=(1)’T, UO=p0/k0, Ezlé/(x)

o

[DOI: 10.1115/1.1458559 y+2Jy+e “y=sint (6)
with initial conditions

y(0)=yo; Y(0)=vg 7

1 Introduction . o ) . .
where () is the derivative with respect to the nondimensional

The classical mass-spring-dashpot model used to describe tithe t. Usually in the study of resonance the initial conditions are
bration characteristics of Slmp|e mechanical SyStemS under tln@xua| to Zero; see, eqs] In the case of no decay’:o, Eq(G)

dependent loading is well known. When the forcing function igeduces to the classical case
harmonic with a frequency equal to the natural frequency of the . . )
undamped system, the system is said to be in resonance and the y+2Jy+y=sint (8)
steady-state response is harmonic with an amplitude dependentgnyhich the solution satisfying the initial conditions is

the amount of damping in the system. The amplitude of the re-
sponse of the system at other values of the forcing frequency is

1
Vot E +y0\]

less than that at resonance and often is of less concern. 1
The purpose of this brief note is to determine the steady-statey(t)=e " (yo+ 5) COSwpt+ —————  sinwpt
response of the mass-spring-dashpot model when the value of the “p
spring stiffness decays exponentially with time from a constant 1
initial value to zero and the system is excited by a forcing function — 5 cost 9)

with a frequency equal to the natural frequency of the system with 2
the initial stiffness. The spring in this case is called @ing wherewp=\1—J?. The steady-state portion of the solution, that
spring([1,2]). This model has a simple interpretation of a physicag, the solution as—c, has an amplitude of oscillatory motion of
system becoming less stiff in time while excited by a loading thali/2J) which for lightly damped systemd<1, can be large. The
would lead to resonance if the stiffness remained constant. Ti@ady-state behavior is also independent of the initial conditions.
problem is of interest because of the importance of understandimge steady-state solution in E) follows directly from Eq.(8)
resonant systems and because the results for the steady-statgvkere the damping force term balances the forcing function and
sponse are somewhat unexpected. the inertia and spring force term cancel one another.

In the casee#0 in Eq.(6), we note that as—«, the steady-
state solution must satisfy

y+2Jy=sint (10)

2 Formulation

The equation of motion for the displacemerftr) of a mass in
a mass-spring-dashpot system is the solution to which is

mu+cu+k(r)u=p(r) 1) 1
t)=C;— ———=[sint+2Jcost], ast—wx 11
wherem,c,k(7) are the mass, dashpot constant, spring stiffness y=C 1+4J2[ ] - (11)

that is a function of the physical timg andp(r) is the forcing
function. We are interested in the case of resonance in which
forcing function is a sine function with a frequency equal to th1ar
natural frequency of the the system with an undamped const
spring stiffness. The spring stiffness is assumed to decay in ti
as(anaging spring([1,2])),

his result is surprising because the amplitude of the steady-state
cillatory motion is now approximately unity having decreased
om (1/2J) when e=0. Further, the solution oscillates in general
Alout a nonzero value gfgiven byC; that will depend upon the
Mftial conditions and the values dfande.
We now wish to obtain the exact solution of E§) using the
k(7)=koexd — 7] (2) method of variation of parameters; see e[d], from which the

. . . . o . steady-state solution of the form in E¢L1) can be extracted
wherek, is the spring stiffness at time zero amdis the time exhibiting the value oC; .

decay constant. Exponential decay is selected because of the con-
venience in the analysi$1,2]) and the expectation that the stiff- )
ness of a physical system will asymptote to small values in timd. Exact Solution

In the absence of decay=0, the natural frequency of the un- the complete solution to Ed6) in terms of the two solutions
damped system is to the homogeneous equation(t), u,(t) can be written in the

form
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- y(t)=u1(t)F1(t)+c1u1(t)+uz(t)Fz(t)+czu2(t) (12)
CHANICS. Manuscript received by the ASME Applied Mechanics Division, May 30,
2001; final revision, September 5, 2001. Associate Editor: N. C. Perkins. where
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sintu,(t)

Fi(t)y=— Wi (13)
sintuq(t

ot = [ Sa 1)

W(t)= Ei Ez (15)

Wronskian andc; andc, are the constants of integration. Upon

applying the initial conditions, Eq.7), we find that the solution
can be written in the form

y(t) =u(t)F1(t) —us()F1(0) +ux(t)Fo(t) —ux(t)F,(0)
+[u1(H){you2(0) —vouz(0)} = ux(t){yous(0)

—vou1(0)}] W) (16)
The solutions to the homogeneous equation
y+2Jy+e y=0 (17)
follow upon making the substitution$1])
y(t)y=e u(t), s=spe ¥, sy=(2/€) (18)
to obtain a Bessel equation
s?v"+sv'+v(s?—A%)=0 (19)

The combinatiornuy (t) F4(t) + u,(t)F,(t) in Eq. (16) ast— be-
comes

—(sint+2J cost)
1+4J2

which agrees with Eq(11). The remaining terms in Eq16) can
be evaluated, e.gF,(0) can be found from Eq22) by expand-
ing the Bessel functiod, (s) in series form, integrating term by
term, and setting=0 to find

(26)

T So A1 7 (_1)k So 2k 1
Fo(0)=— —=——|+ E - 5.
sin\7\ 2 o KI(k+MN)T\ 2] 1+(2k/sp)
(27)
It follows that the steady-state solution is
* (_l)k SO)2k+)\ 1
— A1 = -
y(h=e F("); Kkl 2] T1(2Kisg)?

sint+2J cost
1+4J2

(28)

The value ofy about which the oscillations of the steady-state
occur is given by the first two terms in E@8). We see therefore

that the steady-state resonance response in the presence of an
aging spring is an oscillatory motion of approximately unit ampli-
tude about a constant value that dependd ande and the values

of the initial conditions. This result is one that might not have
been anticipated on physical grounds. For example, if the initial
conditions are zero witd=0.1 ande=0.3, the steady-state value

is =—0.282. As an additional result, we note that in the case of a
zero forcing function with the system excited only by the initial

= I (M{yodr-1(S0) —vody(So)} —

where\ =(2J/¢€) and primes indicate differentiation with respectongitions, the steady-state response is a constant occurring after a

to s. The solutions to Eq19) are Bessel function3, (s), J_,(s)

with A #n, an integer. The solutions to E(L7) can be written in

the form
uy(t)=e7,(see"%0); U (t) =TI, (s0e” %) (20)

andF(t) andF,(t) follow from Egs.(13-15, (20),

Fi(t)=— (21)

Jt o
> sim\wJ e’'sintd_,(s)dt

Fo(t)= f e’tsintd,(s)dt. (22)

ar
2 sin\m
To obtain the solution as—«, from Eqg.(16), we need to deter-
mine the expansions af;(t), u,(t), F4(t), andF,(t) ast—o
and the values oF(0) andF,(0). It follows from the expan-
sions of the Bessel functions &s>, s—0, that

2 A
UZ(I)_)(S_O) /(—X)! (23)

Ly So\M 1
uy(t)—e ZJI(E) NE

In order to findF,(t) andF,(t) ast—«, we expand the Bessel

functions abous=0, and integrate to find

= mse [ 2\* 1 [e?(2Jsint—cost)
0=~ S s |55 (=M1 147
(24)
7TSO SO )\1
FZ(t):f—ZSinMr > ﬁcost. (25)
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finite number of oscillations.

4 Concluding Remarks

The interest in the nature of the solution was motivated by the
work in [1,2] in which the finite number of zeros in the solution
for the case of no damping and no external loading was discussed.
A related case is

k(7)=ky+ (ko—ky)exd — €]

in which the spring stiffness at long times approaches a nonzero
value k; . In this case the solution involves Bessel functions of
imaginary order. However, the behavior of the steady-state motion
is oscillatory abouty=0 with an amplitude determined by the
amount of damping relative to critical damping at the valu&of
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An Exact Solution for Response 74287+ 02Z=X(1). @)
SpeCtraI DenSIty Of a Slngle_Degree-Of- Expressing the mean square valuez(f) as the integral of the
Freedom System Under Both product of the PSDDP,,(w) of x(t) and the squared magnitude of

: - : : the transfer function of filtet4), one can show that the following
Parametric and Additive White Noise .. iion holds:

Excitations
E[Z%]= lim [ 7® . 0)/2Bw?]. (5)
. B—0
M. F. Dimentberg
Mechanical Engineering Department, Worcester Thus, the response PSD of systéh) can be obtained when the
Polytechnic Institute, Worcester, MA 01609-2280. mean square response of the measuring fitgis found.
e-mail: diment@wpi.edu To solve this problem in the framework of the stochastic differ-

ential equatio{SDE) calculus, Eq(4) with zandz renamed asg
andx,, respectively, is first rewritten in the state space form as
follows:

Y. K. Lin

Center for Applied Stochastics Research, Florida Atlantic
University, Boca Raton, FL 33431-0991.

e-mail: linyk@fau.edu Combining Egs.(2) and (6), and denotingu;;=X;X; ; Ujj;=X;X;
+xi>'(j (i,j=1-4) one obtains the following SDE set foy;

X3=Xg, Xq=—2BXs— 0>Xz+Xy. (6)

Consider the following equation of motion

X+2ax[1+ (1) ]+ QX[ 1+ £(1)]=Z(t) 1) Uy=2U15,

where &(t), 7(t), £(t) are Gaussian white noisés the Stra- Upy=—4alpf 1+ 7(t)]— 202U, 1+ £(t) ]+ Vul(t),
tonovich sensewith spectral densitie&,,, K, , K., respec-
tively. The two parametric white noiseg(t) and&(t), are corre-
lated, with cross-spectral densit;, . The objective is to obtain
the spectral densityPSD of the response(t), which exists if ] )
x(t) is stationary in the wide sense. This is the case, prowided Ugg=UpgtUqg, Ugg=Ups— BUis— Uizt Uy,
has constant finite mean and mean square values, and its PSD so

obtained is positive everywhere. .
Rewrite E%.(l) in the s);l)ace state form ligs=Uga— 20tz 1+ 7(0)] = Q%usd L+ E(0]+ ussl (1), @

Ugo= Uz~ Q2Uy [ 1+ (1) ] — 2@y 1+ 7(t) ]+ Vugsd (1),

X1=Xy, Xo=—2aX,—0%X;—2ax,n(t) — Q2x E(1) + £(1) .
1 2 2 ! 2 ' 2) Ups= —2( e+ B) Uz~ 2alng7(t) — 0?Uyg

_ 02
and take the ensemble averadgs;]=m; to obtain Q2 L+ € T+ urt VUad (1),

. . O = 2
M=m,, Mmy=—2ym,—A%m,, Uzz=2Ug4, Ugy=—4BUy— 20Uzt 2U14,

@)

y=a(l-aK,,), A*=0%1-aK;,) Ugs=Ugg— 2 BUgs— ®2Ugg+ Uyg.

in which the so-called Wong-Zakai correctigfi]) has been in- The expectation operator is now applied to the ten SDEg0
corporated to evaluate the following expectations of the produabtain a set of deterministic differential equations for the second-

of state variables and excitatioffd—3]): order response momeniy; =E[u;;1=E[x;x;] (i,j=1-4). The
general formula for Wong-Zakai correction$—3| is used once
E[ —xon(t)]=(K,, /2 E[(— 2ax,)(d/dX;) (— 2axX,) ] again to evaluate the expectations of products of the state vari-
) ables and excitations. At the state of stationaij);]=0, these
=2a°K,,m; equations reduce to algebraic equations. Furthermore, it is evident
from the first and the eighth of these equations, that=0 and
E[—xlf(t)]z(Kg,,/2)E[(—szl)(d/dxl)(—2ax2)] D3,=0. The remaining eight equations are given by
= aQZKgﬂml.

o —4a(1-2aK,,)Dyp+ Q%KD+ K =0,
The parametery andA, as defined in Eq3), may be regarded
as the effective damping factor and effective natural frequency,
respectively, provided thag is positive andA is real (negativey
or imaginary A, or both, implies system instability in the mean,
which is not considered hergin D,4— 28D ,— w?Dy3+Dy;=0,

To obtain the PSD of(t) at the state of stationarity in the wide ®)
sense, Eq(1) is supplemented with a “measuring filter[2]), Dore 29D e A2D a=0
governed by the following second-order differential equation: 247 Y23 B3

Dy=A?Dy;, Dyt Dyy=0,

Contributed by the Applied Mechanics Division o AMERICAN SOCIETY OF 2(y+ B)Dyy=— w?Dys— A?Dy,, 4BD4=2D14,
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, June 20,
2001; final revision, Sept. 25, 2001. Associate Editor: N. C. Perkins. Dgs— w2D33+ D3=0

Journal of Applied Mechanics Copyright © 2002 by ASME MAY 2002, Vol. 69 / 399



ii in the mean and in the mean square. The condition for mean-
éuare stability is, of course, stricter than that for the mean. It
indicates, in particular, that the apparent bandwidth of the system
never goes down to zer@ontrary to the deterministic systems
) ) 4 For example, in a simple cad€,,=0 its minimal value is just
D1=E[XT]=K;/[4a0Q5(1-2aK,,)(1—aK,) —Q K] Ymn=al2 since the system becomes unstable in mean square
(9)  when the value oK, exceeds 1/2. In such a case, the response
] ) ] ) PSD does not exist, as can be seen in E. The bound
The denominator on the right-hand side (6f is assumed to be K2,/K K ,,=1 must hold also for realistic modeling of the ran-
positive, which is, in fact, the condition for mean square stabllltaom excitations. It is of interest to note that EA.1) for the

of system(1), and is a necessary and sufficient condition for thFesponse PSD coincides with Eq0) in paper[4], which was

existence of the stationary state response in the wide Sense. yariveq using an approximate averaging procedure, under the con-
From the seventh and the eighth equationgin we obtain - jiiong of smalla as well as small excitation spectral densities. In
oo contrast, the derivation presented herein is exact, without restric-
2Bw°E[2°]=D14+2BDy3. (10)  tions beyond those for stochastic stability of the system. Of
course, this exact solution is valid only if the excitations are mod-
Note thatE[z?]=D33. Using relation(5), and imposing then the eled as white noises, so that the SDE calculus is applicable.
condition 8—0 in the remaining equations yield

which can be split into several subsets, and solved analytically.
particular, the mean square displacem®ént can be obtained
from the first and second equations(B) as

7D () =2yA2E[X?]/| (02— A?)?+4y%w?|. (11)  References

Thus, the response PSD is seen to be of the same basic Shape[gsgggﬁésig Egﬂaﬁzﬁz'; m{' Jlggfé ‘g%’tgs sff_tfzngBetwee” Ordinary and
th_at without the_ parametric ex<_:|_tat|ons but _W|th reduced band'[z] Dimentberg, M. F., 19883tatistical Dynamics of Nonlinear and Time-Varying
width and a shifted peak position, according to Eg). The SystemsResearch Studies Press, Taunton, UK.
former of these effects is due to random variations of damping/3] Lir|1|, Y. K, anrli( Cai, G. Q., 199%robabilistic Structural DynamicsMcGraw-

: ot : Hill, New York.
the latter due. to the cross correlation of th‘?s.e variations, V\.lhlcfh] Krenk, S., Lin, Y. K., and Rudinger, F., 2002, “Effective System Properties
affects the stiffness of the system. The validity of the obtained” " ang Spectral Density in Random Vibration With Parametric Excitation,”
PSD is restricted under the imposed inequalities for system stabil- ASME J. Appl. Mech., submitted for publication.
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